Индикатор работы лямбда зонда своими руками


Индикатор уровня LM3914 (Лямбда-зонд) — Лада 2107, 1.5 л., 1985 года на DRIVE2

Вот и первый плод статьи о LM 3914…16 и индикатора уровня. Нужно было собрать анализатор показаний лямбда зонда — ИНДИКАТОР РАБОТЫ ДАТЧИКА СОДЕРЖАНИЯ КИСЛОРОДА В ВЫХЛОПНЫХ ГАЗАХ . Штатного прибора такого нет. А что там происходит интересно. Лямбда зонд выдает сигнал в диапазоне 0-1В. Берем схему

Схема

А вот и список деталюшек.D1 — LM3914VD1 — КД209АVD2-VD11 — АЛ307C1 — K50-16 50мкф/50в.R1 — МЛТ 0,25 1мОм

R2,R3 — СП3-38а 4,7кОм

Схема достаточно проста. Можно собрать даже на макетке так как ее выводы очень удобно расположены, но я любитель делать полноценные платы.

Заготовки плат

Прибор предназначен для работы от бортовой сети автомобиля. Диод VD1 выполняет роль защиты от неправильной полярности подключения к шине питания (+12в.). Конденсатор С1 установлен для снижения возможных пульсаций в бортовой сети. Потенциометром R2 можно откалибровать шкалу измерения на верхнем уровне (1в.), а с помощью R3 отрегулировать яркость свечения светодиодов.

Прибор некритичен к конструктиву и позволяет использовать практически любые комплектующие. Однако следует учитывать, что LM3914 имеет мощность рассеивания около 1,3W. Это накладывает определенное ограничение при выборе яркости свечения светодиодов (VD2-VD11). Кроме того, соединение входа прибора с сигнальным выводом лямбда-зонда лучше выполнить экранированным проводом, а его экран соответственно заземлить.

С точки визуализации лучше всего использовать индикаторные диоды прямоугольного сечения в количестве 10 шт. Используя градацию цвета. К примеру крайние значения красные центральные зеленые диоды а промежуточные желтые. Но нужно было использовать матрицу из диодов. По-этому выбрал просто красную линейку. Под цвет остальных приборов комбинации.

Готовый прибор получился вот таким

Микросхема позволяет включить индикацию в двух режимах. Это-светящийся столбик (когда горит диод максимального уровня и при этом все диоды уровнем ниже тоже горят) и режим Бегающая точка (в этом режиме горит только диод отвечающий за свой уровень сигнала)Шкала на LM3914 линейная (LM3915…16 не линейны). Это заложено в структуре самой микросхемы. Если 10 диодов отвечают 100% настроенного уровня то 2 диода равно 20% сигнала от максимально настроенного. Что очень удобно для визуальной оценки шкалы.Так же в режиме точки с очень маленькой интенсивностью горит первая точка на шкале. Это не глюк в темноте она помогает визуально определить на каком расстоянии от начала шкалы находится эта точка.

Вот пример

Фотографии по сравнению с видео демонстрации роботы смотрятся скучно, так что вот небольшой ролик роботы. В хозяйстве у меня не нашлось блока питания который смог бы регулировать выходной вольтаж 0-1В. Минимальное что я смог получить 0,85 для настройки прибора. А роботу продемонстрирую разрядом конденсатора.

P.S. Прибор на самом деле очень универсален. При подборе номиналов резисторов его можно использовать в замен любого из стрелочных приборов, так как все они по своей сути вольтметры, и полностью отказаться от стрелок.В погоне за приборами со светящимися стрелками будьте уникальными откажитесь от них вообще сделав светодиодною шкалу в которой бегает диод а не стрелка. В точности точно не проиграете. Для таких приборов как бакомер к примеру понятия болтания будет не существенным. При шкале в 10 диодов и 40Л баке получите 4Л на 1 диод.

Так же шкалу можно расширить микросхемы можно собирать в линейки ваша шкала будет кратна 10 диодам. Тем самым уменьшая диапазон который выпадет на один диод.

Ну вот и все что я хотел показать остальное зависит лишь от вашей фантазии, и прямоты рук

Page 2

Вот и первый плод статьи о LM 3914…16 и индикатора уровня. Нужно было собрать анализатор показаний лямбда зонда — ИНДИКАТОР РАБОТЫ ДАТЧИКА СОДЕРЖАНИЯ КИСЛОРОДА В ВЫХЛОПНЫХ ГАЗАХ . Штатного прибора такого нет. А что там происходит интересно. Лямбда зонд выдает сигнал в диапазоне 0-1В. Берем схему

Схема

А вот и список деталюшек.D1 — LM3914VD1 — КД209АVD2-VD11 — АЛ307C1 — K50-16 50мкф/50в.R1 — МЛТ 0,25 1мОм

R2,R3 — СП3-38а 4,7кОм

Схема достаточно проста. Можно собрать даже на макетке так как ее выводы очень удобно расположены, но я любитель делать полноценные платы.

Заготовки плат

Прибор предназначен для работы от бортовой сети автомобиля. Диод VD1 выполняет роль защиты от неправильной полярности подключения к шине питания (+12в.). Конденсатор С1 установлен для снижения возможных пульсаций в бортовой сети. Потенциометром R2 можно откалибровать шкалу измерения на верхнем уровне (1в.), а с помощью R3 отрегулировать яркость свечения светодиодов.

