Что такое синхронизаторы в коробке передач


Синхронизатор коробки передач

Современные роботизированные и механические коробки передач производители делают синхронизированными. Это означает, что для включения передачи предварительно осуществляется выравнивание частоты вращения вала и шестерни. Для этих целей в конструкции коробки передач предусмотрено специальное устройство – синхронизатор. Кроме плавного переключения передач, синхронизатор обеспечивает ряд других функций: минимизирует износ механического соединения, снижает шум при переключении, что, в свою очередь, позволяет продлить эксплуатационный срок коробки передач.

В легковом автотранспорте синхронизаторами оснащаются абсолютно все передачи, в частности передачу заднего хода. Принцип работы данного устройства основан на использовании сил трения при выравнивании скоростей. Чем выше разница в частотах вращения вала и шестерни, тем больше должна быть величина силы трения для их синхронизации. Для реализации данного условия увеличивают площадь поверхности соприкосновения путем установки дополнительных фрикционных колец.

Особенности устройства синхронизатора

Конструкция синхронизатора включает следующие элементы: ступица с сухарями, блокирующее кольцо, муфта включения, шестерня с фрикционным конусом. Стоит отметить, что для обслуживания двух передач (шестерен) используется один синхронизатор.

Основой синхронизатора выступает ступица. Данный элемент имеет внутренние и наружные шлицы. Посредством внутренних шлицев осуществляется соединение с вторичным валом коробки передач и появляется возможность перемещаться по оси в разные стороны. С помощью наружных шлицев ступица соединяется с муфтой включения.

По окружности ступицы под углом 120° имеются три паза. В эти пазы помещаются подпружиненные сухари. В синхронизаторе сухари нажимают на блокирующее кольцо при включении передачи и блокируют муфту на этапе синхронизации.

За жесткое соединение вала и шестерни отвечает муфта включения (муфта синхронизатора). Она насажена на ступицу. Конструкцией муфты предусмотрены внутренние шлицы, на которых выполнена кольцевая проточка для размещения выступов сухарей. Снаружи муфта соединяется с вилкой коробки передач.

Блокирующее кольцо – это элемент, который обеспечивает синхронизацию и не позволяет муфте замкнуться до момента выравнивания скоростей вала и шестерни. Внутренняя сторона блокирующего кольца имеет поверхность в виде конуса – она взаимодействует с фрикционным конусом шестерни. На наружной стороне блокировочного кольца предусмотрены шлицы, посредством которых осуществляется блокировка муфты включения.

Торцевая поверхность кольца со стороны ступицы имеет три паза для входа в них сухарей ступицы. Благодаря пазам исключается возможность прокручивания кольца при соприкосновении с фрикционным конусом. Размер пазов превышает размер сухарей в 1,5 раза. Встречаются и другие конструкции синхронизаторов, при которых пазы выполнены на ступице, а выступы на блокирующем кольце.

Для снижения усилия при переключении передач и увеличения поверхности соприкосновения используются двухконусные и трехконусные синхронизаторы. К примеру, в трехконусном синхронизаторе, кроме блокирующего (наружного) кольца, дополнительно применяются внутреннее кольцо и промежуточное кольцо. Чтобы исключить проворачивание, на кольцах предусмотрены выступы, которые крепятся в пазах блокирующего кольца и шестерни.

Конструкция трехконусного синхронизатора позволяет создавать три поверхности трения: между конусом шестерни и внутренним кольцом, между внутренним и промежуточным кольцом, между промежуточным и блокирующим кольцом. Необходимо отметить, что в одной коробке передач могут использоваться синхронизаторы с разным числом конусов.

Принцип действия синхронизатора

Когда рычаг коробки передач находится в нейтральном положении, муфты синхронизаторов занимают среднее положение, шестерни на ведомом валу вращаются свободно, не передается поток мощности.

Когда включается передача, вилка выводит муфту синхронизатора из среднего положения и передвигает ее в сторону шестерни. Также, с муфтой сдвигаются сухари, воздействующие на блокировочное кольцо. Кольцо прижимается к конусу шестерни. В следствие этого на поверхности образуется сила трения, с помощью которой поворачивается кольцо до упора сухарей в пазах кольца. Блокирующее кольцо в таком положении не позволяет муфте синхронизатора двигаться дальше по оси вала, поскольку торцы шлицев блокирующего кольца находятся напротив торцов шлицев муфты.

Под воздействием сил трения осуществляется синхронизация скоростей шестерни и вторичного вала. После того, как будут выравнены скорости, блокирующее кольцо под нажимом шлицев муфты проворачивается в противоположную сторону, снимается блокировка муфты, шлицы муфты свободно проходят для зацепления с венцом шестерни. Между ведомым валом коробки и шестерней производится жесткое соединение.

Стоит отметить, что для синхронизации и включения передачи требуются доли секунды, несмотря на то, что данный процесс подразумевает выполнение множества операций.

Синхронизатор коробки передач – строение, принцип работы + видео » АвтоНоватор

Синхронизатор коробки передач – это механизм, который выравнивает частоту вращения валов и шестерен, для того чтобы переключить передачу. Благодаря синхронизатору уменьшается механический износ деталей при смене передачи, а также шум. Срок службы у КПП тем самым увеличивается. Рассмотрим подробнее принцип работы этого механизма.

Как устроен синхронизатор коробки передач?

Синхронизаторы ставятся в легковых автомобилях на все коробки переключения передач, даже на передачи заднего хода. Они работают по определенному принципу: выравнивание скорости при помощи силы трения. Если разница между частотой вращения вала и шестерен большая, тогда и сила трения между ними должна достигаться чуть большего уровня, чтобы синхронизировать их действие. Такое явление ожидается при переключении на самые высокие передачи.

Требуемое условие выполняется при увеличении площади соприкосновения поверхностей, и для этого устанавливаются дополнительные фрикционные кольца.

Основным элементом у синхронизатора является ступица, у которой предусмотрены внешние и внутренние шлицы. Для соединения с вторичным валом используются внутренние шлицы, при этом есть возможность осевого перемещения вала в разные стороны. Нижние шлицы, в свою очередь, соединяются с муфтой включения, которая должна обеспечивать жесткое соединение вала и шестерен коробки передач. Снаружи муфта включения соединяется с вилкой для переключения передачи.

Также в синхронизатор КПП входит блокирующее кольцо. Оно нужно для того, чтобы обеспечить хорошую синхронизацию, и чтобы муфту не замыкало в тот момент, когда выравниваются скорости. Внутри на кольце имеется коническая поверхность, предназначена она для обмена действием с фрикционным конусом имеющихся шестерен. А вот для того, чтобы создать условия блокировки муфты включения, с внешней стороны этого стопорного кольца установлены шлицы.

Принцип работы синхронизатора КПП – что же происходит под капотом?

Принцип работы синхронизатора КПП сложен, но, несмотря на это, все действия происходят всего за доли секунды. Если рычаг КПП находится в нейтральном положении, то муфты – в среднем, и шестерни свободно вращаются, не передавая поток мощности. Когда мы, увеличивая скорость, переключаем КПП, тогда рычаг переносит муфту в положение к направлению шестерни. Что при этом происходит в системе?

Когда мы включаем нужную передачу (скорость) в нашем автомобиле, за долю секунды система успевает сделать примерно следующее. Сдвигаются сухари на муфте (маленькие затворы), которые действуют на блокирующее кольцо, и оно сходится с конусом шестерни. Из-за этого активируется сила трения, которая в свою очередь поворачивает кольцо до того момента, пока оно не застопорится. После этого и происходит синхронизация скорости вала и шестерни. Мотор настраивается на новые обороты, а мы можем без особых усилий увеличивать скорость.

Синхронизатор КПП – поломки и замена

Основные неполадки в КПП могут быть из-за сцепления. При этом эта система работает с запозданием, неточностью, упрямством. Естественно, синхронизатор тут ни при чем, первично следует обратиться в мастерскую или же сделать регулировку сцепления самостоятельно. А что предпринять, если сцепление в порядке? Тогда попробуйте заострить внимание на следующем.

  • Если вам слышится хруст или непонятной природы шум, то, возможно, у вас деформировалось блокирующее кольцо, или же износилась коническая поверхность.
  • Если у вас самопроизвольно выключаются передачи, то, возможно, неисправность кроется в износе шестерни или же в муфте выключения.
  • А если у вас затрудненное переключение передач, то это износился сам синхронизатор.

Замена синхронизатора в КПП проходит в несколько этапов, и для начала нам необходимо снять саму коробку передач и очистить ее от грязи. Затем следует снять кронштейн троса сцепления. Открутить 4 гайки, которые закрепляют заднюю крышку, и убрать ее. Следом вам придется открутить болт крепления вилки у пятой передачи, включить ее, то есть переместить муфту синхронизатора вниз вместе с вилкой, но так чтобы шлицы у муфты были в сцепке с шестерней, после это надо включить третью или четвертую передачу.

Далее снимите гайку, которая крепит первичный вал. Для того чтобы ее сдвинуть с места, необходимо приложить много усилий, так как она затянута с большим моментом. То же самое следует проделать и с гайкой, которая крепит вторичный вал. В заключении надо будет приподнять ведомую шестерню пятой передачи, снять ее вместе с синхронизатором и вилкой вторичного вала, при этом надо проконтролировать, чтобы муфта не сходила со ступицы. Установка нового синхронизатора проводится в уже известном обратном порядке, хотя и потребует внимательности.

Оцените статью: Поделитесь с друзьями!

Синхронизатор — Энциклопедия журнала "За рулем"

Синхронизатор механической коробки передач - механизм, обеспечивающий плавное переключение передач за счет выравнивания частоты вращения включаемой шестерни и вторичного вала. Снижает износ зубчатых венцов муфты переключения и шестерни за счет снижения ударных нагрузок на зубья. Снижает акустический шум (скрежет) при переключении передач. Увеличивает срок службы КП.

