Из чего состоит генератор переменного тока


принцип работы, устройство, назначение генератора

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Генератор переменного тока. Устройство и принцип действия

Видео: Принцип работы генератора переменного тока. Как работает генератор простыми словами? Что такое переменный ток?

Генератор переменного тока — это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока путем вращения проволочной катушки в магнитном поле. Большинство генераторов переменного тока используют вращающееся магнитное поле.

В последнее время широкое распространение получили генераторы переменного тока, выгодно отличающиеся от генераторов постоянного тока своими габаритными размерами и способностью вырабатывать ток заряда при меньшей частоте вращения коленчатого вала двигателя. Они имеют повышенную надежность.

Генераторы переменного тока используют на гусеничных и колесных машинах (например, на КамАЗ-4310 и КЗКТ-7428). По своей конструкции генераторы переменного тока отличаются от коллекторных генераторов постоянного тока. У них почти вдвое меньше масса и втрое — расход меди. Благодаря более раннему началу отдачи зарядного тока (с момента приведения во вращение вала двигателя на режиме холостого хода) такие генераторы имеют существенно лучшие зарядные свойства по сравнению с генераторами постоянного тока.

Генератор переменного тока представляет собой трехфазную синхронную электромашину с электромагнитным возбуждением и выпрямителем. Генератор работает совместно с регулятором напряжения, обеспечивающим поддержание в электросети машины (с определенным допуском) требуемого постоянного напряжения.

Рис. Схема генератора переменного тока:
1 — ротор; 2 — статор; 3, 9 — шарикоподшипники; 4 — шкив привода; 5 — вентилятор; 6, 10 — крышки; 7 — выпрямитель; 8 — контактные кольца; 11 — щеткодержатель; 12 — обмотка возбуждения; 13 — винты крепления фазовых обмоток статора к выпрямителю; 14 — винт «массы»

Принцип действия генератора переменного тока

Конструкции электрических генераторов переменного тока различны, но принцип их действия одинаков. Рассмотрим один из таких генераторов.

Статор 2 генератора с трехфазной обмоткой выполнен в виде отдельных катушек, в витках которых при вращении ротора 1 индуцируется переменное напряжение. В каждой фазе имеется по шесть катушек, соединенных последовательно. Обмотка возбуждения 12 выполнена в виде катушки и помещена на стальной втулке клювообразных полюсов ротора, обмотки которого питаются постоянным током от аккумуляторной батареи или выпрямителя 7, устанавливаемого на выходе генератора. В крышке 10 имеются вентиляционные окна, через которые циркулирует охлаждающий поток воздуха. Моноблок-радиатор способствует охлаждению выпрямителя, собранного из кремниевых вентилей (диодов) с допустимой температурой нагрева 150 °С.

Интересным компоновочным решением конструкции генератора переменного тока является генераторная установка магистральных автопоездов МАЗ. Она состоит из генератора и интегрального регулятора напряжения (ИРН). Номинальное вырабатываемое напряжение установки 28 В, номинальная мощность 800 Вт. Регулятор вмонтирован в основание щеткодержателя генератора. В крышку генератора также вмонтирован выпрямительный блок БПВ 4-45. Регулятор состоит из резисторов, конденсаторов, стабилитронов, транзисторов и других элементов. Он снабжен переключателем сезонной регулировки («летняя» и «зимняя»). Элементы ИРН смонтированы на малогабаритной керамической плате, закрытой специальной крышкой и залитой герметиком, что делает конструкцию неразборной и неремонтируемой.

Устройство генератора переменного тока - принцип работы и общее назначение

Конструктивно, электрогенератор состоит из:

  1. Токопроводящей рамки.
  2. Магнитов.

Работает он следующим образом:

  1. Токопроводящая рамка помещается в магнитное поле, созданное между полюсами магнитов. Ее концы снабжают контактными кольцами, которые также способны вращаться.
  2. С помощью упругих токопроводящих пластинок (щеток), кольца соединяют с электрической лампочкой.
  3. Рамка, вращаясь в магнитном поле, постоянно пересекает своими сторонами магнитные силовые линии.
  4. Пересечение рамкой магнитных силовых линий вызывает возникновение ЭДС и получение индукционного тока.
  5. Под действием полученного индукционного тока, лампочка начинает светиться. Свечение лампочки продолжается до тех пор, пока вращается рамка.

Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).

Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.

В современной энергетике используются индукционные генераторы переменного тока различного типа. При этом, принцип их действия одинаков и базируется на принципе электромагнитной индукции.

В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.

Устройство и принцип работы

Устройство

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Область применения

Повседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Классификация

В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.

Так, генераторы переменного тока различают по:

  1. Виду.
  2. Конструкции.
  3. Способу возбуждения.
  4. Количеству фаз.
  5. Соединению фазных обмоток.

Электрогенераторы переменного тока бывают:

  1. Асинхронными. Изделия, в которых на вращающемся валу имеются пазы, предназначенные для размещения обмоток. Они генерируют электрический ток с небольшими искажениями, величина которого не превышает номинального значения. Изделия этого типа используются для электропитания бытовой техники.
  2. Синхронными. Изделия, в которых катушки индуктивности размещены непосредственно на роторе. Они способны выдавать ток, который обладает высокой пусковой мощностью.

Генератор с неподвижным ротором

Конструктивно различают генераторы:

  1. С неподвижным ротором.
  2. С неподвижным статором

Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.

По способу возбуждения электрогенераторы бывают:

  1. С независимым возбуждением (питающее напряжение подается на обмотку возбуждения от отдельного источника постоянного тока).
  2. С самовозбуждением (обмотки возбуждения питаются выпрямленным (постоянным) током, получаемым от самого генератора).
  3. С обмотками возбуждения, питание которых осуществляется от стороннего генератора постоянного тока малой мощности, “сидящего” на одном валу с ним.
  4. С возбуждением от постоянного магнита.

По количеству фаз различают электрогенераторы:

  1. Однофазные.
  2. Двухфазные.
  3. Трехфазные.

Наибольшее распространение получили трехфазные генераторы.

Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:

  1. Вращающегося кругового магнитного поля, что способствует экономичности их изготовления.
  2. Уравновешенной системы, что существенно повышает срок службы энергоустановок.
  3. Одновременно двух рабочих напряжений (фазного и линейного) в одной системе.
  4. Высоких экономических показателей – значительно уменьшается материалоемкость силовых кабелей и трансформаторов, а также упрощается процесс передачи электроэнергии на большие расстояния.

Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.

Бывает, что фазные обмотки соединяются:

  1. “Звездой”.
  2. “Треугольником”.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.

Практическое применение

Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Устройство Генератора Переменного Тока и Принцип Действия

Мощный тяговый генератор переменного тока – строение

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Теоретическая часть

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

Строение простейшего электромагнитного генератора

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Устройство и принцип работы генератора переменного тока — урок. Физика, 9 класс.

Проведём опыт по получению индукционного тока. Будем вдвигать и выдвигать постоянный магнит в катушку, соединённую с гальванометром.

 

 

Рисунок \(1\). Опыт по получению индукционного тока

 

Можно наблюдать отклонение гальванометра в одну и другую стороны. Это значит, что по катушке течёт индукционный ток, у которого изменяется как модуль, так и направление с течением времени. Такой ток называется переменным током.


Переменный ток создаётся и в замкнутом контуре изменяющимся магнитным потоком, пронизывающим его площадь. Изменение магнитного потока связано с изменением индукции магнитного поля. Величину магнитного потока можно изменить, поворачивая контур (или магнит), то есть меняя его ориентацию по отношению к линиям магнитной индукции.

 

 

Рисунок \(2\). Изменение магнитного потока при вращении постоянного магнита


Этот принцип получения переменного электрического тока используется в механических индукционных генераторах — устройствах, преобразующих механическую энергию в электрическую. Основные части: статор (неподвижная часть) и ротор (подвижная часть).

 

 

Рисунок \(3\). Схема генератора

\(1\) — корпус;

\(2\) — статор;

\(3\) — ротор;

\(4\) — скользящие контакты (щётки, кольца).


В промышленном генераторе статором является цилиндр с прорезанными внутри него пазами, в которые уложен витками провод из меди с большой площадью поперечного сечения (аналогично рамке). Переменный магнитный поток в таких витках порождает переменный индукционный электрический ток.