Прибор некритичен к конструктиву и позволяет использовать практически любые комплектующие. Однако следует учитывать, что LM3914 имеет мощность рассеивания около 1,3W. Это накладывает определенное ограничение при выборе яркости свечения светодиодов (VD2-VD11). Кроме того, соединение входа прибора с сигнальным выводом лямбда-зонда лучше выполнить экранированным проводом, а его экран соответственно заземлить.

С точки визуализации лучше всего использовать индикаторные диоды прямоугольного сечения в количестве 10 шт. Используя градацию цвета. К примеру крайние значения красные центральные зеленые диоды а промежуточные желтые. Но нужно было использовать матрицу из диодов. По-этому выбрал просто красную линейку. Под цвет остальных приборов комбинации.

Готовый прибор получился вот таким

Микросхема позволяет включить индикацию в двух режимах. Это-светящийся столбик (когда горит диод максимального уровня и при этом все диоды уровнем ниже тоже горят) и режим Бегающая точка (в этом режиме горит только диод отвечающий за свой уровень сигнала)Шкала на LM3914 линейная (LM3915…16 не линейны). Это заложено в структуре самой микросхемы. Если 10 диодов отвечают 100% настроенного уровня то 2 диода равно 20% сигнала от максимально настроенного. Что очень удобно для визуальной оценки шкалы.Так же в режиме точки с очень маленькой интенсивностью горит первая точка на шкале. Это не глюк в темноте она помогает визуально определить на каком расстоянии от начала шкалы находится эта точка.

Вот пример

Фотографии по сравнению с видео демонстрации роботы смотрятся скучно, так что вот небольшой ролик роботы. В хозяйстве у меня не нашлось блока питания который смог бы регулировать выходной вольтаж 0-1В. Минимальное что я смог получить 0,85 для настройки прибора. А роботу продемонстрирую разрядом конденсатора.

P.S. Прибор на самом деле очень универсален. При подборе номиналов резисторов его можно использовать в замен любого из стрелочных приборов, так как все они по своей сути вольтметры, и полностью отказаться от стрелок.В погоне за приборами со светящимися стрелками будьте уникальными откажитесь от них вообще сделав светодиодною шкалу в которой бегает диод а не стрелка. В точности точно не проиграете. Для таких приборов как бакомер к примеру понятия болтания будет не существенным. При шкале в 10 диодов и 40Л баке получите 4Л на 1 диод.

Так же шкалу можно расширить микросхемы можно собирать в линейки ваша шкала будет кратна 10 диодам. Тем самым уменьшая диапазон который выпадет на один диод.

Ну вот и все что я хотел показать остальное зависит лишь от вашей фантазии, и прямоты рук

Индикатор работы лямбда-зонда. — Audi 100, 2.0 л., 1989 года на DRIVE2

Данное устройство предназначено для работы с электрохимическим датчиком кислорода(лямбда-зондом) циркониевого типа.В зависимости от количества кислорода, в отработавших газах, изменяется напряжение на выходе датчика от 0.1 до 0.9 вольт.Вот это напряжение и отображает индикатор работы лямбда-зонда.По индикации уровня светодиодной шкалы видно какая смесь-богатая или бедная.(Лично я использую данный девайс для настройки ГБО.)Схема и комплектующие:

схема и компоненты

Устройство функционирует от бортовой сети автомобиля.Диод vd1 служит для защиты от неверной полярности при подключении.Конденсатор С1-для снижения пульсаций от бортсети.Резистор R2 позволяет откалибровать шкалу на верхнем уровне.R3-регулирует яркость свечения диодов.Данное устройство не критично к конструктиву и позволяет использовать любые составляющие.Однако следует учитывать что мощность рассеивания LM3914 составляет где-то 1.3W.Это несколько усложняет подбор светодиодов по яркости свечения vd2-vd11.Можно использовать светодиодную матрицу, но в этом случае все диоды будут зелёного или красного цвета.Подключение к сигнальному проводу лямбды желательно производить экранированным проводом, а экран заземлить.Цвета рекомендованных светодиодов, нарисованы в схеме, но на всякий случай напишу:красный-нижний уровень;два жёлтых-нижний уровень;четыре зелёных-средний уровень;два жёлтых-верхний уровень;красный-максимальный верхний уровень.В схеме на 9 ноге микросхемы нарисован выключатель, при замыкании и размыкании которого меняется отображение индикации.В моём случае контур 9 ноги замкнут-это режим светящийся столбик.При размыкании контура прибор переходит в режим свечения блуждающая точка.

Вот что получилось у меня:

индикатор

обратная сторона

Был у меня китайский тестер, а теперь его нет))).Но есть коробочка для собранного устройства.

коробка для индикатора

пример готового индикатора

На плату впаял вот такой разъём, чтобы можно было подсоединять устройство когда потребуется.