Устройство синхронизатора

Конструкция синхронизатора:
1 — шестерня II передачи;
2 — блокирующие кольца;
3 — скользящая муфта включения II и III передач;
4 — ступица;
5 — стопорное кольцо;
6 — пружина;
7 — сухарь;
8 — шарик;
9 — шестерня III передачи

Синхронизатор состоит из ступицы, которая установлена через шлицевое соединение на вторичный вал КП и может перемещаться по валу продольно вместе с муфтой переключения передач. Ступица соединена с муфтой также через шлицы - внешние для ступицы, внутренние для муфты переключения. На наружной поверхности ступицы под углом 120 градусов прорезаны три паза, в которых располагаются сухари синхронизатора. Выступы сухарей совпадают с кольцевой проточкой внутренней шлицевой поверхности муфты. Сухари прижимаются к внутренней поверхности муфты кольцевыми пружинами.
Шестерни вторичного вала КП имеют боковые конические поверхности, на которые насажены свободно вращающиеся бронзовые блокирующие кольца, находящиеся в зацеплении с кончиками сухарей. Пазы блокирующих колец, в которые входят концы сухарей, на 50 процентов больше ширины сухарей. На внешней стороне блокирующих колец находятся зубья, которые входят в зацепление с зубьями ступицы и зубьями шестерни переключаемой передачи вторичного вала.

Работа синхронизатора

При включении передачи вилка перемещает муфту по вторичному валу в сторону шестерни включаемой передачи. Конус блокирующего кольца синхронизатора соприкасается с конусной поверхностью шестерни. Частота вращения шестерни, которая свободно вращается на вторичном валу КП, и конусной поверхности блокирующего кольца, которое вращается с частотой вращения вторичного вала КП, не совпадают. За счет сил трения в зоне соприкосновения двух конусных поверхностей блокирующее кольцо проворачивается на величину зазора между сухарем и пазом (который больше размеров сухаря наполовину). Зубчатый венец муфты переключения устанавливается напротив зубьев поверхности кольца, между ними происходит механический контакт, за счет сил трения скорости вращения выравниваются. В этот момент блокирующее кольцо проворачивается против направления вращения, сухари занимают центральное положение относительно пазов и утапливаются в них. Зубья муфты входят в зацепление с зубьями блокирующего кольца и включаемой шестерни. Для облегчения процесса зацепления торцевые скосы зубьев зубчатых венцов выполнены скошенными. В конечной фазе включения передачи шестерня блокируется на вторичном валу передач, что и приводит к изменению частоты вращения вторичного вала и передаточного числа трансмиссии в целом.

Практика управления автомобилем с синхронизированной МКП

При управлении несинхронизированной КП (в частности, на антикварных отечественных автомобилях довоенного производства) водитель вынужден применять особые приемы переключения передач, чтобы не допустить пломки двигателя и быстрого износа шестерен коробки передач.
Быстрое переключение передач с низшей на высшую на таких автомобилях невозможно из-за разницы частоты вращения шестерни вторичного вала и муфты включения. Чтобы выровнять скорости вращения водитель вынужден пользоваться приемом двойного выжима сцепления. Он заключается в том, что водитель выжимает сцепление, переводит рычаг КП в нейтральное положение, на короткое время отпускает сцепление, затем снова выжимает педаль и включает высшую передачу. В момент выбора «нейтрали» скорости вращения шестерен выравниваются. Переключение передач происходит без скрежета и больших ударных нагрузок на зубья шестерен.
Для перехода с высшей на низшую передачу на автомобилях с несинхронизированной КП применяют прием двойного выжима сцепления «с перегазовкой». Выжав сцепление, водитель переводит рычаг переключения передач в нейтральное положение, нажимает педаль газа, затем снова выжимает сцепление и включает низшую передачу. За счет раскрутки шестерен промежуточного вала скорость вращения подключаемой шестерни и муфты включения выравнивается. Передача, опять же, включается без скрежета.
Эти же приемы переключения передач до сих пор используются в строительных и специализированных машинах (грейдерах, тракторах, тихоходных тягачах) с многоступенчатыми МКП, в которых применение синхронизаторов невозможно.
В синхронизированных коробках описанные приемы лишены смысла, поскольку зацепление шестерен с большой разницей скоростей вращения будет блокировано синхронизатором. Большой ударной нагрузки на зубья шестерен (зубчатых венцов) не произойдет, поскольку шестерни просто не войдут в зацепление до момента выравнивания частоты вращения. По сути, синхронизатор МКП выполняет функции полуавтомата переключения передач, устраняя саму возможность грубого зацепления шестерен коробки, которая способна вывести механизм КП из строя.
На автомобилях с частично синхронизированными МКП (например, ГАЗ-21, водители для перехода со второй на первую передачу, которая не имела синхронизатора, переводили подрулевой рычаг переключения на короткое время в положение включения третьей передачи, а потом быстро - в положение первой передачи. Это позволяло частично синхронизировать вращение муфты переключения и шестерни первой передачи единственным синхронизатором КП этого автомобиля. Такой же прием использовался и для включения заднего хода.

Синхронизаторы заднего хода

В большинстве современных легковых автомобилей с трехвальными и двухвальными МКП передача заднего хода так же оснащается синхронизатором (но это не касается отечественных легковых автомобилей, в которых передача заднего хода синхронизатора не имеет). Это облегчает включение задней передачи, но не избавляет водителя от строгого выполнения правила - включать передачу заднего хода только после полной остановки автомобиля. Для предотвращения этой ошибки МКП оснащается блокираторами, которые делают невозможной включение заднего хода при движении автомобиля вперед, либо рычаг КП оснащается специальным пружинным механизмом, который предотвращает случайный выбор передачи заднего хода. Обычно для включения заднего хода рычаг переключения КП нужно нажать вниз, а затем перевести в нужное положение. Либо сектор включения задней передачи снабжен тугой пружиной, чтобы водитель чувствовал повышенное сопротивление. Либо для включения заднего хода нужно нажать манетку, расположенную на рычаге переключения (это решение можно встретить и сегодня, повсеместно оно применялось на послевоенных грузовых автомобилях отечественного производства).
Синхронизатор МКП один из самых нагруженных узлов этого механизма. При выходе коробки передач из строя специалисты по ремонту прежде всего сталкиваются с фактом разрушения синхронизаторов (особенно шестерен низших передач) и уже потом - с неисправностями уплотнений первичного и вторичного валов, разрушением подшипников и выкрашиванием зубьев шестерен.

Устройство и принцип работы синхронизатора КПП

Множество современных автомобилей оснащаются коробками передач, в конструкции которых предусмотрено использование устройства под названием синхронизатор. Это специальный механизм, главной задачей которого является эффект выравнивания частоты осуществляемого валом и коробочными шестернями текущего вращения.

Практически все актуальные роботизированные и механические автомобильные коробки, устанавливаем

Синхронизатор коробки передач - как устроен и как работает

Как работает синхронизатор коробки передач? Новый вопрос, а для кого-то и новый термин — синхронизатор.

Да друзья, были времена, когда переключение передач на автомобиле было процессом комплексным, и, можно сказать, практически ювелирным.

Но, благодаря человеческой лени, являющейся двигателем прогресса, мы получили машины, которые не требуют лишних действий со стороны водителя и всячески упрощают процесс езды.

И речь пойдет даже не о модных автоматических коробках, а о старых, проверенных временем «механиках». Чтобы облегчить нашу с вами водительскую жизнь, в те еще «доавтоматные времена» и был придуман синхронизатор коробки передач.

В этой статье нам предстоит выяснить как он работает, как устроен и что вообще происходит во время переключения скоростей.

Синхронизатор коробки передач

Нужно сказать, что синхронизатор коробки передач – это устройство не из самых простых, хотя в нём нет ни капли электроники, а время его срабатывания занимает доли секунды.

В былые времена для переключения скорости в машине необходимо было несколько раз выжимать сцепление – одно нажатие отключало коробку от коленвала, а второе наоборот, подключало её обратно.

Понятное дело, что такая процедура не слишком удобна и от неё необходимо было каким-то образом избавиться. Помогла физика, механика и точный инженерный расчёт, в симбиозе которых и родился синхронизатор.

Необходим он для того чтобы выровнять частоту вращения вала и шестерней, благодаря чему переключение происходит аккуратно и без лишнего шума.

Одним словом, синхронизатор коробки передач упростил жизнь водителям, а также значительно увеличили ресурс механизмов коробки. Устанавливаются они, синхронизаторы,  для каждой передачи, иногда и для задней.

В недрах коробки передач

Давайте попробуем разобраться в устройстве этих загадочных синхронизаторов. Состоит данный механизм из таких основных частей:

  • ступица с сухарями;
  • блокирующее кольцо;
  • шестерня с фрикционным конусом;
  • муфта включения.

Работает это следующим образом. Центральным элементом конструкции выступает ступица. Снаружи и внутри у неё имеются шлицы, благодаря которым она присоединяется к вторичному валу КПП и муфте включения.

По валу ступица может передвигаться в разные стороны. Помимо шлицов на ней находятся пазы, в них вставлены подпружиненные сухари.

Не менее важной деталью является муфта включения, её, кстати, часто называют просто муфтой синхронизатора. В её функции входит жёсткое соединение валов и шестерней.

В общем-то, именно её водитель и перемещает, переводя рычаг коробки передач в какое-либо из положений.

За синхронизацию частоты вращения отвечает блокирующее кольцо – пока вал и шестерня не будут вращаться с одной скоростью, оно препятствует замыканию муфты.

Кольцо имеет довольно сложную поверхность для взаимодействия с фрикционным конусом шестерни и муфтой включения. Помимо этого у него имеются пазы для сухарей ступицы.

Физика процесса синхронизации скоростей вращения завязана на трении. Оно возникает между блокирующим кольцом и конусом шестерни во время переключения передачи.

Когда мы выбрали нужную скорость и перевели рычаг КПП, муфта включения передвигается в направлении шестерни и кольцо прижимается к её конусу, возникает сила трения, под действие которой вращение синхронизируется.

Пока скорости вращения разные, жёсткое соединение вала и шестерни невозможно, но как только они выравнялись, блокирующее кольцо отпускает муфту и она аккуратно входит в зацепление с венцом шестерёнки – переключение передачи завершилось.

Стоит отметить, что весь этот процесс занимает доли секунды и практически незаметен для водителя, но крайне важен для КПП и нашего с вами комфорта управления автомобилем.

Ну вот, уважаемые автолюбители, мы и познакомились с устройством и теперь знаем что такое синхронизатор коробки передач.

Надеюсь, эта статья была для вас полезна. Прочитайте вот еще про вариатор, рекомендую, очень интересный механизм.

Подписывайтесь, читайте статьи на блоге и изучайте машины вместе с друзьями!

как работает и почему ломается

Синхронизатор – это узел трансмиссии, который выравнивает частоту вращения шестерен и вторичного вала, тем самым обеспечивая плавное переключение скоростей. Основная деталь данного механизма – это ступица, представляющая собой кольцо, выполненное из высокопрочной стали. В конструкции данного элемента предусмотрены шлицы. Они располагаются как с внутренней, так и с внешней стороны, обеспечивая надежное соединение с вторичным валом и муфтой, отвечающей за переключение скоростей. 