Ротор — это постоянный магнит или электромагнит. Электромагнит представляет собой обмотку с железным сердечником внутри, по которому течёт постоянный электрический ток. Он подводится от внешнего источника тока через щётки и кольца.

 

Какая-либо механическая сила (паровая или водяная турбина) вращает ротор. Вращающееся одновременно с ним магнитное поле образует изменяющийся магнитный поток в статоре, в котором возникает переменный электрический ток.

 

 

Рисунок \(4\). Устройство гидрогенератора

\(1\) — статор;

\(2\) — ротор;

\(3\) — водяная турбина.

Принцип работы и схема генератора переменного тока

Представить себе жизнь современного человека без электричества крайне сложно. Даже те люди, которые отдалены от цифровых технологий и Интернета, все равно пользуются бытовыми приборами, которые работают на электрической энергии. Часто для ее производства используют генератор переменного тока, ведь именно ток такого поля используется всеми бытовыми установками, подается во все квартиры и частные дома. Упомянутый выше прибор был изобретен уже достаточно давно, но он до сих пор не утратил своей популярности и применяется во многих сферах жизни людей. Про устройство генератора и принцип его работы рассказано в данной статье.

Что такое генератор переменного тока, и кто его изобрел

Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.

Демонстрация рассматриваемого прибора в разрезе

К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.

Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки. Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.

Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.

Демонстрация прибора с помощью простого магнита и контура

Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.

Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе.

Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.

Использование графика для демонстрации переменного и постоянного электротоков

Характеристики генератора переменного тока

Основные технические характеристики генератора переменного тока: внешняя, скоростная регулировочная и токоскоростная. Внешняя характеристика определяется, как зависимость напряженности прибора от генерируемого им тока. Она является константой и может быть определена в процессе самостоятельного и независимого возбуждения.

Скоростная регулировочная характеристика чаще всего высчитывается исходя из нескольких величин электротока нагрузки. Самое маленькое значение возбуждения находится при нагрузочном токе, равном нулю (частота вращений при этом максимальная).

Последняя токоскоростная характеристика определяется как одна из самых важных при выборе или создании генератора. Практически все новые генераторы могут самостоятельно ограничивать свой максимальный ток.

Обратите внимание! Делается это для того, чтобы частота вращения роторов не увеличивалось до частоты индуцированного стартера.

Простой индукционный генератор для использования дома и на предприятии

Принцип работы генератора

Пришло время рассмотреть устройство генератора перемененного тока и принцип его действия. Он заключается в том, что в электроустановке используют специальную систему, которая при функционировании производит магнитный поток большой мощности.

За основу взято два сердечника, изготовленных из электротехнической стали. Пазы одного сердечника предполагают размещение обмотки, которая отвечает за генерацию потока магнитных волн. Второй же используется для индукции электродвижущей силы.

Обычно сердечник, который расположен внутри, находится в горизонтальном или вертикальном положении и вращается по соответствующим орбитам. Его называют ротором. Второй же сердечник, называемый статором, как понятно из его названия, остается в неподвижном состоянии. Чем меньшее расстояние будет между этими элементами, тем больше вырастет индуктивность магнитного потока. Далее рассмотрены назначение устройства и работа генератора переменного тока.

Рассмотрение строения электрогенератора на практике

Назначение генератора переменного тока

Переменные генераторы тока применяют уже достаточно давно. За последние годы сфера применения стала еще более обширной. Используются такие приборы не только в промышленных, но и в бытовых целях. Производственные электроустановки представляют собой самый выгодный вариант для генерации электроэнергии, используемой на заводах и предприятиях, учебных учреждениях, торговых центрах и т. д. Также такие генераторы позволяют значительно ускорить строительство того или иного сооружения в тех местах, где нет возможности провести линию электропередачи.

В быту такие устройства также применяются. Они обладают более компактными размерными характеристиками и универсальностью. Часто их используют для питания частных домов, дачных участков или коттеджей.