разъём

фото

Подключение производил в моторном отсеке:

подключение

По поводу правильной настройки сильно не заморачивался.Откалибровал верхний уровень таким способом:Переменные резисторы выставил в среднее положение.Подключил разъём и запустил двигатель.Ни для кого не секрет, что при включении концевика полной нагрузки, все нормы токсичности идут коту под хвост)))Индикатор в этот момент должен будет показать максимальный, верхний уровень.Подстраиваем, крутим R2. С яркостью свечения светодиодов проблем нет-крутим резистор R3.Прошу обратить внимание, что данное устройство не является точным измерительным прибором и используется лишь в роли показателя усреднённых значений.Точные измерения осуществляются приборами промышленного производства.

И в концовке небольшой видеоролик работы устройства.Ногами не пинать, на бензине СО действительно караул, но всё таки видно, как система коррекции топлива пытается это как-то исправить.

Простой тестер для проверки лямбда зонда (датчика кислорода) в автомобиле. + контроль нагревателя лямбда зонда. — DRIVE2

Простой тестер для проверки лямбда зонда (датчика кислорода) в автомобиле.+ контроль нагревателя лямбда зонда.

Все современные автомобили оборудованы датчиками кислорода (лямбда зонды). Они явлться очень важной составлщей системы впрыска топлива на инжекторных двигателях. При выходе из строя лямбда зонда, увеличиваеться расход топлива причем в разы! у меня мотор 1,6 кушал 20 литров на 100км пробега. Для проверки лямбды не достаточно иметь простой мультиметр, так как сигнал с датчика на переходных режимах меняеться практически мгновенно, и тестер просто не успевает его измерить. Поетому было принято решение, сделать простой недорогой тестер, специально для проверки датчиков кислорода. В качестве индикации служит линейка из 10 светодиодов которая позволяет оперативно контролировать выходной сигнал с датчика и определить его исправность.

Внимание! датчики кислорода бывают одно, двух, трех и четырех проводные! Однопроводные очень старые модели с ними все понятно маса и сигнальный провод. В двух проводных датчиках черный провод сигнал, а серый маса. Трех проводные имеют 2 белых провода подогрев, черный сигнал, маса береться с колектора. Четырех проводной датчик также как 3х проводной 2 белых подогрев, черный сигнал, серый маса.Схема тестера для проверки лямбда зонда довольно проста, ее сердце микросхема LM3914. на входе стоит делитель который настроен на входное напряжение 0-1V, каждый светодиод 0,1V. Чего как раз достаточно практически для всех типов зондов, обычно диапазон лямбда зондов 0-0,9V.

Наша задача качественное производство!

Индикатор или контроллер Лямбда-Зонда + вольтметр — Opel Calibra, 2.0 л., 1991 года на DRIVE2

Итак, в последнее время часто загорается чек, машина едет плохо… скорее всего забился топливный фильтр, сегодня поменял его, но намного лучше не стало. Завтра почищу форсунки.

Чек загорается по 13 ошибке — это лямбда, либо слишком большое напряжение либо маленькое.решил прикупить вольтметр с погрешностью 0,003 В, чтоб он онлайн показывал сигнал лямбда -зонда, и тогда будет ясно где переливает а где бедная смесь. По показаниям лямбда на 1 Вольт, 0.1 -0.4 -бедная смесь, 0.4-0.5 — отличная смесь, 0.5-0.9 -богатая смесь.

Сделал тумблер переключения с лямбды на напряжение на самом аккуме.

Прорези сделал дремелем, дальше всё видно по фото)

Цена вопроса: 100 грн

Изготовление обманки лямбда-зонда своими руками

Жёсткий экологический контроль заставляет автопроизводителей делать всё возможное, чтобы соответствовать стандартам Евро, контролирующим состав и структуру выхлопа. Подавляющее большинство современных моделей комплектуются лямбда-зондом (альтернативные названия – кислородный контроллер, датчик кислорода, датчик О2). Его назначение и заключается в контроле содержания выхлопа посредством анализа содержания в нём кислорода. Владельцам автомобилей, не оснащённых такой контролирующей выхлоп системой (как правило, устаревших или очень бюджетных), в этом плане повезло. Во всяком случае, часть проблем, связанных с неисправностями системы выхлопа, для них отпадает.

Между тем подобные неисправности случаются, и не так уж редко. Нарушение нормальной работы лямбда-зонда приводит к проблемам с обменом информацией между кислородным датчиком и ЭБУ, который воспринимает это как серьёзную неисправность, сигнализируя об этом загоранием индикатора «Check Engine». Обойти эту ситуацию без замены кислородного контроллера на исправный (стоимость которого достаточно велика) можно, используя так называемую обманку лямбда-зонда. Это позволит бортовому контроллеру перейти на работать из аварийного в штатный режим.

Что собой представляет обманка лямбда-зона

В целом, лямбда-зонд – действительно полезное устройство, позволяющее существенно уменьшить вредность выхлопа (в соответствии с жёсткими стандартами Евро-4/5), одновременно снизив расход горючего.

Конструктивно такое устройство представляет собой два кислородных датчика, между которыми устанавливается каталитический нейтрализатор. Последний отвечает за преобразование вредных компонентов выхлопных газов в безвредные, задача датчиков О2 – контролировать уровень кислорода в выхлопе и сообщать об этом бортовому компьютеру, который на основе полученных данных увеличивает или уменьшает подачу топлива в цилиндры.

