Электрическая схема генератора


Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Схема генератора автомобиляПоэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

Принципиальная электрическая схема генератора авто

  1. Аккумуляторная батарея
  2. Выход генератора "+"
  3. Включатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

устройство генератора

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

принцип работы генератора

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

схема генератора

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
схема зарядки аккумуляторной батареи ВАЗ-2107 с генератором типа 37.3701

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметорм

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

схема проверки генератора

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

Электрическая Схема Генератора - tokzamer.ru

Из-за того, что узел питает все электрооборудование в автомобиле, он считается основным элементом в бортовой сети транспортного средства.


Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. Непосредственно сам регулятор конструктивно включает в себя контроллеры, а также исполнительные компоненты.

О выходе из строя данных элементов может сообщить повышенная шумность, но этот же признак свидетельствует и о недостаточной смазки.
Как запустить генератор без АКБ(самовозбуждение,схема+теория)

В зависимости от количества лап крепление генератора называется однолапным или двухлапным.

Вся конструкция защищена металлическим корпусом. Максимальный ток отдачи определяется при частоте вращения ротора в 6 мин

Прежде всего это связано с тем, что при малых диаметpax шкивов клиновой ремень усиленно изнашивается. Для выполнения демонтажа подготовьте стандартный набор инструментов, автомобиль желательно загнать на смотровую яму.

Только при условии, когда прекратится питание лампы, на обмотку возбуждения будет подано напряжение и генератор сможет выйти на рабочий режим.

В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит.

Не горит лампа зарядки АКБ. Как найти причину.

Схема автомобильного генератора ВАЗ 2106:

Вспомогательный выпрямитель включает в себя диоды в пластиковом корпусе формой в виде горошины или цилиндра, а также могут изготавливаться отдельным герметичным блоком, подключаемым к схеме специальными шинами. В принципе при появлении сторонних звуков следует также произвести диагностику состояния контактов.

На каждой половине имеется шесть полюсов, которые изготавливаются методом штамповки.

При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии.

Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства. И все они потребляют электроэнергию, а восполнить заряд помогает генератор, который заряжает аккумуляторную батарею до оптимального уровня.

Далее через монтажный блок поступает на й вывод. Работают при этом параллельно аккумулятор и генератор ГА.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания.

Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т.
ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ.

Классификация

Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства. Стоит заметить, что узлы соединены между собой крепежными элементами, а также целостной рамной конструкцией.

Полностью отвернуть болт крепления регулировочной планки к блоку цилиндров, после чего снизу авто отворачиваем 2 болта крепления нижнего кронштейна к блоку и снимаем генератор, вытащив его из подкапотного пространства.

Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

Поделиться с друзьями: Вам также может быть интересно. Сам рубильник функционирует в трех положениях, каждое из которых отвечает за свой этап работы.

Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Карбюраторные двигатели Схема подключения генератора ВАЗ карбюратор и инжектор зависит от года выпуска автомобиля. Обе половины данной обмотки находятся в противоположных полюсных половинах узла.

Содержание


Эти пульсации можно использовать для диагностики выпрямителя. Данное знание позволит устранить различные неполадки, риск возникновения которых всегда присутствует в процессе эксплуатации. Если крепление осуществляется двумя лапами, то они расположены на обеих крышках, если лапа одна — она находится на передней крышке.

Такими устройствами комплектовались военные машины и автобусы. Отсоединить аккумуляторную батарею. Поликлиновый ремень считается более универсальным, применим при небольших диаметрах ведомого шкива, с его помощью реализуется большее передаточное число. При этом обмотка возбуждения генератора оказывается подключена к цепи питания через переход эмиттер — коллектор VT3. Это позволило обойтись без щеточного узла уязвимая часть генератора и контактных колец.

Во время работы двигателя происходит непрерывная дозарядка аккумулятора и обеспечивается работа электрических потребителей, подключенных к бортовой сети автомобиля. В торговой сети можно найти запчасти к генераторам, в том числе и корпус статора с обмотками. Электрические неисправности также устраняются путем замены неисправных деталей новыми.
ГЕНЕРАТОР И РЕЛЕ 702 ДЛЯ ИНДИКАЦИИ РАБОТЫ ГЕНЕРАТОРА

Схема подключения генератора в автомобилях ВАЗ

Основные требования к автомобильным генераторам 1.