Обратите внимание! Бытовые и производственные генераторы перемененного тока пользуются популярностью практически во всех сфера жизни человека. Особенно они полезны там, где постоянно возникают перебои с подачей электроэнергии или ее нет вообще.

Возбуждение генератора переменного тока

Как устроен генератор переменного тока

Устройство генератора крайне простое. Он состоит из двух основных частей: подвижной (ротор или индуктор) и неподвижной (статор или якорь). В ГПТ ротором выступает электрический магнит, создающий магнитное поле, которое и принимает статор. Поверхность якоря обладает впадинами, которые называются пазами. В них виднеется обмотка катушки, выступающей в роли проводника.

Обратите внимание! Обычно якорь изготавливают их спрессованных листов стали толщиной не более 0,3 мм. Их изоляционный слой представляет собой простое лаковое покрытие.

Ротор устанавливают внутри статора. Его вращение осуществляется с помощью двигателя, мощность которого передается через обычный вал и некоторые опорные элементы. На валу также имеется возбудитель с постоянным значением электротока, питающий им обмотки катушки. Также среди компонентов имеется аккумуляторная батарея, которая инициализирует запуск стартера и может подавать электричество, если его не хватает для запуска двигателя, его работы.

Важно! Основное различие между однофазным и трехфазным генераторами электрического тока заключается в том, какое максимальное напряжение выдается прибором. В первом случае это 220 В, а во втором — и 220, и 380 В.

Устройство установки

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.

Маломощный генератор

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов.

Асинхронный генератор

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.

Синхронный генератор

Какой ток вырабатывает генератор

Характеристика тока, который вырабатывается генератором, зависит от его конструкции. Как уже стало понятно, и переменный генератор, и постоянный генератор содержат в своей конструкции электрический или постоянный магнит, создающий поток магнитного поля. В обоих случаях можно найти обмотку из медного проводника. Она вращается и, занимая различные положения в поле магнита, создает наведенную ЭДС.

Если представить, что обмотка разделена на две одинаковые части, то они поочередно будут занимать то горизонтальное, то вертикальное положение. ЭДС будет сначала максимальной, а затем нулевой. Это и будет генерация переменного тока.

Обратите внимание! Если в процессе полуоборота каким-либо образом переключить потребитель энергии, то он будет получать уже постоянный, но пульсирующий ток. В этом и отличие.

Характеристика переменного и постоянного электрических токов

Схема генератора переменного тока

Принципы работы генератора переменного и постоянного токов уже понятны, как и его основные конструкционные элементы. Необходимо рассмотреть пару схем для обобщения материала и понимания процесса генерации электротока.

Схема обычного устройства генерации электротока

Таким образом, были рассмотрены генератор переменного тока, устройство и принцип его действия.

Принципиальная схема электрического генерирующего устройства

Строение этого аппарата практически не поменялось с момента его создания еще в 1800-х гг. Данное электрооборудование служит для выработки тока, который применяется для бытовых или производственных целей.

Что такое генератор? | HowStuffWorks

Автомобильная зарядная система состоит из трех основных компонентов: аккумулятор , регулятор напряжения и генератор переменного тока . Генератор работает от аккумулятора для выработки энергии для электрических компонентов транспортного средства, таких как внутреннее и внешнее освещение, а также приборная панель. Генератор получил свое название от термина переменного тока (AC) .

Генераторы переменного тока обычно находятся рядом с передней частью двигателя и приводятся в действие коленчатым валом, который преобразует движение поршней вверх и вниз в круговое движение.(Чтобы узнать больше об основных частях автомобильных двигателей, прочтите Как работают автомобильные двигатели.) В некоторых ранних моделях автомобилей использовался отдельный приводной ремень от шкива коленчатого вала до шкива генератора, но большинство автомобилей сегодня имеют змеевик или один ремень, который приводит в движение все компоненты, которые зависят от мощности коленчатого вала. Большинство генераторов устанавливаются с помощью кронштейнов, которые крепятся болтами к определенной точке на двигателе. Один из кронштейнов обычно является фиксированной точкой, а другой регулируется для натяжения приводного ремня.