Два датчика нужны для того, чтобы сравнивать результаты анализа, и если они не будут совпадать, ЭБУ воспримет это, как неисправность лямбда-зонда. Последствия возникновения такой ситуации не очень оптимистичны:

  • бортовой компьютер незамедлительно переводит функционирование силового агрегата в аварийный режим, предполагающий использование жёстких предустановок по топливным картам, показания датчиков О2 при этом полностью игнорируются;
  • индикатор «Check Engine» горит постоянно, что существенно ухудшает возможности диагностирования других систем автомобиля, то есть при возникновении других неисправностей вы их просто не заметите;
  • в камеры сгорания начинает подаваться обогащённая смесь, что увеличит расходование топлива на ощутимую величину;
  • из-за слишком обогащённой топливо воздушной смеси образование нагара на свечах возрастает, мощность мотора снижается, а моторное масло загрязняется ударными темпами.
Индикатор «Check Engine»

Недопущение возникновения такой ситуации – вот для чего нужна обманка лямбда-зонда.

Разумеется, существует стандартный способ решения проблемы – замена нейтрализатора на исправный. Именно он рекомендуется всеми без исключения автопроизводителями. Однако стоимость полного комплекта (катализатора вместе с двумя датчиками) весьма высока. Скажем, для некоторых моделей ВАЗ она может составлять 50-60 тысяч рублей, ситуация с иномарками ещё пессимистичнее. Плюс к этому нужно добавить стоимость работ, и может получиться неподъёмная для многих сумма. Именно поэтому значительная часть водителей при возникновении подобной проблемы решают прибегнуть к альтернативному варианту.

Рассмотрим, как работает обманка лямбда-зонда. Принцип работы эмулятора заключается в таком изменении показаний кислородных датчиков, которые бы воспринимались ЭБУ как нормальные. В этом случае силовой агрегат будет продолжать работать в штатном режиме, а всех вышеописанных последствий удастся избежать. Разумеется, нейтрализатор при этом работать не будет, то есть наверняка выхлоп вашего автомобиля уже не будет вписываться в экологические нормы Евро. Что ж, для многих это вполне приемлемая жертва. Ради того, что даёт обманка лямбда-зонда, на такой шаг решается если не большинство автовладельцев, то достаточно весомая их часть. Особенно если учесть, что стоимость такого способа решения проблемы на порядок меньше, а установка эмулятора кислородных датчиков достаточно проста и вполне может быть выполнена самостоятельно, без необходимости использования услуг мастеров на стороне.

Как самостоятельно сделать и установить лямбда-зонд

Причин возникновения неисправностей связки нейтрализатор – кислородные датчики немало. Сами производители рекомендуют каждые 25-30 тысяч километров производить чистку лямбда-зондов, поскольку со временем они засоряются и перестают адекватно измерять количество кислорода в выхлопе.

Не стоит забывать и о каталитическом нейтрализаторе, представляющем собой достаточно сложное техническое устройство. При этом поломка любой из указанных компонентов в большинстве случаев приводит к необходимости приобретения нового устройства, поскольку их ремонтопригодность весьма низкая (наверняка об этом позаботились сами производители).

Каталитический нейтрализатор

Отключение одного из датчиков проблему не решает, поскольку и в этом случае повышенного расхода горючего не избежать, при этом силовой агрегат не сможет радовать вас прежней стабильной работой. Особенно много неприятностей возникнет в режиме холостого хода.

Так что изучение информации, как поставить обманку на лямбда-зонд, является ответной реакцией владельцев авто на вероятность расстаться с приличной суммой денег, которая наверняка не будет лишней. В настоящее время существует три различных способа, позволяющих обмануть лямбда-зонд:

  1. монтаж металлической втулки (так называемый механический метод);
  2. использование специальной электронной схемы;
  3. перепрошивка ЭБУ.

Эти методы не имеют между собой ничего общего, поскольку используют совершенно разные механизмы обхода существующих ограничений. Их объединяет невысокая себестоимость и возможность самостоятельной реализации.

Рассмотрим достоинства и недостатки каждого из вышеперечисленных методов.

Механическая обманка

Принцип работы каталитического нейтрализатора достаточно прост. Он представляет собой привычный всем оконечный глушитель, внутренние керамические соты которого покрыты тонким слоем напыления из драгметаллов (платины, родия и палладия). Выхлопные газы, проходя через катализатор, контактируют с напылителем, вступая с ним в реакцию. При этом остатки несгоревших углеводородов окисляются, превращаясь в обычную воду, угарный газ – в менее вредный углекислый, оксид азота – в атомарный азот, составляющий большую часть земной атмосферы.

Но поскольку КН вынужден работать в условиях очень высоких температур, его ресурс ограничен. А если заправляться некачественным горючим, он выходит из строя ещё быстрее. Так что с эксплуатационной точки зрения катализатор вполне можно назвать расходным материалом. А вот с финансовой даже язык не повернётся применить подобный термин. Поэтому при выходе катализатора или кислородных датчиков из строя автовладельцы предпочитают устанавливать механический или электронный эмулятор лямбда-зонда и заменяя КН на пламегаситель.

Если просто убрать ДК или КН, бортовой компьютер немедленно отреагирует на такое вмешательство загоранием индикатора Check Engine и переводом мотора в аварийный режим работы.

Использование механической обманки – самый простой и доступный способ самостоятельно выполнить работу, позволяющую заставить ЭБУ работать в штатном режиме.