Вращающийся якорь создает электромагнитные поля, которые индуцируют в обмотках статора переменный ток. Например, пробитый регулятор напряжения будет постоянно перезаряжать батарею. Привлекает внимание наличие контактных колец 4 и механизма щёткодержателей 5.

Снятие характеристики осуществляется с интервалом до мин-1 и мин-1 при более высоких частотах.

Для защиты цепей генераторной установки применяют предохранители, обычно в цепях контрольной лампы, соединениях регулятора с аккумуляторной батареей, в цепи питания аккумуляторной батареи. Выпрямительного устройства. Само подключение осуществляется поэтапно: Наиболее простой способ подключения — это в розетку домашней сети.

Схема автомобильного генератора ВАЗ 2110:

Асинхронный генератор в сборе Принцип действия По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. Фазные напряжения Uф1 действует в обмотке первой фазы, Uф2 — второй, Uф3 — третьей.

Максимальный ток отдачи определяется при частоте вращения ротора в 6 мин Автомобильный генератор может оснащаться двумя типами щеток: Меднографитовые. При таких симптомах следует проверить сепараторные элементы, дорожки качения, контактные кольца на предмет проворота.

Поддержание генератора в исправном состоянии позволит избежать крупных трат на капитальный ремонт авто. Эти регуляторы не подвержены разрегулировке и не требуют никакого обслуживания, кроме контроля надежности контактов. Генераторные установки без дополнительного выпрямителя, но с подводом к регулятору вывода фаз, применение которых, особенно японскими и американскими фирмами, расширяется, выполняются по схеме рис.

Для экономии металла конструкторы создали статор, состоящий из отдельных сегментов в виде подковы. При таких симптомах следует проверить сепараторные элементы, дорожки качения, контактные кольца на предмет проворота. Характеристики автомобильных генераторов Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой ТСХ — зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения ротора при постоянной величине напряжения на силовых выводах. Полностью отвернуть болт крепления регулировочной планки к блоку цилиндров, после чего снизу авто отворачиваем 2 болта крепления нижнего кронштейна к блоку и снимаем генератор, вытащив его из подкапотного пространства. На видео происходит разбор бензогенератора Firman и рассказ о его устройстве Схема устройства Безусловно, неопытному человеку довольно сложно разобраться во всевозможных схемах подключения и устройства бензиновых генераторов.
Для чего нужен контакт «D» и «L» автомобильного генератора.

Принцип работы автомобильного генератора, схема

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — стальной элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлены втулки клювообразной формы. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Различные схемы автомобильных генераторов - Схемы генераторов - - Каталог статей

Список всех статей

Устаревшие схемы генераторов 60 - 70х годов прошлого века. "Жигули", "Москвич", "Волга", "Зил", "ГАЗ", "УАЗ"

 

Схема автомобильного генератора, это схема самого генератора, схема соединенного с ним регулятора напряжения и схема цепи возбуждения генератора. Генератор с регулятором напряжения иногда называют – генераторная установка.

Автомобильный генератор - это трехфазная синхронная машина. Принцип действия основан на явлении электромагнитной индукции. Смысл явления состоит в том, что в обмотке индуктируется электродвижущая сила, если вокруг нее действует изменяющееся магнитное поле. Значит, генератор должен состоять из обмотки и вращающегося магнита. Обмотка наматывается на кольцевой сердечник, а внутри обмотки вращается ротор. Процесс намагничивания ротора, называется возбуждением генератора. Для намагничивания ротора в нем есть своя обмотка, в которую ток попадает через щетки. Ток, намагничивающий ротор, называется ток возбуждения, а обмотка ротора называется обмотка возбуждения.

По принципу действия синхронный генератор, создает переменное напряжение, а для зарядки аккумулятора и для работы всего электрооборудования, нужно постоянное напряжение, поэтому в любой автомобильный генератор, входит выпрямитель - трехфазный диодный мост. Переменный ток генератора выпрямляется диодным мостом и во внешних цепях действует постоянное напряжение и протекает постоянный ток.