На муфте под углом в 120 градусов друг к другу располагаются пазы, в которые монтируются сухари, отвечающие за блокирование подвижных элементов для их синхронизации. Сама муфта обеспечивает контакт вала с шестеренками. Она устанавливается на ступицу, а наружной поверхностью сопрягается с вилкой. 

Принцип работы 

Синхронизация происходит очень быстро. В базовой позиции (когда включена «нейтралка», а муфты установлены в центральном положении) шестерни вращаются свободно, а обороты мотора не передаются на ведущие колеса. Когда водитель выбирает одну из передач, активируются соответствующие шестерни. Как следствие, усилие начинает переходить на колеса. 

Вот как происходит синхронизация при включении скорости: 

  • На муфте сдвигаются сухари.
  • Те после этого воздействуют на кольцо, которое соприкасается с конусом шестерни.
  • В результате кольцо поворачивается до того момента, когда зубья нужной шестерни начинают совпадать с выемками муфты.
  • Вследствие этого вал начинает вращаться с другой частотой и, соответственно, меняется скорость движения автомобиля. 

Распространенные поломки синхронизатора 

Синхронизатор при работе подвергается интенсивным нагрузкам. Как следствие, металлические элементы данного узла начинают разрушаться. Быстрее всего с этой проблемой сталкиваются те автовладельцы, которые предпочитают «спортивный» стиль вождения, предусматривающий частое переключение передач. 

Перечень основных поломок: 

  • Разрушение блокирующего кольца.
  • Деформация конической поверхности кольца.
  • Износ ступицы синхронизатора. 

В большинстве случаев при возникновении названных неисправностей от коробки передач начинают доноситься посторонние шумы. А иногда скорости начинают самопроизвольно включаться и выключаться. 

Отремонтировать этот узел под силу не каждому автовладельцу. Для этого надо обладать богатым багажом опыта и определенными навыками. Поэтому лучше не экспериментировать, а обратиться в специализированный сервисный центр. Наши специалисты выполнят работу: 

  • Оперативно.
  • Профессионально.
  • Недорого.
  • С гарантией. 

Заказать диагностику и ремонт можно по телефону, указанному на сайте. 

Разница между синхронизированной и несинхронизированной передачей в механических коробках передач

Есть веская причина, по которой большие коммерческие автомобили, мотоциклы и гоночные автомобили все еще используют несинхронизированную коробку передач

Для приверженцев ручного переключения передач нет большей радости, чем вождение автомобиля с механической коробкой передач. Но что стоит за механикой переключения передач? И с точки зрения водителя, как синхронизированная передача механической коробки передач соотносится с несинхронизированной передачей механической коробки передач?

Большинство современных городских транспортных средств, оснащенных механическими коробками передач, вероятно, имеют синхронизированную коробку передач, также называемую коробкой передач с синхронизатором.Это устройство удерживает шестерни в зацеплении и вращении, или они могут быть заблокированы на валу. Другими словами, когда вы переключаете передачи, вы блокируете разные передачи на входном или выходном валу трансмиссии, тем самым позволяя вам увеличить скорость вашего автомобиля или замедлить его. Синхронизированная коробка передач механической коробки передач помогает плавно фиксировать шестерни на месте.

Это было выдающееся развитие механических коробок передач, потому что синхронизатор устранил необходимость для автомобилистов выполнять двойное сцепление - отпускание и повторное включение сцепления дважды при переключении передач - требование для управления транспортным средством с несинхронизированной коробкой передач с механической коробкой передач.

Почему несинхронизированная коробка передач с механической коробкой передач все еще имеет значение

Несинхронизированная коробка передач с механической коробкой передач - это более старая конструкция (возможно, самая ранняя конструкция механической трансмиссии), которая требовала больших усилий и навыков со стороны водителя. Он включал в себя коробку передач со скользящим зацеплением, и водителю нужно было тщательно рассчитывать время, когда переключать передачи, чтобы гарантировать, что шестерни вращаются с одинаковой скоростью, что было нелегко. Сделайте это неправильно, и вы услышите скрежет и другие шумы.

Однако несинхронизированная коробка передач продолжает существовать. Вы часто найдете их в трансмиссиях для больших коммерческих автомобилей, таких как тяжелые грузовики и сельскохозяйственная техника, а также в мотоциклах и гоночных автомобилях большого калибра. Почему? По двум причинам: синхронизированные механические коробки передач более подвержены поломкам, а переключение передач на синхронизированной коробке передач происходит медленнее, чем в несинхронизированной версии.

У вас возникли проблемы с механической или автоматической коробкой передач вашего автомобиля или у вас есть вопросы о трансмиссии? Посетите ближайший к вам офис Mister Transmission и получите необходимую экспертную помощь и информацию.

.

Gear synchro - x-engineer.org

Транспортным средствам, оснащенным механическими коробками передач (MT), автоматизированными механическими коробками передач (AMT) и коробками передач с двойным сцеплением (DCT), требуется синхронизатор передач для переключения передач (переключение на повышенную или пониженную передачу). Назначение синхронизатора передач - синхронизировать скорости входного и выходного валов коробки передач. во время переключения передач, перед включением восходящей передачи.

В коробке передач синхронизаторы расположены между двумя соседними шестернями.Например, для 1-2 передач используется один и тот же механизм синхронизации, для 3-4 - другой, а для 5-6 - одинаковый. Необязательно устанавливать синхронизатор передач для передачи заднего хода (R), потому что для включения R автомобиль должен быть остановлен (если он движется), а скорость выходного вала будет равна нулю. Тем не менее, есть механические трансмиссии, которые имеют синхронизаторы передач и для задней передачи.

Изображение: Синхронизаторы в механической коробке передач (коробке передач)
Кредит: Getrag

Чтобы лучше понять основные компоненты трансмиссии и принцип их работы, прочтите статью Как работает механическая коробка передач.

Зачем нужны синхронизаторы передач?

Для данной механической коробки передач представим, что мы хотим переключиться с 1 -й передачи на 2-ю -ю передачу . Параметры трансмиссии следующие:

\ [\ begin {split}
n_ {IN} = 3500 \ text {rpm} \\
i_ {1} = 3,4 \
i_ {2} = 2,5 \
i_ {0} = 3,1 \\
n_ {OUT} = \ text {?}
\ end {split} \]

где:

n IN [об / мин] - частота вращения первичного вала
n OUT [об / мин ] - частота вращения выходного вала
i 1 [-] - передаточное число 1 st шестерня
i 2 [-] - передаточное число 2 nd шестерня
i 0 [-] - передаточное число , главная передача (дифференциал)

Стартовая шестерня - 1 -я передача .Когда водитель хочет включить передачу 2 nd , сначала ему необходимо отключить двигатель от трансмиссии, используя педаль сцепления. Это необходимо, потому что переключение передачи в трансмиссии с простыми зубчатыми механизмами, которые постоянно находятся в зацеплении (зацеплении), не может выполняться, пока крутящий момент двигателя передается через шестерни, поэтому муфта должна быть разомкнута.

Для перехода с передачи 1 на передачу 2 трансмиссия должна на короткое время перейти в нейтральное положение.

На изображении ниже мы можем визуализировать поток мощности двигателя через передачи 1 и 2 . Для каждой передачи мы рассчитаем частоту вращения входного и выходного валов.

Изображение: процесс переключения передач (1-2)

Когда включена передача 1 , скорость выходного вала составляет:

\ [n_ {OUT} = \ frac {n_ {IN}} {i_ {1} \ cdot i_ {0}} = 332 \ text {rpm} \]

Если мы хотим включить передачу 2 nd , скорость входного вала должна быть:

\ [n_ {IN} = n_ {OUT} \ cdot i_ {2} \ cdot i_ {0} = 2573 \ text {rpm} \]

Это означает, что входной вал должен иметь замедление с 3500 об / мин до 2573 об / мин.Если необходимо было выполнить переключение на пониженную передачу 2-1, входной вал должен был быть ускорен с 2573 до 3500 об / мин. Это когда синхронизаторы вступают в игру.

Синхронизатор действует как фрикционная муфта и замедляет (переключение на повышенную передачу) или ускоряет (переключение на пониженную передачу) первичный вал, чтобы соответствовать скорости для следующей передачи.

Изображение: Схема коробки передач с названиями компонентов

Как работает синхронизатор передач?

Синхронизаторы необходимы для переключения передач в механических коробках передач.Их цель - согласовать (отрегулировать) скорость входного вала (шестерни и вторичную массу сцепления) с выходным валом (колесом).

Есть несколько типов синхронизаторов, используемых для механических коробок передач. Наиболее распространенный способ классификации - это функция количества фрикционных элементов (фрикционных конусов). Таким образом, мы имеем:

  • одноконусный синхронизатор
  • двухконусный синхронизатор
  • трехконусный синхронизатор

Изображение: Простой конусный синхронизатор
Кредит: VW

  1. шестерня
  2. кольцо синхронизатора
  3. кольцевая пружина
  4. стопорный элемент (стойка)
  5. ступица синхронизатора (корпус)
  6. скользящая втулка

Изображение: Узел синхронизатора шестерен
Кредит: VW

Шестерня (1) установлена ​​на выходном валу коробки передач .Он может вращаться относительно вала (радиальное движение), но не может иметь осевого движения вдоль вала. Между шестерней и валом обычно находятся игольчатые роликоподшипники, облегчающие вращение.

Шестерня имеет интегрированную «шестерню сцепления» с фрикционным конусом. Сцепления передач состоит из фиксирующего зубчатого зацепления и трения конуса. Она называется муфта сцепления , потому что она играет роль сцепления, плавно включающего следующую шестерню.

Шестерня муфты согласовывает скорость зубчатого колеса со скоростью ступицы синхронизатора.Монтаж на шестерню осуществляется прессованием или лазерной сваркой. Когда шестерня включена, внешние зубья (с фаской на обеих сторонах зубьев) будут сцепляться с фаской на внутренних зубьях переключающей муфты.

Изображение: Зубчатое колесо

Кольцо синхронизатора (2), также называемое стопорным кольцом, стопорным кольцом или фрикционным кольцом, имеет коническую поверхность, которая входит в контакт с фрикционным конусом зубчатого колеса. Кольцо синхронизатора предназначено для создания момента трения для замедления / ускорения входного вала во время переключения передач.