Механическая обманка лямбда-зонда

Такая обманка лямбда-зонда выглядит как втулка, которая с одной стороны имеет отверстие небольшого диаметра, а с другой стороны – резьбу для подсоединения штатного датчика. Принцип действия такого устройства заключается в том, что струя газа, попадая в маленькое отверстие, охватывает лямбда-зонд только частично, поэтому он не в состоянии определить точный состав выхлопа и передает в контроллер заниженные усреднённые значения.

Заводские втулки могут оснащаться напылением из керамической крошки, включающей слой каталитического покрытия. Другими словами, такой прибор является уменьшённой копией настоящего катализатора, способствуя также очистке выхлопа на соответствующем уровне. Отметим, что стоимость таких обманок по понятным причинам выше простых, без слоя катализатора.

Последние могут быть изготовлены самостоятельно, на обычном токарном станке. Впрочем, стоимость готового изделия относительно невелика – порядка 400 рублей при линейных размерах порядка 40-100 миллиметров. Варианты с каталитическим слоем стоят дороже – от 1 тысячи рублей, при этом размеры такой обманки лямбда-зонда ещё меньше (30-40 мм).

Алгоритм монтажа механической обманки несложен:

  • устанавливаем авто на подъёмник/яму/эстакаду;
  • снимаем минусовую клемму автоаккумулятора;
  • демонтируем котроллер;
  • устанавливаем на лямбда-зонд втулку-обманку;
  • монтируем модернизированное устройство на штатное место;
  • подключаем АКБ;
  • запускаем мотор.

После некоторой паузы лампочка «Check Engine» перестанет гореть, то есть мы добились своей цели и силовой агрегат продолжает функционировать в штатном режиме.

Несмотря на дешевизну и простоту монтажа, у этого метода имеются и недостатки. Во-первых, его установка возможна не на всех моделях – некоторые авто из-за конструктивных особенностей системы выпуска не имеют места для установки втулки, несмотря на её небольшую длину.

Во-вторых, обмануть ЭБУ удастся только на автомобилях оснащённых двигателями, соответствующими стандарту Евро-4. На более поздних версиях велик шанс того, что Check Engine не погаснет, а мотор будет работать в неблагоприятном аварийном режиме.

Электронная обманка

Хотя назначение обманки электронного типа то же – имитация нормальной работы катализатора, здесь используется совершенно иной принцип. Это электрическая схема, собранная из компонентов, которые изменяют нужным образом сигнал, отсылаемый на ЭБУ якобы от кислородных датчиков. Эта информация заставляет бортовой компьютер по-прежнему считать, что каталитический нейтрализатор присутствует на своем месте, то есть системы выпуска работает в штатном режиме.

Чаще всего в домашних условиях изготавливают 4-котнактные лямбда-зонды, оснащённые электрическим подогревом. Присутствие нагревательного элемента – условие необходимое, поскольку катализатор функционирует исключительно в высокотемпературном режиме (не менее 360°С). При запуске холодного двигателя, чтобы предотвратить срабатывание аварийного сигнала, требуется предварительный разогрев датчика О2.

Питанием электрического подогревателя управляет ЭБУ, при этом не имеет значения полярность подключения его контактов (чаще всего к термоэлементу ведут провода белого цвета)..

При использовании электронной обманки лямбда-зонда электрический нагреватель включается в схему без изменений. Модернизации подвергается только сигнальный контакт. Самая примитивная схема обманки лямбда-зонда состоит всего из двух компонентов:

  • конденсатора на 1 мкФ;
  • резистора номиналом порядка 1 мОм.

Конденсатор включают в схему на участке между сигнальным контактом и контактом, замкнутым на массу. Резистор встраивается в разрыв управляющего (сигнального) провода.

Отметим, что вышеприведённые номиналы являются ориентировочными. Их конкретное значение может различаться в ту или иную сторону, что определяется характеристиками двигателя и ЭБУ.

Опишем порядок изготовления и монтажа электронной обманки приведенного типа на примере Opel Zafira:

  • нам потребуется пара резистор/конденсатор с указанными выше номиналами;
  • ищем на автомобиле колодку, отвечающую за подключение кислородного датчика, отсоединяем штекер;
  • зачищаем концы проводов от изоляции;
  • разрываем цепь, разрезав в произвольном месте сигнальный провод;
  • встраиваем резистор (предварительным скручиванием с обязательной последующей пайкой);
  • таким же образом встраиваем в цепь конденсатор. Один конец идет на массу, второй припаиваем к проводу непосредственно перед резистором (желательно как можно ближе к штекеру);
  • все пропаянные соединения надёжно изолируем, подключаем штекер и проверяем работу обманки на работающем моторе (перед запуском двигателя необходимо выполнить сброс ошибок ЭБУ).
Электронная обманка лямбда-зонда

Отметим, что и электронный имитатор лямбда-зонда не всегда приводит к требуемому результату. В некоторых случаях поначалу бортовой компьютер работает нормально, но затем ошибка возникает снова. Проблема решается перепрошивкой ЭБУ. Основанная задача – найти правильную версию ПО, поскольку просто так её в сети не выкладывают.