Регулятор напряжения – обязательный элемент схемы, он поддерживает необходимый уровень выходного напряжения генератора.

Регулятор напряжения включается в цепь возбуждения. Его задача управлять током возбуждения. Он работает в режиме открыто – закрыто, то есть, он все время включает и выключает ток возбуждения. Напряжение генератора повышается, он отключает ток возбуждения - напряжение снижается, он снова включает ток возбуждения и напряжение повышается. Таким образом, он не дает напряжению вырасти выше заданного значения, которое должно быть 13,8 - 14,2 Вольта. Такое напряжение необходимо поддерживать для нормальной зарядки аккумулятора и нормальной работы всех приборов электрооборудования.

Автомобильный генератор первоначально возбуждается от аккумулятора. Как только включается зажигание, выходной транзистор регулятора открывается, через него идет ток возбуждения и ротор намагничивается. Когда завелся двигатель и генератор заработал, возбуждение происходит уже от самого генератора. ЭДС генератора становится выше, поэтому генератор становится источником, а аккумулятор начинает заряжаться.

Применяются два принципа подачи тока возбуждения от генератора на собственную обмотку возбуждения.

  1. Схема возбуждения от выхода генератора

Ток возбуждения идет от выхода генератора, через замок зажигания, выход генератора всегда связан с аккумулятором.

  1. Схема возбуждения через дополнительные диоды

В этом случае, ток возбуждения выпрямляется отдельным выпрямителем, цепь возбуждения отключена от выхода генератора и, значит, от аккумулятора. Ток возбуждения идет только внутри генератора и не использует внешнюю цепь. Аккумулятор используется только для первоначального возбуждения.

 

Схемы генераторов с возбуждением от выхода генератора

Эти простые схемы применялись для автомобилей 60-х 70-х годов выпуска. «Жигули», «Москвичи», ЗиЛ, Газ, Уаз. Много таких автомобилей до сих пор остается в эксплуатации.

Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.

На выходе регулятора напряжения стоит мощный транзистор, это может быть биполярный, и может быть полевой транзистор. Он работает в ключевом режиме, то есть, открыт - закрыт. Открыт транзистор – ток возбуждения проходит, закрыт транзистор - ток не проходит.

Есть три варианта включения транзистора – с общим Эмиттером, общей Базой и с общим Коллектором. Поэтому ключи на транзисторах бывают с ОЭ, ОБ, ОК. Для каждого варианта транзисторного ключа есть свои особенности применения.

В регуляторах напряжения используются транзисторные ключи с ОЭ и ОК. Если заземлен транзистор, то это ключ с ОЭ, если заземлена щетка. то это ключ с ОК. Регуляторы выполненные по схеме с ОЭ называют A-Circuit, регуляторы выполненные по схеме с ОЭ называют В - Circuit.

В автомобильных схемах генераторов применяются обе схемы – и A-Circuit, и В-Circuit

 

Схемы с внешним регулятором напряжения

Такая схема применялась на автомобилях Жигули ранних выпусков 2101 - 2106

 

Такая схема применялась для автомобилей Волга, Газ, Зил, УАЗ. Генераторы Серий 16 3701 и 19.3771.

Эта схема применяется для автомобилей Крайслер и Додж. По этой схеме сделан генератор на двигатели Крайслер для автомобилей Волга и Газель.

 

Генераторы со встроенными регуляторами напряжения

Регулятор напряжения можно установить снаружи и внутри генератора. Такая конструкция получается более компактной и надежной, она позволяет отказаться то проводов для соединения генератора и регулятора напряжения.

При установке регулятора снаружи корпуса генератора, появляется возможность замены регулятора не снимая генератор.

 

 

Генераторы такой конструкции, со встроенным регулятором, установленном на корпусе, широко применяется для автомобилей выпускавшихся  в недавнее время и находящиеся в эксплуатации - Валдай, КАМАЗ, МАЗ, УАЗ

 

Все приведенные схемы используют принцип питания обмотки возбуждения от выхода генератора. Генератор часть своего выпрямленного тока отдает на собственное возбуждение. 