Кольцо синхронизатора вместе с фрикционным конусом зубчатого колеса образуют «коническую муфту», которую можно включать и выключать посредством скольжения.

На внутренней поверхности кольца синхронизатора имеется резьба или рисунок канавок, чтобы предотвратить образование гидродинамической масляной пленки. Если между кольцом синхронизатора и фрикционным конусом зубчатого колеса образуется масляная пленка, для синхронизации скоростей валов потребуются более высокие толкающие силы и больше времени.

Изображение: Кольцо синхронизатора

Блокирующие элементы (4), также называемые ключами синхронизатора, центральный механизм, распорные ключи или крылатые распорки, расположены по окружности корпуса синхронизатора в определенных пазах между муфтой синхронизатора и синхронизатором. концентратор.

Блокирующие элементы вращаются вместе со ступицей синхронизатора (5) и могут перемещаться в осевом направлении относительно скользящей муфты (6). Стойки используются для предварительной синхронизации, что означает, что они создают нагрузку на кольцо синхронизатора для выполнения процесса синхронизации.

В нейтральном положении (передача не включена) фиксирующие элементы удерживают скользящую муфту в центральном положении на ступице синхронизатора между обоими шестернями. Обычно узел синхронизатора имеет 3 фиксирующих элемента, распределенных под углом 120 °. В случае больших синхронизаторов может быть 4 фиксирующих элемента, распределенных под углом 90 °.

Изображение: Ступица синхронизатора

Ступица синхронизатора (5) установлена ​​на выходном валу и жестко соединена шлицевым шлицем.Он может двигаться в осевом направлении, но не вращаться относительно вала. Он содержит специальные пазы, в которых будут находиться фиксирующие элементы.

Кольцевые пружины (3) расположены с каждой стороны ступицы синхронизатора и предназначены для удержания шпонок стойки в предназначенных для этого пазах.

Скользящая муфта (6), также называемая муфтой переключения передач, муфтой синхронизатора или муфтой, имеет радиальную канавку на внешней стороне для вилки переключения передач. Внутри имеются шлицы, которые находятся в постоянном зацеплении с внешними шлицами ступицы синхронизатора.Скользящая муфта может перемещаться только в осевом направлении (влево-вправо) из нейтрального положения в положение зацепления.

Изображение: Скользящая муфта

Фазы синхронизации передач

Процесс синхронизации , когда скользящая муфта начинается из нейтрального положения (в центре) и заканчивается полным включением передачи, можно описать в пять шагов, как показано на рисунок ниже.

Процесс синхронизации будет описан с помощью параметров:

F [Н] - усилие переключения передач
Δω [рад / с] - разница скоростей между шестерней и ступицей синхронизатора
T f [Нм] - момент трения между кольцом синхронизатора и фрикционным конусом
T i [Нм] - момент инерции первичного вала, шестерен и вторичной массы сцепления

Изображение: Процесс синхронизации переключения передач

Фаза 1: Асинхронизация

Перед переключением передач запускается, скользящая втулка удерживается в среднем положении запорными элементами.Усилие переключения передач вызывает осевое движение скользящей муфты, которая толкает вперед кольцо синхронизатора к зубчатому колесу с фрикционным конусом. Разница скоростей между шестерней и кольцом синхронизатора вызывает вращение кольца синхронизатора.

Фаза 2: Синхронизация (блокировка)

Это основная фаза синхронизации скорости. Скользящая муфта продвигается дальше, в результате чего внутренние шлицы (зубья) скользящей муфты и зубья кольца синхронизатора соприкасаются.На этом этапе момент трения начинает противодействовать моменту инерции, и разница скоростей начинает уменьшаться.

Фаза 3: Разблокировка (повернуть назад кольцо синхронизатора)

Усилие переключения передач сохраняется на кольце синхронизатора посредством стопорных элементов и скользящей втулки. Когда синхронизация скорости достигнута, сила трения снижается до нуля, и кольцо синхронизатора немного поворачивается назад.

Фаза 4: зацепление (поворот ступицы синхронизатора)

Скользящая втулка проходит через зубья кольца синхронизатора и входит в контакт с фиксирующими зубьями шестерни.

Этап 5: Привлечение (блокировка передач)

Подвижная втулка полностью перемещается в фиксирующих зубы зубчатого колеса. Обратные конусы на зубьях скользящей втулки и зубчатые зацепления зубчатого колеса предотвращают расцепление под нагрузкой.

Контроль положения включения передачи

В автоматизированных механических коробках передач (AMT) и коробках передач с двойным сцеплением (DCT) положение вилки переключения (скользящей муфты) контролируется с помощью датчиков положения.

На изображении ниже мы можем видеть, как положение скользящей муфты изменяется в процессе переключения передач.Положение делится на пять фаз:

    1. Подвод синхронизатора
    2. Синхронизация
    3. Включение передачи
    4. Удержание шестерни
    5. Ослабление шестерни

Изображение: Управление положением переключения передач

Подход к синхронизатору 000 A), вилка переключения (скользящая втулка) начинается с центрального положения и начинает двигаться к кольцу синхронизатора. Если положение вилки переключения передач остается постоянным (P 1 ) после перемещения, это означает, что кольцо синхронизатора ударилось о фрикционный конус шестерни.

На этом этапе контролируется положение (скорость) вилки переключения, а не сила переключения передач (толкающая сила). Сила переключения обычно составляет около 60–120 Н.

После обнаружения контакта между кольцом синхронизатора и фрикционным конусом начинается фаза Synchrnozation (B). На этом этапе положение вилки переключения передач постоянно, а сила толкания постепенно увеличивается. Из-за момента трения первичный вал начинает замедляться. Конец этой фазы - когда частота вращения входного и выходного валов синхронизируется (P 2 ).

Фаза включения передачи (C) начинается, когда вилка переключения передач снова начинает двигаться. На этом этапе скользящая втулка прошла через кольцо синхронизатора и вступает в зацепление с фиксирующими зубьями шестерни. Фаза заканчивается, когда скользящая муфта достигает конечного положения и больше не может двигаться вперед.

На этом этапе критически важно иметь точное управление положением (скоростью) вилки переключения передач. Если он движется слишком быстро, в конце хода он врезается в шестерню, вызывая шум включения шестерни и возможное механическое повреждение.

После того, как вилка переключения передач достигнет конечного положения, начинается фаза удержания передачи (D). На этом этапе на вилке переключения передач в течение определенного периода времени поддерживается высокое толкающее усилие, чтобы гарантировать полное включение передачи.

В фазе Gear Relax (E) на вилку переключения больше не действует сила, и шестерня остается на месте благодаря механической блокировке скользящей муфты с зубчатым колесом.

Общая длина хода вилки переключения может составлять около 8–12 мм, при этом точка синхронизации начинается с 3–6 мм.

Усилие переключения передач (предоставлено Hoerbiger)

Размер и расчет механизма синхронизатора должны учитывать различные параметры, такие как:

  • монтажное пространство
  • механическая инерция, которую необходимо синхронизировать
  • Разница скоростей вала, которую необходимо синхронизировать
  • передаваемый крутящий момент
  • свойства трансмиссионного масла
  • параметры качества переключения передач
    • время синхронизации
    • длина хода вилки переключения
    • максимальное усилие переключения
    • тормозной момент
    • циклы нагрузки
  • интерфейсы
    • данные шлицевого вала
    • зазор шестерни
    • размер канавки втулки

Мощность синхронизатора ограничена

  • крутящий момент скользящей муфты, ступицы шестерни и зубчатого зацепления шестерни
  • вместимость фрикционного материала (скорость скольжения, давление на поверхность, трение мощность, работа трения) 9 0102
  • отвод тепла через масло, синхронизирующее кольцо и фрикционный конус
  • трансмиссионное масло (вязкость и термическая стабильность)

Усилие переключения на скользящей муфте F a [Н] рассчитывается по формуле ( источник: Hoerbiger):

\ [F_ {a} = \ frac {2 \ cdot \ sin {\ alpha} \ cdot J \ cdot \ Delta \ omega} {n_ {c} \ cdot \ mu \ cdot d_ {m} \ cdot T_ {F}} \]

где:

α [рад] - угол конуса трения
Дж [кг · м 2 ] - инерция массы первичного вала, шестерен и вторичной муфты
Δω [рад / с] - разность скоростей синхронизации
n c [-] - количество конусов
μ [-] - коэффициент трения фрикционного конуса
d м [м] - средний диаметр фрикционного конуса
T F [Нм] - момент трения

Уменьшение усилия переключения на втулке может быть выполнено следующим образом:

  • увеличивая диаметр среднего конуса трения
  • увеличивая количество fr Конусы iction (с использованием двухконусных или трехконусных синхронизаторов)
  • увеличение коэффициента трения
  • уменьшение угла фрикционного конуса

Время переключения передач

Процесс переключения передач такой же для переключения на повышенную и понижающую передачу, но время переключения отличается .При переключении на более высокую передачу скорость первичного вала должна быть уменьшена. Поскольку между движущимися частями возникают потери на трение, замедление вала будет быстрее.

С другой стороны, когда выполняется переключение на пониженную передачу, первичный вал должен быть ускорен. Те же потери на трение будут действовать таким же образом, что пытается замедлить вал. Следовательно, для синхронизации валов при переключении на пониженную передачу требуется более высокий момент трения и более длительное время синхронизации.

Общее время переключения передач для механической коробки передач в основном зависит от водителя и может составлять около 0.5 - 2,0 с. В некоторых высокопроизводительных коробках передач с двойным сцеплением (DCT) время переключения может составлять около 10 мс.

Двухконусный синхронизатор

Двухконусный синхронизатор обычно используется для передач 1 st и 2 nd . Двухконусный синхронизирующий механизм представляет собой компактное устройство, способное создавать зацепления в тяжелых условиях. Механизм синхронизатора сокращает время зацепления (переключения передач) и улучшает работу (требуется меньшее усилие для включения передачи). Механизм синхронизации с двойным конусом включает кольцо синхронизатора, двойной конус и внутренний конус.

Изображение: Двойной конус синхронизатора (комплект)

  1. Шестерня
  2. замок зубчатая
  3. подшипник ролика иглы
  4. внутренний конус
  5. двойной конус
  6. блокирующее кольцо
  7. шестерни ступицы
  8. скользящие втулки
  9. запирающие элементы

Пример механической коробки передач с различными механизмами синхронизации

Коробка передач Getrag Manualshift 6MTI550.