Сфера использования электронной обманки – установка на автомобили, на которых катализатор по тем или иным причинам снят, а также на машины с установленным ГБО. В интернет можно найти и более совершенные и сложные схемы, имитирующие работу штатного датчика более правдоподобно. Впрочем, такие эмуляторы можно приобрести и в розничной сети. Заводские обманки электронного типа используют таймер, собранный на базе микросхемы NE555.

Причина установки эмулятора на автомобили, перешедшие на использование сжатого газа, заключается в том, что в этом случае состав топливовоздушной смеси (а вернее, её физико-химических характеристик) меняется существенным образом. Происходит увеличение содержимого токсичных веществ, что фиксируется штатным лямбда-зондом со всеми вытекающими подробностями.

Процедура установки электронного эмулятора в этом случае немного отличается, как и его состав.

Рассмотрим такую обманку на примере заводского устройства Zond-4. Оно оснащается светодиодной сигнализацией, которая информирует о текущем состоянии топливовоздушной смеси:

  • если горит лампочка зелёного цвета, это означает обеднённую смесь;
  • горение жёлтого светодиода указывает на то, что соотношение горючего и воздуха находится в пределах нормы;
  • об обогащённой смеси указывает лампочка красного цвета.

Эта информация нужна потому, что на ЭБУ отсылается модифицированный сигнал, не имеющий отношения к реальному.

Саму обманку обычно устанавливают в моторном отсеке, подключая к автомобильной электросхеме посредством 4-х проводов:

  • синий провод идёт на положительную клемму электрического клапана газобаллонного оборудования;
  • провод чёрного цвета заземляется на общую массу;
  • после разрезания сигнального провода КД жёлтый провод цепляем на отвод лямбда-зонда;
  • белый соединяем с тем концом разрезанного провода, который идёт к бортовому компьютеру.

Как и в предыдущем случае, все контакты надёжно пропаиваем и изолируем.

В норме при работе на бензине индикатор обманки гореть не должен, при переходе на газ должна гореть любая из трёх лампочек, информируя водителя о качестве ТВС.

Поскольку классическая схема КН предполагает использование двух кислородных датчиков, для обмана второго из них, расположенного на выходе катализатора, используется немного изменённая схема, в которой вместо резистора присутствует диод типа 1N4148.

Эмулятор устанавливается следующим образом (пример приведён для Mazda 323, оснащённой двухлитровым бензиновым силовым агрегатом):

  • разрываем цепь сигнального провода КЖ (чёрного цвета);
  • анодный контакт диода соединяем с концом разрезанного провода, идущим к кислородному датчику;
  • катодный контакт соединяем с другим концом, идущим к ЭБУ;
  • сюда же встраиваем вывод неполярного конденсатора номиналом 4.7 мкФ;
  • второй вывод конденсатора идёт на массу;
  • провода пропаиваем и изолируем.

Такая обманка позволяет нормализировать работу бортового компьютера, но при условии, что сам лямбда-зонд присутствует и исправен.

Чтобы удостовериться в работоспособности датчиков О2, необходимо иметь мультиметр. В этом случае процедура проверки проводится по следующему алгоритму:

  • мультиметр переводим в режим измерения постоянного напряжения, выставив верхний предел на отметке 20В;
  • красный контакт щупа измерительного прибора подключаем к разъему лямбда-зонда. Ведущему к ЭБУ;
  • черный контакт бросаем на массу;
  • непосредственно после запуска мотора убеждаемся, что показания прибора находятся в диапазоне 0.45-0.55В;
  • после прогрева силового агрегата показания мультиметра должны динамично изменяться от 0.1В до 0.9В, что свидетельствует об исправном состоянии датчика.

Отметим, что подобная проверка на самом деле свидетельствует лишь о том, что датчик работоспособен, но работает ли он так, как требуется, правдивы ли его показания, таким способом мы не узнаем.

Перепрошивка ЭБУ

Данный способ перехитрить первый лямбда-зонд можно назвать одновременно и самым простым, и одновременно требующим большой осторожности. Дело в том, что заливка в память устройства модифицированной управляющей программы действительно позволяет решить проблему кардинальным образом, когда сигналы, поступающие от второго кислородного датчика, просто игнорируются. В расчёт принимается только информация, поступающая от лямбда-зонда, установленного перед каталитическим нейтрализатором. Данные модифицируются таким образом, как будто состав выхлопа соответствует норме.

Однако любая ошибка (как с выбором версии прошивки, так и на этапе её заливки) чревата тем, что восстановить те настройки бортового компьютера, которые работали до начала ваших действий, будет уже невозможно.

Можно, конечно, попытаться найти оригинальную прошивку, но это очень сложная задача, и стоит такое ПО очень дорого. К тому же после его установки вы получите изначальные заводские настройки, работавшие сразу после приобретения машины, а не те, которые работали на момент перепрошивки.

Чтобы избежать таких неприятностей, такую работу следует доверить квалифицированному специалисту, имеющему достаточный опыт работы с ЭБУ вашей модели авто.

Последствия установки эмуляторов лямбда-зонда

Сразу скажем: желание сэкономить в большинстве случаев оборачивается множеством других неприятных последствий. Это утверждение справедливо и в отношении установки обманок лямбда-зонда, причём независимо от их типа.