Путь тока возбуждения: Плюс генератора, плюс аккумулятора, контакты замка зажигания, вход регулятора напряжения, обмотка (или наоборот), обмотка возбуждения, минус - масса.

 

Недостаток  Схемы с питанием обмотки возбуждения от выхода генератора.

Почему отказались от такой схемы и стали применять схему с дополнительными диодами, (тоже устаревшую)

В настоящее время снова используется схема без доп. диодов, в таких генераторах применяют регуляторы напряжения с микроконтроллерами. 

В генераторах с питанием обмотки возбуждения от выхода генератора, весь ток возбуждения проходит через контакты замка зажигания. Этот ток для получения достаточной мощности генератора должен быть быть 3 - 5 Ампер. Такой ток  требует качественного зажима всех контактов и достаточно толстого провода,  при размыкании контактов дает сильную искру и изнашивает контакты, снижая надежность системы зарядки и системы зажигания, которая питается через эти же контакты.

Аккумулятор в любой схеме всегда подключен к плюсовому выводу генератора, это необходимо для того, чтобы генератор и аккумулятор могли работать как источники заменяя друг друга - двигатель не работает - источник аккумулятор, двигатель заработал - источник генератор. Когда генератор не работает, аккумулятор, прямо подключенный к нему, не может разрядиться через генератор, потому, что диодный мост не пропускает ток в обратном направлении, но, через обмотку возбуждения, аккумулятор может разрядиться.

Если двигатель не завелся,  генератор не заработал, а зажигание осталось включено, то через обмотку ротора идет ток  от аккумулятора (а это 3 – 5 Ампер). По разным причинам такие ситуации иногда возникают и тогда, через несколько часов, двигатель не заведется. То есть, в схемах, в которых обмотка возбуждения запитана от выхода генератора и, значит, подключена непосредственно к аккумулятору, может неожиданно разрядиться аккумулятор.

 

Схема с дополнительными диодами несколько сложнее, но она обеспечивает питание обмотки возбуждения, прямо внутри генератора минуя замок зажигания, обмотка возбуждения не имеет прямой связи с аккумулятором, поэтому  такая схема исключает случайную разрядку аккумулятора при невыключенном зажигании.

 

В схемах с дополнительными диодами, первоначальное возбуждение также происходит от аккумулятора, но очень маленьким током чрез ограничительные сопротивления или через специальную лампочку. После запуска генератора ток возбуждения идет уже по отдельной цепи, не связанной с аккумулятором, через дополнительный выпрямитель. (доп диоды)

Схемы автомобильных генераторов с дополнительными диодами.

Устройство генератора тока | У электрика.ру

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему  и рассмотреть устройство  генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Содержание:

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

Асинхронный генератор: схема, устройство, принцип работы

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

Устройство генератора постоянного тока

Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:

      • 0° — ЭДС =0
      • 90° — ЭДС достигает максимального значения со знаком «+»
      • 180° — ЭДС снова равна 0
      • 270° — ЭДС достигает пикового значения со знаком «-»

Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.

Схема генератора постоянного тока

Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.

С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:

Основные виды генераторов постоянного тока

В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.

По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:

  1. Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
  2. Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
  3. Зависимое возбуждение, которое делится на три типа:
    • Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
    • Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
    • Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы

Схема генератора независимого возбуждения

Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.

Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.

Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.

Генераторы с параллельным возбуждением: схема, устройство, принцип работы

Схема генератора параллельного возбуждения

У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.

Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.

В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.

Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.

Генераторы с последовательным возбуждением: схема, устройство, принцип работы

Схема генератора последовательного возбуждения

Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.

Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.

Генераторы со смешанным возбуждением: схема, устройство, принцип работы

Схема генератора со смешанным возбуждением

На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик  такого генератора, и мы по ним пройдемся.

График внешних характеристик генератора постоянного тока со смешанным возбуждением

Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.

Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.

Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.

Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.

К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.

Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.