Изображение: Механическая коробка передач Getrag 6MTI550

Ключевые преимущества :

  • Модульная система для среднего и высокого крутящего момента, опция 7 th Возможна скорость
  • Высокий крутящий момент при малом весе
  • Готов к запуску и останову система (определение передачи)
  • Гибкое передаточное отношение

Основные характеристики :

nd 40 тройная шестерня конус

другие 9000
  • концепция постоянная передача на выходном валу
  • возможен полный привод
  • 7 th возможна скорость
Параметр Значение Наблюдение
Максимальный входной крутящий момент возможен более высокий крутящий момент
Вес [кг] 44 сухой, без двухмассового маховика (DMF)
Установочная длина [мм] 630 для длины сцепления 156 мм
Передаточное число [-] 5.5 - 6,9 > 7 также возможно
Межосевое расстояние [мм] 88
Механизм синхронизации
1 st и 2
3 ряд шестерня двойной конус
4 th до 6 th и шестерня заднего хода одинарный конус

Источник: Getrag

Видео - процесс синхронизации переключения передач

На видео ниже вы можете четко см. фазы синхронизации и положения вилки переключения.

Не забудьте поставить лайк, поделиться и подписаться!

.Сбой в работе синхронизатора

в механических коробках передач - обзор Сбой в работе синхронизатора

в механических коробках передач - обзор

International Journal of Scientific & Engineering Research, Volume 4, Issue 1Ř, mber-2013

ISSN 2229-5518

Synchronizer Сбой в работе механических коробок передач

- Обзор

UMESH WAZIR

Машиностроение ADE

Университет нефтегазовых и энергетических исследований, Бидхоли

Дехрадун, 248007, Уттаракханд, Индия

1455

Резюме - руководство трансмиссии выполняются путем переключения зубчатых конических муфт, а не отдельных шестерен, поскольку шестерни всегда находятся в зацеплении.Сегодня синхронизаторы используются во всех механических коробках передач, включая грузовые и коммерческие автомобили. Большинство систем синхронизации запатентованы или защищены законом об авторском праве. В открытом доступе имеется мало технической информации. Этот документ предлагается в качестве руководства, чтобы познакомить инженера с различными механизмами синхронизации зубчатых колес, используемыми в современных автомобилях. Представлен обзор с описанием применения, возможностей и ограничений текущего уровня технологии.


Подробно рассматриваются рабочие характеристики синхронизатора, неисправности и причины их отключения.И наконец, читатель знакомится с будущими тенденциями в этой области. Понимание этого и связанных с ним проблем могло бы направить проектировщика к практической конструкции коробки передач.

Ключевые слова: ручной синхронизатор, производительность, неисправность, переключение передач, синхронизация, коробка передач

——————————— — I ——— J ————-- - S - ER

1.0 ВВЕДЕНИЕ

Коробка передач используется для изменения скорости вращения и крутящего момента, которые двигатель передает на ведущие колеса транспортного средства.Для этого используются разные передаточные числа.
Задача синхронизатора - довести следующее передаточное число (переключение вверх или вниз) до такой скорости, чтобы выходной вал и шестерни находились на одной скорости, чтобы обеспечить плавное переключение передач.
Раньше, когда «синхронизаторы» не использовались, приходилось использовать двойное сцепление для переключения передач на ходу. При каждом переключении передач приходилось дважды нажимать и отпускать сцепление, отсюда и название «двойное сцепление». Избегать столкновения шестерен было искусством

В современных автомобилях используются синхронизаторы с блокирующим кольцом, чтобы избежать двойного сцепления.[14]

2.0 Функция синхронизатора

2.1 Объектив синхронизатора

Синхронизатор образует механическую часть коробки передач. Его цель - обеспечить, чтобы скорость входящей передачи была такой же, как и у синхронизирующей ступицы (прикрепленной к выходному валу). Конусы трения используются для обеспечения этой синхронизации шестерни и ступицы
. Пока скорости синхронизируются, зацепление кулачков шестерни не происходит. До тех пор, синхронизация (момент пант) не достигнут, то блокирующие кольца предотвращают любые зацепления втулки и зубы собаки.Это принцип кольца блокировки / блокировки. Рис. 1.

Синхронизаторы каждого производителя немного отличаются от других, но основная идея одна и та же.

IJSER © 2013

http: //www.ijser.or

4

Рис. 1.

1 Шестерня; 2 собачьих зуба; 3 синхронизирующее кольцо; 4 синхронизирующий хаб;

5. Пружина фиксатора; 6 фиксирующий шарик; 7. Переключающая втулка Рис. Источник [6]

2 3 7

a) b) c)

Рис. 2.

a) Гильза (7) перемещается из нейтрального в фиксирующее (синхронизирующее) положение, начинает наращивать фиксирующую (синхронизирующую) нагрузку

б) Синхронизирующее кольцо (3) указатели , втулка входит в фаску кольцо, Cone Torque нарастает, начинается синхронизация. Блокировка зубцами упора (2) предотвращена

c) Шестерня (1) скорость относительно кольца (3) и втулка (7) падает до нуля, синхронизация завершена, указатель фаски и втулка запирается с Dog Teeth (2)

International Journal of Scientific & Engineering Research Volume 4, Issue 1Řǰȱ ŽŒŽ– ‹Ž› ŽřȬŘŖŗ

ISSN 2229-5518

1456

Основные операции синхронизатора из нейтральное положение для зацепления: Рис. 2 .
 втулка перемещается из нейтрального положения стопора (синхронизирующие) поло- Тион, начинает строить стопор (синхронизирующий) нагрузки
 Blocker кольцевых индексы, втулка входит в зацеплении фаска кольца, конус крутящего момента Сборки, синхронизирующего начинает
; • механизм скорость по отношению к кольцу и втулка опускается до нуля, синхронизация завершена, индекс фаски и втулка блокируется

2.2 Основные уравнения


Простые законы инерции, динамического трения, изменения скорости и времени включения помогают оптимизировать синхронизацию [1], [ 4].
Отраженная инерция - Отраженная инерция - это полная инерция, которую синхронизатор должен синхронизировать, и она является функцией массы, радиального расстояния и передаточного числа.
Крутящий момент на конусе - крутящий момент конуса, также называемый моментом синхронизации, является результатом силы трения между коническими поверхностями синхронизатора и шестерни, создаваемой в результате внешнего усилия зацепления.
Индексный момент - Индексный момент возникает из зубья с фаской, прикладывающие осевую силу к зубам с фаской.(Как следствие усилия водителя переключения передач). Создаваемый индекс крутящего момента противоположен крутящему моменту конуса . Цель - Моментальный баланс

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1457

3.0 Общие типы синхронизирующих механизмов

В настоящее время наиболее широко используемым типом синхронизатора является синхронизатор с блокирующим кольцом, который имеет механизм, предотвращающий зацепление зубьев муфты до завершения синхронизации; явный недостаток его предшественника - синхронизаторов с постоянной нагрузкой.
Синхронизаторы с блокирующим кольцом делятся на два типа -
Стойка и тип штифта
Для увеличения синхронизирующего крутящего момента некоторые синхронизаторы используют два или более синхронизирующих конуса, например Синхронизаторы с двумя или несколькими конусами

3.1 Синхронизатор с постоянной нагрузкой

Самая ранняя форма синхронизатора Рис. 4, , обычно используемая в автомобильных коробках передач, известна как тип постоянной нагрузки [5] Тяга между конусов прикладывается внешней ступицей, инициируемой движением втулки водителем.Пружина / шарик обеспечивает фиксирующую нагрузку. Основным недостатком синхронизатора постоянной нагрузки является то, что относительно легко преодолеть фиксатор и попытаться зацепить зубья муфты перед синхронизацией
 Хорошая история обслуживания
 Очень низкий уровень шума
 Малая производительность при ограниченном пространстве

 Требуется замена соседних шестерен для замены синхронизатора.

3 5,6 3

1 2 4 7 1

Рис. 4 Постоянная нагрузка

Синхронизатор.

Обратите внимание на отсутствие синхронизирующего кольца ref Fig1

Наиболее широко используемый тип синхронизатора в автомобильной промышленности называется синхронизатором с блокирующим кольцом. Это похоже на тип постоянной нагрузки, но с добавлением механизма, который механически предотвращает зацепление зубцов муфты до завершения синхронизации.
Части синхронизатора блочного типа показаны на рис. Рис. 5 . Во время синхронизации, втулка перемещается по направлению к выбранной передачи толкающего блокирующего кольца влево.Кольцо контактирует с заплечиком ведомой шестерни и начинает синхронизировать скорости деталей.
Для завершения сдвига, муфта зубья проходят через блокирующее кольцо зубов и сцепляются с зубьями / зубов собаки на ведомой шестерни.
Наиболее широко используется в легковых автомобилях и легких грузовиках. Обычно не используется в больших транспортных средствах из-за чрезмерной инерции системы. Многие компании используют этот тип в своих легковых и легких грузовиках. Его основные характеристики:
 Очень резкое зацепление (что хорошо и предпочтительно).
 Меньшая чувствительность к суммированию допусков.

Рис. 5 Синхронизатор типа стойки Рис Источник [6]

Синхронизатор типа стойки 1 Шестерня; 2 собачьих зуба; 3 синхронизирующее кольцо; 4 синхронизирующий хаб; 5 пружин фиксации; 6 фиксирующий шарик; 7 Втулка переключения

Гильза (7) Стойка (6) Нажимается пружиной (5) и входит в фиксатор втулки.Разница в скорости между шестерней (1) и ступицей синхронизатора (4) и момент сопротивления трения между конусами заставляют синхронизирующее кольцо 3 индексировать, а фаски втулки 7 и синхронизирующего кольца 3 входят в зацепление. Синхронизация начинается.

Пока скорости разные, крутящий момент конуса будет больше, чем индексный крутящий момент Без переключения.

При продолжающемся действии осевой силы скорости выравниваются и крутящий момент конуса уменьшается до нуля. Синхронизирующее кольцо позволяет втулке индексировать зуб по отношению к промежутку между зубьями.Шлицы втулки входят в зацепление с закрытыми концами собачьих зубцов и замками

. Синхронизация концов

IJSER © 2013

http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 4, Issue 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1458

3,3 Блокирующий синхронизатор штыревого типа

На рис. 6 показан синхронизатор штифтового типа. Приводная ступица насажена на вал и вращается вместе с ним.Наружное кольцо нарезано на торцы шестерен.