Наверняка те, кто производил эту операцию, сталкивались с одной или комбинацией следующих последствий:

  • поскольку ЭБУ не получает реальных данных о составе топливовоздушной смеси, он не в состоянии эффективно контролировать впрыск, а это рано или поздно закончится ухудшением КПД силового агрегата и другими неприятными проблемами;
  • любая ошибка при сборке электрической схемы обманки или её подключении может обернуться в лучшем случае повреждением проводки, а в худшем – выходом из строя ЭБУ;
  • в процессе установки обманки механического типа вы можете случайно повредить лямбда-зонд, а сам эмулятор не позволит вам обнаружить эту неисправность;
  • независимо от типа имитатора лямбда-зонда, монтаж устройства может привести к сбоям в работе бортового компьютера.

Другими словами, допустив малейшую неточность, вы рискуете не только не избавиться от проблемы Check Engine, но и усугубить ситуацию, то есть привести к ещё большим финансовым расходам, чем если бы вы решали проблему легальным способом, производя замену неисправного элемента системы выхлопа на новый.

Различные схемы обмана лямбда-зонда

Удаление катализатора – тема, волнующая многих автовладельцев, часто вместо каталитических нейтрализаторов собственники автомобилей устанавливают пламегасители, стингеры («пауки»), такое решение позволяет избежать покупки дорогостоящих деталей, меньше тратить время на ремонт выпускной системы. Но на машинах с двумя кислородными датчиками физическое исключение каталитического элемента не дает нужных результатов, и чтобы избавиться от ошибок в системе управления двигателем, нередко применяется электронная обманка лямбда-зонда.

В этой статье мы рассмотрим, как можно обмануть блок управления, какие методы наиболее эффективны. Сразу следует отметить, что не все способы подходят для конкретной модели машины, к каждому автомобилю нужно подходить индивидуально.

Механическая обманка лямбда-зонда

Любой автомобильный катализатор представляет собой банку глушителя с расположенными в ней металлическими или керамическими сотами с напылением из драгоценного металла (золото, платина и т. д.). Благодаря реакции окисления выпускные газы, проходя через такое устройство, очищаются от вредных примесей, снижается уровень токсичности выхлопа.

Каталитический нейтрализатор (КН) работает в условиях высоких температур, поэтому его ресурс относительно небольшой. Срок службы детали дополнительно сокращается при использовании некачественного топлива – соты забиваются нагаром, образующимся в результате неполного сгорания топливной смеси. Покупка нового КН обходится достаточно дорого, а так как менять его приходится довольно часто, многие собственники авто стараются избавиться от этого элемента выпускной системы, установив пламегаситель или стингер.

Простое удаление КН имеет побочное явление: на автомобилях с моторами Евро-4 и выше датчик кислорода, установленный за катализатором, фиксирует превышение нормы токсичности выхлопа, в результате на панели приборов загорается лампа Check Engine. Есть три способа избавиться от ошибки:

  • установить дополнительную механическую проставку;
  • внести изменения в электрическую схему кислородного датчика;
  • перепрограммировать блок управления двигателем.

Механическая обманка представляет собой металлическую втулку определенной длины, с отверстием небольшого диаметра внутри. Также во внутренней части этого приспособления находится керамическая крошка с каталитическим покрытием. По сути, втулка представляет собой мини-катализатор, но здесь происходит очистка только тех отработанных газов, которые попадают на кислородный датчик. Следует отметить, что существует и простые обманки, выполненные в виде обыкновенной втулки с отверстием, внутри которой нет никаких элементов. Изготовить элементарную проставку может любой токарь, в этом случае не обязательно покупать фабричное изделие. Преимущества подобных устройств:

  • недорогая цена (в среднем от 400 до 1000 рублей);
  • легкость в монтаже;
  • надежная и простая конструкция.

Однако, у механической обманки есть и свои недостатки – на некоторых моделях авто установить приспособление не удается (не хватает места в силу конструктивных особенностей), приспособление не всегда дает нужный эффект (ошибка полностью не исчезает). Еще нужно заметить, что на машинах с двигателями Euro-5 электронную систему с помощью дополнительной проставки обмануть не получается, Check Engine здесь все равно продолжает загораться.

Электронная «обманная» схема своими руками

Электронная обманка кислородного датчика представляет собой схему, включенную в электрическую цепь ЭСУД. За счет установки дополнительных компонентов корректируется сигнал, подаваемый на блок управления, и ЭБУ получает такие данные от датчика, как будто бы на машине установлен катализатор, и нет никаких изменений в выпускной системе.

Обычно своими руками модернизации подвергаются четырехконтактные лямбда-зонды с электронагревателем, нагревательный элемент необходим для разогрева кислородного датчика на холодном двигателе – все дело в том, что катализатор включается в работу только после нагрева выхлопной системы не ниже температуры 360 градусов Цельсия. Подогрев кислородного датчика запитывается от ЭБУ (блок управления), при этом полярность подключения проводов не имеет значения (обычно к нагревателю подводятся провода белого цвета).

В электронной обманке электронагреватель модернизации не подвергается, все изменения касаются лишь сигнального контакта. В простейшей схеме присутствуют два основных компонента – высокоомный резистор и конденсатор емкостью примерно 1 Микрофарад, и выглядит она обычно так:

  • резистор включается в разрыв сигнального провода;
  • конденсатор устанавливается между массовым разъемом и сигналом.