Поделиться ссылкой:

Похожее

устройство и принцип работы, напряжение и мощность

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

Устройство генератораГенератор импульсного напряжения

/ генератор Маркса - принципиальная схема, принцип работы и применение

В электронике скачки напряжения - очень важная вещь, и это кошмар для каждого разработчика схем. Эти скачки обычно называются импульсами, которые можно определить как высокое напряжение , обычно в несколько кВ, которое существует в течение короткого промежутка времени . Характеристики импульсного напряжения можно заметить по времени спада высокого или низкого напряжения, за которым следует очень высокое время нарастания напряжения. Молния является примером естественной причины, вызывающей импульсное напряжение.Поскольку это импульсное напряжение может серьезно повредить электрическое оборудование, важно проверить наши устройства на работу с импульсным напряжением. Здесь мы используем генератор импульсного напряжения, который генерирует выбросы высокого напряжения или тока в контролируемой испытательной установке. В этой статье мы узнаем о работе и применении генератора импульсного напряжения . Итак, приступим.

Как было сказано ранее, импульсный генератор производит эти кратковременные выбросы очень высокого напряжения или очень большого тока.Таким образом, существует два типа генераторов импульсов: генератор импульсного напряжения и генератор импульсного тока . Однако в этой статье мы обсудим генераторы импульсного напряжения.

Форма волны импульсного напряжения

Чтобы лучше понять импульсное напряжение, давайте взглянем на форму волны импульсного напряжения. На изображении ниже показан одиночный пик формы импульса высокого напряжения

Как видите, волна достигает своего 100-процентного пика за 2 мкс.Это очень быстро, но высокое напряжение теряет свою силу почти на 40 мкс. Следовательно, импульс имеет очень короткое или быстрое время нарастания , тогда как очень медленное или длинное время спада . Длительность импульса называется хвостовой частью волны , которая определяется разницей между 3-й временной меткой ts3 и ts0.

Генератор одноступенчатых импульсов

Чтобы понять работу генератора импульсов , давайте взглянем на принципиальную схему одноступенчатого генератора импульсов , которая показана ниже

Схема выше состоит из двух конденсаторов и двух сопротивлений.Искровой зазор (G) - это электрически изолированный зазор между двумя электродами, в котором возникают электрические искры. Источник питания высокого напряжения также показан на изображении выше. Для любой схемы генератора импульсов требуется по крайней мере один большой конденсатор, который заряжается до соответствующего уровня напряжения и затем разряжается нагрузкой. В приведенной выше схеме CS - это зарядный конденсатор . Обычно это высоковольтный конденсатор с номиналом более 2 кВ (зависит от желаемого выходного напряжения).Конденсатор CB представляет собой нагрузочную емкость , которая разряжает зарядный конденсатор. Резистор и RD и RE управляют формой волны.

Если внимательно присмотреться к изображению выше, можно обнаружить, что искровой разрядник не имеет электрического соединения. Тогда как емкость нагрузки получает высокое напряжение? Вот уловка, и по этой схеме вышеупомянутая схема действует как генератор импульсов. Конденсатор заряжается до тех пор, пока напряжение заряда конденсатора не станет достаточным для прохождения искрового промежутка.Электрический импульс, генерируемый через искровой промежуток, и высокое напряжение передается от вывода левого электрода к выводу правого электрода искрового промежутка, образуя таким образом подключенную цепь.

Время отклика схемы можно контролировать, изменяя расстояние между двумя электродами или изменяя напряжение полностью заряженного конденсатора. Расчет выходного импульсного напряжения может быть выполнен путем расчета формы выходного напряжения с помощью

 v (t) = [V  0  / C  b  R  d  (α - β)] (e  - α   t  - e  - β   t ) 

Где,

 α = 1 / R  г  C  б  β = 1 / R  e  C  z  

Недостатки одноступенчатого импульсного генератора

Основным недостатком схемы одноступенчатого генератора импульсов является физический размер .В зависимости от номинального высокого напряжения компоненты становятся больше в размерах. Кроме того, для генерации высокого импульсного напряжения требуется высокое напряжение постоянного тока . Следовательно, для схемы одноступенчатого импульсного генератора напряжения довольно сложно добиться оптимального КПД даже после использования больших источников питания постоянного тока.