стопорное кольцо и штифтовой блок свободно прижаты к actuat- Инг ступице. Когда приводная ступица перемещаются либо вправо или влево, стопорное кольцо и штифтовые узлы удерживать свободную фитинг штифт против стороны отверстия в исполнительном ступице [4]
Приводной концентратор предотвращаются зацепления шестерни с помощью скошенного плечу на стопорным кольцом и штифтом сборки. Когда все детали вращаются одинаково, сила между штифтом и приводной ступицей уменьшается.
В этом случае ступица может перемещаться по большому основанию штифтов, а внутренние шлицы ступицы могут входить в зацепление со шлицами шестерни.
Незначительные скосы на пальце и приводной ступице, а также закругленные концы шлицев на ступице и шестерне позволяют этим деталям легко совмещаться и зацепляться. Применение грузовых автомобилей средней грузоподъемности. Его основные характеристики:
 Низкая стоимость

IJSER

 Высочайшая потенциальная тормозная способность для заданного пространства
 Низкая стоимость обслуживания (может не потребоваться замена смежной шестерни)
 Менее позитивное ощущение сцепления и некоторое сцепление
'' щелчок 'шум
 Может потребоваться установка регулировочных шайб при сборке

3.4 Синхронизатор дискового и пластинчатого типа


В этом синхронизаторе используются фрикционные диски и пластины, чтобы приводить в зацепление обе шестерни с одинаковой скоростью. блокиратор (2) едет дальше и приводится в действие шестерней синхронизатора (1). Барабан синхронизатора (4) приводится в движение выходной шестерней (6). Диски синхронизатора (3) удерживаются
барабаном, а разделительные пластины (7) удерживаются блокираторами. 1
Когда вилка переключения передач перемещает барабан вперед, диски синхронизатора и разделительные пластины соприкасаются, как показано.Блокиратор переходит в заблокированное положение на шестерне синхронизатора.
Дополнительное поступательное движение рычага переключения передач имеет тенденцию сжимать диски и пластины для соответствия скорости синхронизатора, блокиратора и выходной шестерни. Как только скорость синхронизируется, сила тяги, блокирующая блокиратор в шестерне синхронизатора, снимается, и блокиратор отступает, позволяя барабану двигаться вперед и включать обе передачи. Его основные характеристики:
 Действие синхронизатора почти мгновенное
 Требуется более широкий корпус для приспособления диск, пластина и барабан в сборе
 Повышенная инерционная способность системы

Рис. 6 Синхронизатор штифтового типа

2 3,7

4

5

6

Рис. 7 Синхронизатор дискового типа

IJSER © 2013

http: // www.ijser.org

International Journal of Scientific & Engineering Research Volume 4, Issue 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1459

3.5 Прочие

Синхронизаторы, такие как Porsche type, Рис. 9 , используют фрикционный элемент с разъемным кольцом, который расширяется под действием синхронизирующего крутящего момента, увеличивая давление на границе раздела, что дополнительно увеличивает синхронизирующий крутящий момент. Синхронизатор типа Porsche, хотя и мощный, страдает проблемами, связанными с изменением материала и целостностью размеров.
В других синхронизаторах используется несколько конусов. Рис. 8 для увеличения синхронизирующего крутящего момента, но они, по сути, такие же, как синхронизатор
типа Strut вне периода синхронизации.
- Синхронизирующая сила прилагается мгновенно в начале периода синхронизации и остается постоянной на протяжении всего периода.
- Моменты сопротивления не зависят от скорости во всем задействованном диапазоне скоростей и поэтому остаются постоянными в течение всего периода синхронизации.
Эти допущения по-разному влияют на точность расчета в зависимости от типа сдвига, то есть сдвига вверх или вниз. предположение о том, что синхронизирующая сила применяется мгновенно в начале периода синхронизации, игнорирует эффект сопротивления масла в период между выключением текущей шестерни и соединением конусов. для сдвига вверх сопротивление имеет тенденцию синхронизировать элементы конуса, тогда как при сдвиге вниз сопротивление увеличивает дифференциальную скорость элементов конуса.поэтому теория предсказывает более короткое время синхронизации для переключений на более высокую передачу для заданного усилия рычага переключения передач.

Другое важное предположение, что динамический коэффициент трения остается постоянным в течение всего периода синхронизации, имеет наибольший эффект в начале синхронизации, когда протекторы
и канавки стеклоочистителя очищают поверхность от масла,

IJSER

Рис. 8 Многоконусная система.

Синхронизирующие крутящие моменты на отдельных конусах складываются для получения более мощного крутящего момента для данной нагрузки рычага переключения передач Рис. Источник [5]

Рис. 9 Тип Porsche.

Шестерня раздельного синхронизатора обладает эффектом самообматывания и очень мощная. синхронизатор действует на внутренний диаметр. При автоматической синхронизации кольца освобождаются - Рис. Источник [5]

4.0 Характеристики синхронизатора

Традиционная теория переключения передач была хорошо задокументирована в нескольких технических документах, и читателю рекомендуется ознакомиться с ссылками [1], [2 ], [14] и [5].
Тем не менее, влияние на сбой в работе упрощающего предположения, использованного при выводе традиционной теории, суммируется
Упрощающие предположения, сделанные при выводе теории, следующие:
- Динамический коэффициент трения остается постоянным через
динамический коэффициент трения остается практически постоянным в рабочем диапазоне
скоростей и температур, обычно встречающихся при работе синхронизатора.Эффект этого предположения состоит в том, чтобы заставить теорию предсказывать более низкие уровни силы синхронизатора как для понижающих, так и для повышающих передач.
Более низкие температуры смазочного материала усиливают описанные выше эффекты, потому что более низкие температуры приводят к высокой вязкости масла, что, в свою очередь, увеличивает сопротивление коробки передач и время, необходимое резьбе и канавкам грязесъемника для очистки масла от конуса. поверхность.
Хотя нельзя ожидать, что теория даст точное предсказание абсолютной силы синхронизатора, необходимой для достижения заданного времени синхронизации, после того, как нефть будет удалена с поверхности, ее можно использовать для прогнозирования эффекта изменений геометрии. или коэффициент трения.

4,1 Что такое сбой в работе

Столкновение: происходит, когда конусы синхронизатора все еще имеют относительную скорость после того, как блокирующий механизм отошел в сторону, чтобы позволить шлицу муфты пройти

Жесткое переключение: происходит, когда расчетный крутящий момент синхронизатора не достигается во время синхронизация .. Либо существенная неисправность, либо это неправильная конструкция.

4.1.1 Столкновение
Столкновение происходит, когда конусы синхронизатора все еще имеют относительную скорость после того, как механизм блокировки отодвинулся в сторону, чтобы позволить

IJSER © 2013

http: // www.ijser.org

Международный журнал научных и инженерных исследований Том 4, выпуск 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1460

шлиц муфты для прохода. Симптомы столкновения - скрежет коробки передач во время переключения передач, вызванный столкновением зубьев муфты друг с другом. Различают полное столкновение, когда относительная скорость конусов высока, и частичное столкновение, когда относительная скорость конусов существенно снижается в результате их работы.
Общие причины столкновения:
 Низкий момент трения между чашкой и конусом.
 Высокий крутящий момент для перемещения муфты относительно синхронизирующих колец (индексирование).
 Эксцентриковая нагрузка конусов.
 Чрезмерное сопротивление после синхронизации.
 Неблагоприятное увеличение допусков на компонентах или чрезмерный износ конуса, препятствующий зацеплению конусов.
4.1.2 Hard Shifting
Высокое усилие переключения во время синхронизации происходит либо из-за значительного сбоя в работе, т.е.е. Расчетный крутящий момент синхронизатора не достигается, или его конструкция неверна.
Высокое усилие переключения после синхронизации может отличаться от небольшого крутящего момента
для данного коэффициента трения, но имеет большую тенденцию к заклиниванию, особенно если другие поверхностные факторы не контролируются жестко, то есть чистота поверхности, допуски на обработку. Чем больше угол конуса, тем меньше крутящий момент, но меньше вероятность заклинивания и более устойчиво к изменению поверхностных факторов.
Производственные допуски для металлических конусов обычно составляют + / (-) 4 минуты; это может быть ослаблено, если один из элементов покрыт органическим или пластичным материалом, который имеет более низкий модуль упругости, чем металл.
Несоответствие угла конуса иногда вводится намеренно и может варьироваться от 2 минут для металлических конусов до 15 минут для конусов с органическим или пластиковым покрытием. Несовпадение углов обычно принимается как метод быстрого прилегания конусов, но мнения относительно его достоинств в предотвращении заклинивания конусов неоднозначны.
4..2 .2 Образец резьбы
Синхронизирующее кольцо обычно имеет резьбу. Назначение резьбы - обеспечить очищающие кромки, которые быстро удалят масло с сопрягаемой поверхности.Этому очищающему действию способствует спиральная природа резьбы, которая обеспечивает выход масла. Чем быстрее масло диспергируется из поверхности раздела трения, тем быстрее у
увеличивается синхронизирующий крутящий момент и тем короче более высокая нагрузка, вызванная чрезмерным трением муфты и ступицы, до тяжелого состояния, при котором полное зацепление может быть полученным. Это последнее условие может возникать либо на фасках штифтов или зубьев срезки, либо на фасках единичных (индексирующих) зубьев муфты.Если неисправность возникает на скошенных фасках, возможные причины:
 Чрезмерное сопротивление в коробке передач из-за работы в холодном состоянии.
 Повреждение фаски или столкновение, которое снижает момент индексации.
 Неблагоприятное увеличение допуска, ухудшающее индексацию.
 Несовпадение углов фаски сруба.
Если проблема возникает на фаске зубьев муфты, возможными причинами являются:
 Чрезмерное сопротивление в коробке передач из-за работы в холодном состоянии (высокая вязкость), натяг компонентов или сопротивление сцепления.
 Повреждение фаски.
 Заклинивание конуса.
Заклинивание конусов, когда конусы заедают или скручиваются после синхронизации. Это может произойти из-за микроскопической сварки или переноса металла на границе раздела конуса, отклонения кольца или неправильного угла конуса.