Объявление

Генераторы переменного тока

вырабатывают переменный ток за счет электромагнетизма , формируемого посредством взаимодействия статора и ротора, о котором мы поговорим позже в этой статье. Электричество направляется в батарею, обеспечивая напряжение для работы различных электрических систем. Прежде чем мы узнаем больше о механике генератора переменного тока и о том, как он генерирует электричество, давайте рассмотрим различные части генератора переменного тока в следующем разделе.

.

Что такое автомобильный генератор переменного тока и как он работает?

ПРЕДУПРЕЖДАЮЩАЯ ЛАМПА

Это возвращает нас обратно к исходной точке - контрольной лампе генератора. Как видно из рисунка 5, схемы реального генератора переменного тока, существует путь к земле от входа источника тока возбуждения [1] до регулятора. В результате, когда ключ включен, ток течет через контрольную лампу, через резисторы, транзисторы и катушку возбуждения, а затем на землю, в результате чего лампа загорается.Как только генератор перейдет на полную мощность, напряжение от трио диодов, также приложенное к [1], будет равно напряжению батареи. В это время по 12 вольт с обеих сторон лампа погасла.

Если генератор выйдет из строя, напряжение на тройке диодов упадет, и лампа снова загорится от напряжения батареи. Если мощность генератора немного низкая, лампа будет тускло гореть. Если генератор выйдет из строя полностью и выходное напряжение упадет до нуля, лампа будет гореть с полной яркостью.И наоборот, если батарея выйдет из строя, и напряжение батареи упадет, с выходным напряжением генератора переменного тока с одной стороны и низким напряжением батареи с другой, лампа также загорится.

Как указывалось ранее, если свет становится тусклее при увеличении частоты вращения двигателя, это связано с тем, что напряжение генератора переменного тока растет вместе с числом оборотов в минуту, создавая большее напряжение на стороне генератора переменного тока лампы. Чем ближе выходное напряжение к напряжению аккумулятора, тем ярче становится лампа. Точно так же, если свет становится ярче с увеличением числа оборотов, это связано с тем, что по мере увеличения напряжения генератора оно становится выше, чем напряжение аккумулятора.Чем выше напряжение по отношению к напряжению батареи, тем больше разница напряжений на лампе и тем ярче она становится.

СУММИРОВАНИЕ

Таким образом, мы можем сказать, что ток возбуждения через катушки ротора создает магнитное поле, которое передается на катушки статора, создавая переменное напряжение. Это переменное напряжение преобразуется выходными диодами в пульсирующее постоянное напряжение, которое заряжает аккумулятор.

Ток возбуждения подается либо от аккумулятора, через контрольную лампу, либо от трио диодов.Величина тока возбуждения, которая может проходить через регулятор к ротору или катушке возбуждения, контролируется обратной связью по напряжению от батареи.

Вот и все - вкратце - полная работа генератора переменного тока. В следующий раз, когда вы увидите маленький красный огонек, вы точно будете знать, что он пытается вам сказать.

.Генератор

- wikiwand

Для более быстрой навигации этот iframe предварительно загружает страницу Wikiwand для генератора переменного тока .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под CC BY-SA 4.0 лицензия; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Simple English Wikipedia, бесплатная энциклопедия

Генератор переменного тока начала 20 века, сделанный в Будапеште

Генератор переменного тока - это генератор, преобразующий механическую энергию в электрическую в виде переменного тока. По одному в каждой машине.

В большинстве генераторов используется вращающееся магнитное поле со стационарным якорем. Якорь реагирует на вращающееся поле и переносит ток, вызванный вращением.

В принципе, любой электрический генератор переменного тока можно назвать генератором переменного тока, но обычно этот термин относится к небольшим вращающимся машинам, приводимым в действие автомобильными и другими двигателями внутреннего сгорания.

Генератор, в котором в качестве магнитного поля используется постоянный магнит, называется магнето. Генераторы на электростанциях, приводимые в действие паровыми турбинами, называются турбогенераторами.

Системы генерации переменного тока были известны с момента открытия магнитной индукции электрического тока. Первые машины были разработаны такими пионерами, как Майкл Фарадей и Ипполит Пикси.

.

В чем разница между генератором и генератором?

Генератор и генератор переменного тока являются устройствами, которые используются для выработки электроэнергии.