Сферы, которые используются для соединения зазора, также должны быть очень большого размера. Корону, которая разряжается в результате генерации импульсного напряжения, очень трудно подавить и изменить форму.Срок службы электрода сокращается и требует замены после нескольких циклов повторения.

Генератор Маркса

Эрвин Отто Маркс предоставил схему многоступенчатого импульсного генератора в 1924 году. Эта схема специально используется для генерации высокого импульсного напряжения от источника питания низкого напряжения. Схема генератора мультиплексированных импульсов или обычно называемая схемой Маркса показана на изображении ниже.

В приведенной выше схеме используются 4 конденсатора (может быть n конденсаторов), которые заряжаются источником высокого напряжения в режиме параллельной зарядки с помощью зарядных резисторов R1 - R8.

Во время разрядки искровой разрядник, который был разомкнутой цепью во время зарядки, действует как переключатель и соединяет последовательный путь через конденсаторную батарею, а генерирует очень высокое импульсное напряжение на нагрузке. Состояние разряда показано на изображении выше фиолетовой линией. Напряжение первого конденсатора должно быть превышено в достаточной степени, чтобы пробить искровой промежуток и активировать схему генератора Маркса .

Когда это происходит, первый разрядник соединяет два конденсатора (C1 и C2).Следовательно, напряжение на первом конденсаторе удваивается на два напряжения C1 и C2. Впоследствии третий разрядник автоматически выходит из строя, потому что напряжение на третьем разряднике достаточно велико, и он начинает добавлять напряжение третьего конденсатора C3 в батарею, и это продолжается до последнего конденсатора. Наконец, когда достигается последний и последний искровой промежуток, напряжение достаточно велико, чтобы разорвать последний искровой промежуток на нагрузке, которая имеет больший зазор между свечами зажигания.

Конечное выходное напряжение на конечном промежутке будет nVC (где n - количество конденсаторов, а VC - напряжение заряда конденсатора), но это верно в идеальных схемах.В реальных сценариях выходное напряжение схемы генератора импульсов Маркса будет намного ниже фактического желаемого значения.

Однако у этой последней точки искры должны быть большие промежутки, потому что без этого конденсаторы не перейдут в полностью заряженное состояние. Иногда выделения делают намеренно. Есть несколько способов разрядить батарею конденсаторов в генераторе Маркса.

Методы разряда конденсаторов в генераторе Маркса:

Импульсный дополнительный пусковой электрод : Импульсный дополнительный пусковой электрод - эффективный способ преднамеренного запуска генератора Маркса во время полной зарядки или в особом случае.Дополнительный пусковой электрод называется Тригатроном. Существуют тригатроны разных форм и размеров с различными характеристиками.

Ионизация воздуха в зазоре : Ионизированный воздух - эффективный путь, по которому проходит искровой промежуток. Ионизация осуществляется с помощью импульсного лазера.

Снижение давления воздуха внутри зазора : Снижение давления воздуха также эффективно, если искровой промежуток спроектирован внутри камеры.

Недостатки генератора Маркса

Длительное время зарядки: В генераторе Маркса для зарядки конденсатора используются резисторы. Таким образом, время зарядки увеличивается. Конденсатор, который находится ближе к источнику питания, заряжается быстрее, чем другие. Это связано с увеличением расстояния из-за повышенного сопротивления между конденсатором и источником питания. Это главный недостаток генератора Маркса.

Потеря эффективности: По той же причине, что описана ранее, поскольку ток протекает через резисторы, эффективность схемы генератора Маркса низкая.

Короткий срок службы разрядника: Повторяющийся цикл разряда через разрядник сокращает срок службы электродов разрядника, который необходимо время от времени заменять.

Время повторения цикла зарядки и разрядки: Из-за большого времени зарядки время повторения генератора импульсов очень низкое. Это еще один серьезный недостаток схемы генератора Маркса.

Применение схемы импульсного генератора

Основное применение схемы генератора импульсов - испытание высоковольтных устройств .Грозозащитные разрядники, предохранители, TVS-диоды, различные типы устройств защиты от перенапряжения и т. Д. Испытываются с помощью генератора импульсного напряжения. Не только в области испытаний, но и схема генератора импульсов также является важным инструментом, который используется в ядерно-физических экспериментах , а также в производстве лазеров, термоядерных и плазменных устройств.