4,2 Влияние геометрии на работу синхронизатора:

4.2.1 Угол конуса
В общем, угол конуса синхронизаторов составляет от
12 градусов до 14 градусов. Чем меньше угол конуса, тем больше время скольжения.
Резьба различается по шагу и поперечному сечению, но обычно составляет 40 резьбы на дюйм для бронзы и 20 резьбы на дюйм для конусов, покрытых молибденом, пластиком или органическим фрикционным материалом.
Форма поперечного сечения резьбы не имеет решающего значения, но она должна иметь чистую острую кромку, чтобы прорезать масляную пленку и соскребать ее с поверхности раздела, а также должна иметь достаточную глубину, чтобы обеспечить выход масла. Резьба с острыми гребнями быстро прорежет масляную пленку, но вызовет высокие нагрузки на поверхность и, как следствие, высокую степень износа, поэтому резьбу следует чистить и обрабатывать после нарезания, чтобы получить плоский гребень.
4.2.3 Осевые канавки
Осевые канавки обычно, но не всегда, нарезаются на резьбовые конусы и имеют важное влияние на производительность синхронизатора. Канавки способствуют диспергированию масла во время начального периода контакта, а затем помогают разрушить гидродинамическую масляную пленку.
Создание крутящего момента для конуса без осевых канавок будет длиннее и плавнее, чем для конуса с большим количеством канавок. Конусы с большим количеством бороздок имеют повышенную склонность к заклиниванию.
Важно, чтобы при формировании этих канавок на концах резьбы не оставалось заусенцев, которые могли бы привариваться к сопрягаемой поверхности или препятствовать выходу масла из резьбы.
Обычно рекомендуется формировать осевые канавки перед обработкой резьбы, чтобы края были под углом, чтобы уменьшить вибрацию инструмента при нарезании резьбы, и чтобы они были нарезаны

IJSER © 2013

http: // www. ijser.org

Международный журнал научных и инженерных исследований Том 4, выпуск 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1461

глубже, чем корень нитей.
4.2.4 Геометрия поверхности
Обработка поверхности конусов оказывает значительное влияние на динамический коэффициент трения, особенно во время приработки. Конусы с шероховатой поверхностью имеют более высокий динамический коэффициент трения, чем конусы с гладкой поверхностью, как во время, так и после наплавки. Статический коэффициент трения менее чувствителен к изменению качества поверхности конусов.
Термин «чистота поверхности», применяемый к конусам синхронизатора, относится к форме и амплитуде шероховатости профиля в заданном направлении.профиль шероховатости в окружном направлении важен, потому что профиль с острыми выступами прорвет масляную пленку, что приведет к контакту металла с металлом конусов. Если материал сопрягаемого конуса мягкий, шипы будут стирать поверхность, в то время как если материал сопрягаемый конус жесткий, шипы отламываются, и произойдет абразивный износ.
Изготовленная отделка конуса должна быть как можно ближе к стабилизированной (т.е. полностью уложенной) отделке; чистота поверхности от 0.Обычно требуется 05-0.03 микрометра Ra.
Хороший контакт конических поверхностей важен для безаварийной работы, поэтому важно строго контролировать такие специальные присадки производителя, как:
 Противозадирные присадки
 Противоизносные присадки
 Модификаторы трения
 Коррозия ингибиторы
 Ингибиторы окисления и т.д.
Включение присадок, особенно первых трех, указанных выше, может значительно повлиять на коэффициент трения, как статический, так и динамический.
Противозадирные и противоизносные присадки могут предотвратить или уменьшить склонность конусов к заклиниванию. Модификаторы трения влияют как на статический, так и на динамический коэффициент трения.

4,4 Влияние материалов на работу синхронизатора

На комбинацию материалов для данного применения в основном влияют:
 Достаточно высокое и постоянное значение динамического коэффициента трения
 Устойчивость к заклиниванию конуса.

IJSER

допуски факторизации, такие как овальность, соосность и прямоугольность.В частности, плохой контакт приводит к неполному разрушению масляной пленки, высоким локальным контактным давлениям, снижению производительности и повышенной склонности к заклиниванию.
4.2.5 Углы фаски срубов
Крутящий момент, требуемый для индексации втулки относительно срезного кольца или штифта, согласовывается с крутящим моментом конуса за счет изменения угла фаски. низкие углы фаски приводят к пробою до того, как произойдет синхронизация.
Сопряжение скошенных фасок и втулки может существенно повлиять на стабильность переключения передач.Плохо совмещенные фаски могут привести к повреждению и усложнению переключения передач.

4.3 Влияние смазки на работу синхронизатора:

Вязкость смазки влияет на скорость, с которой масло стирается с поверхностей конуса в начальный период синхронизации. . если резьба на синхронизирующем кольце не прорезает масло, требуемый момент трения может быть достигнут недостаточно быстро, чтобы предотвратить столкновение. Известно, что столкновения чаще возникают в холодных коробках передач, чем в горячих.
Вязкость смазки также влияет на момент сопротивления, возникающий в результате взбивания смазки. чем выше вязкость, тем больше крутящий момент сопротивления, который при низких температурах может стать значительным и вызвать резкое переключение или, в крайних случаях, предотвратить переключение.
4.3.2 Присадки:
Смазочные материалы для редукторов обычно состоят из базового минерального масла и

Комбинации материалов: Для наружного / внутреннего конуса почти всегда используется цементированная сталь с твердостью поверхности 60 по Роквеллу «C». , хотя конусы с молибденовым покрытием использовались с кольцами синхронизатора из спеченного железа или стали.Кольца синхронизатора, изготовленные из спеченного железа или стали, также использовались в приложениях, где коробка передач работает со смазкой SAE 20W / 50

(моторное масло).
Кольца синхронизатора обычно делятся на две категории; те, которые сделаны из высокопрочного материала, покрытого фрикционным материалом, и те, которые полностью сделаны из одного материала. Большинство колец синхронизатора производятся из одного из следующих сплавов на основе меди:

3.0 Текущие тенденции

Во всех областях применения транспортных средств, от легковых до больших грузовиков, наблюдается тенденция к повышению способности переключать передачи и сокращению производственных затрат. Меньшее усилие на рычаге переключения передач, уменьшенный ход рычага переключения передач и более плавная работа рычага переключения передач способствуют повышению качества переключения передач.
Влияние переменного коэффициента трения, зависимости сопротивления от температуры, активно исследуется. А также шум. Пристальное внимание уделяется детальному дизайну элементов синхронизатора и рычагов переключения передач, чтобы уменьшить зазоры, инерцию и трение.
Принимаются синхронизаторы с несколькими конусами, в частности, на

IJSER © 2013

http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 4, Issue 1Řǰȱ ŽŒŽ– ‹Ž› ȬŘŖŗřȱ

ISSN 2229-5518

1462

исследуются более низкие коэффициенты трения и материалы с высокими коэффициентами трения, например спеченная бронза и органика.
ZF, ссылки [7], [11] и [12], представили пружинный механизм с превышением центра, геометрия которого такова, что он способствует зацеплению с минимальным сопротивлением расцеплению.
Кольца синхронизатора все чаще изготавливаются путем спекания или литья под давлением и покрытия тонким слоем фрикционного материала, который может быть выбран из-за его фрикционных, а не прочностных характеристик.
Наиболее распространенными фрикционными материалами являются молибден, наполненные фторуглероды и композиты на органической основе [10]. Молибден обеспечивает твердое, но хрупкое покрытие с хорошими фрикционными свойствами. Заполненные фторуглероды и композиты на органической основе обладают хорошими фрикционными свойствами и хорошей устойчивостью к заклиниванию.
Новые материалы и производственные процессы используются для снижения затрат и повышения производительности:
• Поковка из порошкового металла для производства компонентов почти чистой формы и минимизации механической обработки.
 Лазерная и электронно-лучевая сварка для изготовления более дешевых нижних

SAE 680009.

[2] Профессор Эвен М. Эвен, Proc Theory of Gear Changing ,. ИМЕХЕ (AD, 1949-50)

[3] Newton & Steeds, The Motor Vehicle, Illffe

[4] Судья A W, Automotive Transmissions

[5] Mitchell, G Wilding A.W., Synchromesh Mechanisms, Automotive

Design Engineering, февраль 1966 г., стр. 64-69, 71-73 [6] ZF Sperrsynchronisierung (немецкий)

[7] Looman, Dr - Ing J, Механические коробки передач в автомобилях ., Конференция по проектированию приводных линий. 1970

[8] Розен, Крук, Экер, Меллгрен Синхронные механизмы: опыт работы с коробками передач для тяжелых грузовиков, Конференция по проектированию приводных линий. 1970

[9] Остен Дж. Синхронизирующие механизмы, Drive Line Engineering Conf.

1970

[10] Oster, P.и Pflaum, H, Трение и износ синхронизаторов в трансмиссиях с ручным переключением передач,., статья D19, Второй Конгресс IAVD Конструкция и компоненты автомобилей, 1985

компонентов повышенной прочности для снижения затрат на дорогостоящие высокопрочные компоненты для снижения общей стоимости компонентов.
 Использование пластиков, армированных волокном, для таких компонентов, как вилки переключения.
Базовая конструкция Borg Warner на протяжении многих лет была оптимизирована за счет новаторского использования / применения материалов и производственных процессов.Но основная проблема «противоположных критериев - или / или» малого угла конуса и самозажимания полностью не устранена. При разработке двухслойного углеродного покрытия (Sulzer
®) заявлены характеристики трения, которые помогают в достижении меньших углов конуса.
Электрически синхронизированное переключение передач - это новый способ решения проблемы коробки передач и новый способ создания легкого гибридного автомобиля. Электрическая машина используется для синхронизации скорости выходного и входного валов во время переключения передач.

Но, безусловно, наиболее важной тенденцией является обращение с синхронизаторами не изолированно, а как часть системы.

Благодарность

Автор благодарит профессора Г.Г. Шастри за его поддержку и руководство.

Ссылки

[1] Социн, Р. Дж. И Уолтерс, Л. К., Синхронизаторы с механической трансмиссией,

[11] Далзелл Джон, Более прочные коробки передач, Переключение зажигалки от ZF

[12]. Конструкция оборудования автомобильного инженера на конкурентном рынке; Части 1 и 2, декабрь 1986, стр. 14-16, апрель / май, стр. 21-22

[13] Power Metal Parts For Automobile Applications Part II, Mocaeski

S, and Hall, D.W. SAE 850458.

[14] Умеш Вазир. Введение в синхронизаторы с механической коробкой передач; Ijeted Issue 3 Vol 5, Issn 2249-6149, pg 422-428, Sept 2013

IJSER © 2013

http://www.ijser.org

International Journal of Scientific & Engineering Research Volume4, Issue 12, December- 2013

ISSN 2229-5518






IJSER! B) 2013

http: //www.ijser. орг

1463

.