Емкость конденсатора и сопротивление резистора могут быть разными, их номинал в большой степени зависит от модели автомобиля и типа устанавливаемого двигателя.

Как сделать электронную обманку на автомобиле Opel Zafira

Обманная схема на машине Опель Зафира составляется по такому же принципу, который описан выше, для установки обманки потребуется неполярный конденсатор 1 Мкф и сопротивление номиналом 1 мОм 0,5 Вт. Работу по монтажу нехитрого устройства производим в следующем порядке:

  • находим колодку подключения лямбда-зонда, разъединяем штекер, частично освобождаем провода от наружной изоляции;
  • разрезаем сигнальный провод;
  • к концам проводков путем скручивания подсоединяем резистор, затем паяльником пропаиваем места соединений;
  • оголяем изоляцию массового провода, также путем скручивания закрепляем отводы конденсатора – один конец связываем с массой, второй – с проводом спереди резистора (ближе к разъемному штекеру);
  • после пропайки изолируем проводку, соединяем штекер, проверяем автомобиль в работе.

Перед началом испытаний необходимо сбросить все ошибки ЭБУ. Следует отметить, что установка обманки не всегда дает положительные результаты, в некоторых случаях ошибка может появляться вновь. Самый надежный способ – перепрограммирование блока управления, но здесь важно найти нужную версию прошивки.

Эмулятор кислородного датчика

Имитатор лямбда-зонда эффективно используется на автомобилях с удаленным катализатором или на машинах с установленным газобаллонным оборудованием, устройство подключается к электрической схеме управления двигателем, достаточно достоверно эмулирует работу настоящего лямбда-зонда. Готовые фабричные эмуляторы можно встретить в розничной продаже, основой схемы-имитатора является электронный таймер, в роли которого чаще всего используется популярная микросхема NE555.

В основном эмуляторы промышленного производства устанавливаются после перевода машины на газ – после установки газобаллонного оборудования (ГБО) состав топливной смеси меняется, поэтому лямбда-зонд фиксирует повышенное содержание токсичных веществ в выхлопных газах, появляется ошибка. Рассмотрим, как установить имитатор кислородного датчика модели Zond-4 на автомобиль с ГБО.

Зонд-4 оснащен светодиодным трехцветным индикатором, сигнализирующим о состоянии топливной смеси (бедной или богатой). Свечение индикатора означает:

  • зеленый цвет – бедная смесь;
  • желтое свечение – соотношение топливо/ воздух в норме;
  • красная индикация – смесь переобогащенная.

Крепится эмулятор в подкапотном пространстве, подключается к электрической схеме автомобиля с помощью четырех проводов. Задействовать Zond-4 очень просто, провода подсоединяем так:

  • синий – с плюсом электроклапана ГБО;
  • черный – с массой автомобиля;
  • затем разрезаем сигнальный провод лямбда-зонда,
  • желтый проводок соединяем с отводом самого кислородного датчика;
  • белый – с другим концом разрезанного провода (он идет к блоку управления двигателем);
  • изолируем всю оголенную проводку.

После подключения следует проверить работу Зонд-4: на бензине индикатор загораться не должен, при работе на газу – светиться зеленым, желтым или красным цветом.

Схема обмана лямбда-зонда с диодом

Обмануть второй кислородный датчик на автомобиле можно и по-другому, только в этой схеме вместо резистора нужно установить диод, например, марки 1N4148. Обманка здесь делается следующим образом (на примере авто Мазда 323 с бензиновым ДВС 2.0 L):

  • разрезаем сигнальный проводок (на Mazda он черного цвета);
  • анод диода подключаем к лямбда-зонду;
  • другой вывод сигнала, идущий к блоку управления, соединяем с катодом;
  • также к катоду подсоединяем один из выводов неполярного конденсатора емкостью 4,7 Мкф;
  • второй конденсаторный отвод подключаем к массовому проводу (на Мазде он серого цвета), разумеется, все провода пропаиваем.

Такая схема позволяет достаточно эффективно избавиться от ошибок в цепи кислородного датчика, но нужно иметь в виду, что сам лямбда-зонд должен быть исправным.

Быстрая проверка работоспособности датчика кислорода

Многими автовладельцами неоднократно подтверждено, что электронная обманка нормально работает лишь в том случае, если лямбда-зонды на машине исправны. Быстро проверить работоспособность датчиков достаточно просто, для диагностики понадобится лишь мультиметр. Выполняем проверку в следующем порядке:

  • переводим переключатель мультиметра в положение измерения постоянного напряжения с верхним пределом 20 Вольт;
  • подключаем щупы прибора: с красным проводом – к сигнальному разъему кислородного датчика, с черным проводом – на массу;
  • запускаем двигатель, на холодном моторе вольтметр должен показывать напряжение примерно 0,45-0,5 V;
  • на прогретом моторе напряжение должно постоянно меняться от 0,1 до 0,9 Вольта, и все эти данные говорят о том, что датчик в целом рабочий.

Но стоит заметить, что такая проверка не дает представление о стопроцентной исправности датчика, она лишь подтверждает, что лямбда-зонд находится в рабочем состоянии.


Смотрите также