Генераторы можно назвать типами генераторов. Даже если эти устройства используются для одной и той же функции, они отличаются с точки зрения работы.

Генераторы переменного тока - это системы зарядки в транспортных средствах, которые используются для производства электроэнергии.

Генераторы используются для производства большой мощности.

И генераторы, и генераторы переменного тока преобразуют механическую энергию в электрическую за счет магнитной поляризации.Оба могут работать как электродвигатели, если они получают электроэнергию, а не механическую.

Генератор и генератор

Генератор

Генератор считается уникальным типом генератора, который может использоваться для преобразования механической энергии в электрическую, которая генерируется как переменный ток. Устройство в основном используется в автомобильной промышленности для преобразования механической энергии в электрическую, которая может заряжать автомобильный аккумулятор.

Механическая энергия используется для вращения магнита - поворот магнитного поля приводит к изменению магнитного потока, который производит ток.Генераторы переменного тока напрямую распределяют произведенное в настоящее время без преобразования его в постоянный ток.

Генераторы переменного тока - это устройства, которые очень эффективны в производстве энергии, поскольку они вырабатывают электричество только тогда, когда это необходимо. Было бы правильно сказать, что это современная версия генератора, которая работает, чтобы минимизировать количество используемой энергии и минимизировать количество потраченной энергии. После установки генератора поляризация не требуется.

Единственная мера предосторожности, необходимая при использовании генераторов, заключается в том, что они не подходят для зарядки полностью разряженных аккумуляторов.Попытка сделать это может вызвать пожар, а также нанести ущерб окружающей среде.

Слишком низкое или слишком высокое напряжение также может повредить аккумулятор и другие электрические компоненты автомобиля.

В результате у генераторов есть регуляторы напряжения, которые определяют, сколько и когда требуется энергии в батарее.


Генератор

Генератор - это электрическое устройство, используемое для преобразования механической энергии в электрическую - оно может вырабатывать переменный ток (AC) или постоянный ток (DC).Принцип работы генератора - вот что отличает его от генератора переменного тока.

Ротор, состоящий из спиральных проводов, помещен в магнитное поле. Вращение спиральных проводов генерирует электричество. Магнит остается неподвижным и создает магнитное поле, а механическая энергия двигателя используется для вращения якоря.

Поскольку генераторы вырабатывают напряжение повсюду и потребляют всю вырабатываемую энергию, они в основном используются для крупномасштабного производства электроэнергии.

Генераторы после установки приобретают естественную поляризацию.

Их можно использовать даже для зарядки полностью разряженных батарей. Постоянный ток, производимый генератором, генерируется, когда ротор подключен к коммутатору. Коммутатор является критическим элементом в производстве постоянного тока в генераторе - он состоит из набора отдельных колец, которые присоединяют генератор к внешней цепи таким образом, что производимый ток часто является постоянным.

Ссылки: [1], [2]

.

Что такое система возбуждения? Определение и типы системы возбуждения

Определение: Система, которая используется для подачи необходимого тока возбуждения в обмотку ротора синхронной машины, такой тип системы называется системой возбуждения. Другими словами, система возбуждения определяется как система, которая используется для создания магнитного потока путем пропускания тока в обмотке возбуждения. Основное требование к системе возбуждения - надежность при любых условиях эксплуатации, простота управления, легкость обслуживания, стабильность и быстрая реакция на переходные процессы.

Требуемая величина возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Чем больше возбуждения требуется в системе, когда ток нагрузки велик, скорость меньше и коэффициент мощности системы становится отстающим.

Система возбуждения представляет собой единый блок, в котором каждый генератор переменного тока имеет свой возбудитель в виде генератора. Централизованная система возбуждения имеет два или более возбудителя, питающих шину. Централизованная система стоит очень дешево, но неисправность системы отрицательно сказывается на генераторах переменного тока на электростанции.

Типы систем возбуждения

Системы возбуждения в основном подразделяются на три типа. Их

  1. Система возбуждения постоянного тока
  2. Система возбуждения переменного тока
    • Система возбуждения ротора
    • Бесщеточная система возбуждения
  3. Система статического возбуждения

Их типы подробно описаны ниже.