Что такое синхронизаторы механической коробки передач?

Когда вы переключаете передачи в автомобиле с механической коробкой передач, вы перемещаете стержень, который перемещает вилку, которая включает передачу. В зависимости от того, на какую передачу вы переключаетесь, работает другая вилка. Вилка перемещает кольцо на нужную шестерню, и зубцы собачки на кольце входят в зацепление с отверстиями на шестерне, чтобы зацепить его. Вы включаете передачу заднего хода через отдельную небольшую промежуточную шестерню. Передняя передача всегда вращается в направлении, противоположном направлению других (передних) передач.

В прошлые годы двойное сцепление было обычным явлением, чтобы выключить передачу, позволить муфте и следующей передаче достичь одинаковой скорости, а затем включить новую передачу. Для переключения с двойным сцеплением вы нажимали педаль сцепления, чтобы освободить двигатель от коробки передач. Затем воротник перешел в нейтральное положение. Вы отпустили сцепление и увеличили обороты двигателя, чтобы установить нужное значение оборотов для следующей передачи, чтобы втулка и следующая шестерня вращались с одинаковой скоростью, позволяя зубьям собачки зацепить шестерню.Когда двигатель набирает нужную скорость, вы снова нажимаете сцепление, чтобы зафиксировать хомут на следующей передаче.

Объявление

Современные автомобили используют синхронизаторы, чтобы избежать двойного сцепления. Синхронизатор, или «синхронизатор», позволяет воротнику и шестерне синхронизировать свои скорости, когда они уже находятся в контакте, но до того, как собачьи зубья зацепятся. Синхронизаторы каждого производителя немного отличаются от других, но основная идея одинакова.Например, конус на одной шестеренке войдет в конусообразную выемку на воротнике. Шестерня и хомут синхронизируют свои скорости благодаря трению между конусом и хомутом. Затем внешняя часть воротника отодвигается в сторону, чтобы зубчатая передача могла зацепиться за зубья собачки.

.

Распространенные проблемы с коробкой передач автомобилей и почему они возникают

В вашем автомобиле очень интересный процесс передачи мощности от двигателя к колесам. Из всех механических компонентов, участвующих в этом процессе, наиболее важным является, возможно, коробка передач автомобиля. В то время как ваш автомобиль может успешно передавать мощность без коробки передач, его полезность с быстро развивающимися автомобильными технологиями на протяжении многих лет сделала его незаменимым компонентом трансмиссии.Коробка передач автомобиля выполняет свою задачу по передаче нужного количества мощности за счет непрерывного вращения, шлифования и бесконечной борьбы с трением. Когда под рукой столько всего, коробка передач неизбежно изнашивается и время от времени выявляет какие-либо неисправности. Итак, в этой статье мы рассмотрим некоторые из распространенных проблем с коробкой передач автомобилей и поймем, почему они возникают.

Общие проблемы с коробкой передач автомобиля: отсутствие ускорения / недостаточный отклик дроссельной заслонки

Первая проблема с коробкой передач автомобиля, которую мы будем решать в этом списке, касается ускорения автомобиля.Иногда во время движения вы заметите небольшую задержку разгона автомобиля после переключения передач. Но время от времени для механических коробок передач допустима задержка не более секунды. В случае автоматических коробок передач эта задержка может быть более длительной и частой. Однако, если возникает ситуация, когда частота вращения увеличивается после переключения, но скорость автомобиля почти не увеличивается, перед вами стоит проблема, заслуживающая внимания.

Диагноз:

Эта проблема возникает из-за неисправного компонента сцепления, который не позволяет ему вовремя полностью включиться или выключиться.Из-за этого сцепление автомобиля остается активным даже после завершения переключения передач и останавливает / сводит к минимуму передачу мощности на колеса. Основными компонентами, вызывающими эту проблему, являются изношенные диски, пружины сцепления или главный цилиндр. Это также может быть вызвано наличием воздуха в канале для жидкости. Если в системе есть воздух, это можно исправить простым удалением воздуха из соответствующего канала. В других случаях неисправную деталь придется заменить. Иногда более чем одна из этих частей может быть причиной, по которой может потребоваться замена всего корпуса сцепления.

Также читайте: Как продлить срок службы сцепления автомобиля

Распространенные проблемы с коробкой передач в автомобиле: жидкость под автомобилем

Коробке передач вашего автомобиля, как и любому другому вращающемуся механическому компоненту автомобиля, требуется жидкость для смазки. Если вы когда-нибудь заметите, что под припаркованной машиной скапливаются капли жидкости, скорее всего, это трансмиссионная жидкость. В отличие от других жидкостей, которые могут вытекать из вашего автомобиля, трансмиссионная жидкость ярко-оранжевого цвета.Это позволяет очень легко идентифицировать.

Диагноз:

Если это трансмиссионная жидкость, необходимо обязательно выяснить источник утечки и как можно скорее долить жидкость. Трансмиссионная жидкость не расходуется на испарение, в отличие от моторного масла, и всегда должна быть на идеальном уровне для надлежащей смазки. Отсутствие этого может вызвать серьезное повреждение быстро вращающихся компонентов трансмиссии. Источником утечки в большинстве случаев является поврежденный поддон для жидкости или сломанное уплотнение. Если утечка обнаружена на ранней стадии, то в большинстве случаев потребуется заменить только эту деталь.Однако, если это обнаружено очень поздно, компоненты коробки передач могут быть повреждены, что может привести к большим расходам на ремонт / замену.

Распространенные проблемы с коробкой передач автомобиля: тряска автомобиля со скрежетом при переключении передач

В идеальной ситуации ваша машина всегда должна быть без скрежета и тряски во время работы. Если такое ощущение присутствует, значит, проблема с каким-то компонентом. Если вы наблюдаете этот скрежет или ощущение во время переключения передач, сопровождаемое заметной тряской автомобиля, то перед вами одна из очень распространенных проблем с коробкой передач автомобиля.

Диагноз:

Если вы можете наблюдать это ощущение скрежета после полного нажатия на педаль сцепления, то с вероятностью 80% это связано с износом дисков сцепления. Если это происходит после того, как вы сняли ногу с педали сцепления, проблема, скорее всего, связана с синхронизаторами передач. В обоих случаях детали необходимо будет заменить незамедлительно, так как чем больше шлифовка, тем больше повреждений передается на вашу коробку передач.

Распространенные проблемы с коробкой передач автомобиля: пробуксовка передач

Если ваша машина не автоматическая, коробка передач всегда должна работать исключительно на ваших действиях и только на ваших действиях.Время от времени вы будете сталкиваться с ситуацией, когда вы переключаете передачу, нажимаете педаль акселератора, и автомобиль дергается и снова переключается на предыдущую передачу. В некоторых случаях также возможно, что передача переходит в нейтральное положение. Это явление известно как пробуксовка передач.

Диагноз:

Пробуксовка передачи вредит деталям коробки передач, но, помимо этого, это также может создать опасную ситуацию. Представьте себе случай, когда вы пытаетесь выполнить маневр обгона, и передача переключается на нейтральную или пониженную передачу.Одному Богу известно, чем закончится эта ситуация. Пробуксовка передачи происходит из-за множества факторов, но чаще всего из-за поврежденной вилки переключения. Поврежденная вилка не двигается должным образом, чтобы заблокировать правильную передачу, что приводит к автоматическому переключению коробки передач назад. Кроме того, это может быть вызвано изношенными зубьями шестерен или низким уровнем трансмиссионной жидкости.

Распространенные проблемы с коробкой передач в автомобиле: запах гари

Если вы ведете машину и чувствуете исходящий от нее запах гари, значит, вы столкнулись с проблемой.Если этот запах сопровождается ленивым или неправильным переключением передач, то есть почти определенная вероятность, что запах исходит от коробки передач вашего автомобиля.

Диагноз:

Такая ситуация чаще всего возникает при перегреве трансмиссионной жидкости. Трансмиссионная жидкость используется для охлаждения тепла, выделяемого при вращении и трении компонентов коробки передач. Если уровень жидкости слишком низкий, коробка передач работает с большим трением, что, в свою очередь, выделяет больше тепла.Это тепло разжижает трансмиссионную жидкость, делая ее бесполезной и вызывает еще больший нагрев. Другая важная причина - использование неподходящей жидкости. Трансмиссионные жидкости созданы для работы с уровнями нагрева, соответствующими работе коробки передач. В случае использования не той жидкости, она не будет работать правильно и приведет к чрезмерному нагреву. Оба эти случая вызывают серьезное повреждение коробки передач автомобиля, поэтому обязательно используйте жидкость правильного типа и своевременно доливайте ее в случае низкого уровня.

Распространенные проблемы с коробкой передач автомобиля: автомобиль не входит в коробку передач

Как мы уже говорили ранее, коробка передач автомобиля должна работать исключительно от ваших действий. Вполне возможно, что иногда рычаг переключения передач просто отказывается сдвинуться с места из того положения, в котором он находится. В случае автоматических коробок передач эта проблема проявляется в том, что коробка передач застревает на одной передаче независимо от того, насколько сильно вы дросселируете.

Диагноз:

Отсутствие переключения передач может быть объяснено несколькими причинами.Основная причина - неисправность сцепления. Муфта используется для снятия нагрузки с первичного вала, ведущего к шестерням, так что вилка переключения передач может легко входить в передачу. Если рычажный механизм поврежден или сцепление чрезмерно изношено, нагрузка не сместится, и шестерня не будет правильно работать. В автоматических трансмиссиях это вызвано в основном электронными системами автомобиля. Если в электронной системе, отвечающей за синхронизацию переключения передач, возникает какая-то ошибка, переключение передач не будет происходить правильно.Что и говорить, для этого потребуется посещение сервисного центра для ремонта.

.Руководство по трансмиссии

: все, что вам нужно знать

  • Дом
  • Категории
    • Принадлежности
      • Аксессуары для интерьера
      • Внешние аксессуары
      • Игрушки
    • Очистка и детализация
    • Электроника
      • Аудио
    • Двигатель и производительность
    • Мотоциклы и велосипеды
    • Уход на дому
    • Кемперы на колесах
    • Внедорожники
    • Гарантии
      • Расширенные гарантии
      • Заводские гарантии
  • Блог
  • О нас
  • Связаться
.

Марганцевая бронза

Обычно кованые, высокопрочные

Алюминиевая бронза

Обычно литье под давлением, хорошие свойства износа

Кремний-марганцевая бронза

Хорошая прочность, хорошие износостойкость


Смотрите также