Генератор Маркса используется для моделирования эффектов молнии на линиях электропередач и в авиационной промышленности.Он также используется в аппаратах X-Ray и Z. Другие применения, такие как испытание изоляции электронных устройств также испытываются с использованием схем импульсного генератора.

.Схема генератора треугольных волн

с использованием операционного усилителя

Функциональный генератор или генератор сигналов является неотъемлемой частью электроники и используется для создания различных видов сигналов, таких как синусоидальная волна, прямоугольная волна, пилообразная волна и т. Д. Мы уже разработали синусоидальную волну Схема генератора, схема генератора прямоугольной волны и схема генератора пилообразной волны. Теперь в этом руководстве мы покажем вам, , как спроектировать схему генератора треугольной формы , используя операционный усилитель и несколько основных компонентов.

Треугольная волна состоит из постоянного восходящего склона, за которым следует постоянный нисходящий уклон, и волна напоминает плохо нарисованный горный хребет.

Генераторы сигналов Triangle

используются в самых разнообразных вещах, таких как анализаторы кривой транзистора, контроллеры PWM, усилители класса D и генераторы тона.

Необходимые детали

  • 1x LM358 или аналогичный операционный усилитель
  • 3 резистора 1K
  • Резистор 1x 10К
  • Резистор 1x 100К
  • Керамический конденсатор 1x 1 нФ
  • 1x 1 мкФ конденсатор электролитический

Операционный усилитель LM358

Операционные усилители

также известны как компараторы напряжения.Когда напряжение на неинвертирующем входе (+) выше, чем напряжение на инвертирующем входе (-), тогда на выходе компаратора высокий уровень. И если напряжение инвертирующего входа (-) выше, чем неинвертирующего конца (+), то выходное напряжение НИЗКОЕ. Узнайте больше о работе операционного усилителя здесь.

LM358 - это сдвоенный малошумящий операционный усилитель , который имеет внутри два независимых компаратора напряжения. Это операционный усилитель общего назначения, который может быть настроен во многих режимах, таких как компаратор, сумматор, интегратор, усилитель, дифференциатор, инвертирующий режим, неинвертирующий режим и т. Д.Чтобы узнать больше о LM358, просмотрите различные схемы LM358, такие как усилитель и компаратор

.

Принципиальная схема

Схема генератора треугольных сигналов ОУ приведена ниже:

Работа генератора треугольных волн

Эта схема представляет собой простой пример генератора релаксации, использующего один операционный усилитель в качестве компаратора.

Для начала предположим, что конденсатор разряжен. Это ставит на инвертирующий вход напряжение ниже, чем на неинвертирующем входе, которое составляет половину напряжения питания резисторного делителя.

Выход становится высоким до тех пор, пока напряжение конденсатора не превысит половину напряжения питания, в этот момент напряжение на инвертирующем входе больше, чем на неинвертирующем входе. Затем выход становится низким, разряжая конденсатор. В то же время, 10K резистор действует как гистерезис - когда выходной сигнал переходит на низком уровне, нижняя нога делителя напряжения теперь имеет 1K и 10K параллельно, что уменьшает общее сопротивление и снижает опорное напряжение.

Значения резистора гистерезиса и резистивного делителя можно изменять для увеличения или уменьшения частоты.

Выход операционного усилителя затем соединяется по переменному току для получения сигнала с равным положительным и отрицательным размахом. Этот сигнал легко усилить.

Вот как можно построить простой треугольный генератор , используя один операционный усилитель и несколько дискретных компонентов.

.

555 Схема схемы генератора ШИМ с таймером

ШИМ (широтно-импульсная модуляция) - важная особенность каждого современного микроконтроллера, поскольку от него требуется управлять множеством устройств почти во всех областях электроники. ШИМ широко используется для управления двигателем, освещением и т. Д. Иногда мы не используем микроконтроллер в наших приложениях, и если нам нужно генерировать ШИМ без микроконтроллера , то мы предпочитаем некоторые ИС общего назначения, такие как операционные усилители, таймеры, генераторы импульсов и т. Д.Здесь мы используем микросхему таймера 555 для генерации ШИМ. 555 ИС таймера - очень полезная ИС общего назначения, которую можно использовать во многих приложениях.