1. Система возбуждения постоянного тока

Система возбуждения постоянного тока имеет два возбудителя - основной возбудитель и пилотный возбудитель.Выход возбудителя регулируется автоматическим регулятором напряжения (АРН) для управления выходным напряжением на клеммах генератора. Вход трансформатора тока в АРН обеспечивает ограничение тока генератора переменного тока во время повреждения.

Когда прерыватель возбуждения разомкнут, резистор разряда возбуждения подключается к обмотке возбуждения, чтобы рассеивать накопленную энергию в обмотке возбуждения, которая имеет высокую индуктивность.

Главный и пилотный возбудители могут приводиться в движение главным валом или отдельно от двигателя.Возбудители с прямым приводом обычно предпочтительны, поскольку они сохраняют единицу работы системы и возбуждение не возбуждается внешними помехами.

Номинальное напряжение главного возбудителя составляет около 400 В, а его мощность составляет около 0,5% от мощности генератора переменного тока. Неполадки в возбудителях турбогенератора довольно часты из-за их высокой скорости, и поэтому отдельные возбудители с приводом от двигателя используются в качестве резервного возбудителя.

2. Система возбуждения переменного тока

Система возбуждения переменного тока состоит из генератора переменного тока и тиристорного выпрямительного моста, напрямую подключенных к главному валу генератора.Главный возбудитель может быть самовозбужденным или отдельно возбужденным. Систему возбуждения переменного тока можно в общих чертах разделить на две категории, которые подробно описаны ниже.

а. Вращающаяся тиристорная система возбуждения

Система возбуждения ротора показана на рисунке ниже. Вращающаяся часть обведена пунктирной линией. Эта система состоит из возбудителя переменного тока, стационарного поля и вращающегося якоря. Выход возбудителя выпрямляется двухполупериодной схемой тиристорного мостового выпрямителя и подается на обмотку возбуждения главного генератора.

Обмотка возбуждения генератора также запитана через другую схему выпрямителя. Напряжение возбудителя можно повысить, используя его остаточный поток. Блок управления источником питания и выпрямителем генерирует управляемый пусковой сигнал. Сигнал напряжения генератора усредняется и сравнивается напрямую с настройкой напряжения оператором в автоматическом режиме работы. В ручном режиме работы ток возбуждения генератора сравнивается с отдельной ручной регулировкой напряжения.

г. Бесщеточная система возбуждения

Эта система показана на рисунке ниже. Вращающаяся часть обведена прямоугольником из пунктирной линии. Бесщеточная система возбуждения состоит из генератора, выпрямителя, главного возбудителя и генератора переменного тока с постоянными магнитами. Главный и пилотный возбудители приводятся в движение главным валом. Главный возбудитель имеет стационарное поле и вращающийся якорь, напрямую подключенные через кремниевые выпрямители к полю главных генераторов переменного тока.

Пилотный возбудитель - это приводимый от вала генератор с постоянными магнитами, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный неподвижный якорь, который питает поле основного возбудителя через кремниевые выпрямители в поле главного генератора переменного тока. Пилотный возбудитель представляет собой генератор постоянных магнитов с приводом от вала, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный стационарный якорь, который питает главный возбудитель через трехфазные двухполупериодные тиристорные мосты с фазовым управлением.

Система исключает использование коммутатора, коллектора и щеток, имеет короткую постоянную времени и время отклика менее 0,1 секунды. Короткая постоянная времени имеет преимущество в улучшенных динамических характеристиках слабого сигнала и облегчает применение дополнительных сигналов стабилизации энергосистемы.

3. Система статического возбуждения

В этой системе питание берется от самого генератора через трехфазный понижающий трансформатор, подключенный по схеме звезда / треугольник.Первичная обмотка трансформатора подключена к шине генератора, а их вторичная обмотка подает питание на выпрямитель, а также подает питание на схему управления сетью и другое электрическое оборудование.

Эта система имеет очень малое время отклика и обеспечивает отличные динамические характеристики. Эта система снизила эксплуатационные расходы за счет устранения потерь на сопротивление воздуха в возбудителе и необходимости технического обслуживания обмоток.

.

Смотрите также