Требуемые компоненты:

  1. 555 таймер IC -1
  2. 10К горшок -1
  3. Резистор 100 Ом -1
  4. 0,1 мкФ конденсатор -1
  5. 1 кОм резистор (опционально)
  6. Хлебная доска -1
  7. 9В Батарея -1
  8. светодиод -1
  9. Мультиметр
  10. или CRO -1
  11. Перемычка -
  12. Разъем аккумулятора -1

Что такое сигнал ШИМ?

Широтно-импульсная модуляция (ШИМ) - это цифровой сигнал, который чаще всего используется в схемах управления.Этот сигнал устанавливается на высокий (5 В) и низкий (0 В) в заранее определенные время и скорость. Время, в течение которого сигнал остается на высоком уровне, называется «временем включения», а время, в течение которого сигнал остается низким, называется «временем выключения». Ниже описаны два важных параметра ШИМ:

.

Рабочий цикл ШИМ:

Процент времени, в течение которого сигнал ШИМ остается ВЫСОКИМ (по времени), называется рабочим циклом. Если сигнал всегда включен, это 100% рабочий цикл, а если он всегда выключен, это 0% рабочего цикла.

Рабочий цикл = время включения / (время включения + время выключения)

Частота ШИМ:

Частота сигнала ШИМ определяет, насколько быстро ШИМ завершает один период. Один период полностью включает и выключает сигнал ШИМ, как показано на рисунке выше. В нашем руководстве мы установим частоту 5 кГц.

Мы можем заметить, что светодиод не горит на полсекунды, а светодиод горит в течение второй половины секунды.Но если частота включения и выключения увеличилась с «1 в секунду» до «50 в секунду». Человеческий глаз не может уловить эту частоту. Для нормального глаза светодиод будет виден как светящийся с половинной яркостью. Таким образом, при дальнейшем сокращении времени включения светодиод становится намного светлее.

Мы ранее использовали ШИМ во многих наших проектах, проверьте их ниже:

Схема и объяснение генератора ШИМ таймера 555:

В этой схеме генератора ШИМ, , как мы упоминали выше, мы использовали микросхему таймера 555 для генерации сигнала ШИМ .Здесь мы контролировали выходную частоту сигнала ШИМ, выбрав резистор RV1 и конденсатор C1. Мы использовали переменный резистор вместо постоянного резистора для изменения рабочего цикла выходного сигнала. Зарядка конденсатора через диод D1 и разрядка через диод D2 будет генерировать сигнал ШИМ на выходном контакте таймера 555.

Для определения частоты сигнала ШИМ используется формула ниже:

F = 0,693 * RV1 * C1

Вся работа и демонстрация генерации ШИМ приведены в Видео в конце, где вы можете найти эффект ШИМ на светодиодах и проверить его на мультиметре.

Моделирование генерации ШИМ с использованием таймера 555 IC:

Ниже приведены несколько снимков:

.

Онлайн-симулятор схем и редактор схем

«Попробуйте - это отличная идея».

«Удивительно удобный и простой для использования даже начинающему любителю».

«Симулятор схем на основе браузера может похвастаться множеством функций».

Технология «Smart Wires»:
Создайте свою схему быстрее, чем когда-либо прежде, с помощью нашей уникальной интеллектуальной технологии Smart Wires для подключения терминалов и перестановки компонентов.

Проприетарный механизм моделирования :
Ядро числового решателя повышенной точности плюс усовершенствованный механизм моделирования, управляемый событиями в смешанном режиме, упрощают быстрое выполнение моделирования.

Схема презентационного качества:
Печатайте четкие, красивые векторные PDF-файлы ваших схем, а также экспортируйте их в PNG, EPS или SVG для включения схем в проектную документацию или результаты.

Мощный графический движок:
Легко работайте с несколькими сигналами с помощью настраиваемых окон построения графиков, вертикальных и горизонтальных маркеров и расчетов сигналов. Экспорт графических изображений для включения в проектные документы.

.

Смотрите также