Какая кинематическая вязкость масла лучше


Кинематическая вязкость масла при 100 какая лучше. Какой должна быть вязкость масла для нормальной работы мотора? Какую выбрать вязкость масла

Довольно часто, особенно среди начинающих автовладельцев, вязкость моторного масла становится определяющим параметром при выборе данного расходного материала. Решение, как правило, принимается на основе мнения товарищей: «Я лью 10W-40 (5W-40)», и т.п.

На самом деле, чтобы правильно выбрать, какое масло заливать, важно знать не только необходимый класс вязкости, но и другие его характеристики, которых не так много, но все их желательно знать, если к выбору вы решили подойти самостоятельно.

Что такое вязкость моторных масел

Основная задача моторного масла – смазывание сопряженных деталей, обеспечение максимальной герметичности цилиндров двигателя и удаление продуктов износа.

Очевидно, что невозможно создать смазку, способную сохранять весь заданный набор эксплуатационных свойств в неопределенно широком диапазоне температур, который у двигателя автомобиля очень широк. В мороз оно будет становиться более густым, при высоких же температурах наоборот, текучесть его резко увеличивается.

Не следует считать, что температура прогретого мотора стабильна. Датчик температуры, показания с которого выведены на приборную панель, отображает лишь температуру охлаждающей жидкости, которая, в самом деле, остается практически неизменной (около 90 градусов), благодаря правильной работе системы охлаждения двигателя. Температура смазки при этом значительно меняется в зависимости от места, скорости и интенсивности циркуляции и может достигать 140 – 150 градусов.

Учитывая это, автопроизводители вычисляют оптимальные характеристики моторных масел, которые должны обеспечить максимально возможный КПД силового агрегата при его минимальном износе, в нормальных для данного двигателя условиях эксплуатации.

Поскольку с изменением температуры вязкость меняется, ассоциацией автомобильных инженеров США (SAE) разработана и принята классификация по вязкости.

Кинематическая и динамическая вязкость

Следует различать такие понятия, как кинематическая и динамическая вязкость. Кинематическая характеризует текучесть моторного масла в условиях нормальных и высоких температурах. По общепринятому стандарту ее измеряют при 40 и 100 градусах по Цельсию.

Измеряется кинематическая вязкость в сантистоксах (cST или сСт), либо в капилляр-визкозиметрах – в этом случае кинематическая вязкость отражает время вытекания определенного количества масла из сосуда с калиброванным отверстием на дне (капиллярный вискозиметр) под действием силы тяжести.


В зависимости от плотности смазочного материала кинематическая и динамическая вязкость численно отличаются друг от друга. Если речь идет о парафиновых маслах, то кинематическая больше на 16 — 22%, а у нафтеновых масел эта разница куда как меньше – от 9 до 15% в пользу кинематической.

Динамическая или абсолютная вязкость µ – это сила, которая действует на единичную площадь плоской поверхности, перемещающейся с единичной скоростью относительно другой плоской поверхности, находящейся на единичном расстоянии от первой.

В отличие от кинематической, динамическая не зависит от плотности самой смазки. Определяется динамическая вязкость при помощи ротационных вискозиметров, которые имитируют реальные условия работы моторных масел.

Как выбрать класс вязкости по SAE

Классификация SAE является международным стандартом, определяющим значение вязкости моторных масел. Не следует забывать, что класс SAE не расшифровывает качественные характеристики масла, данный индекс не говорит о возможности его применения для конкретной модели автомобиля.

Вязкость по стандарту SAE имеет цифровое или цифро-буквенное обозначение, из которого можно определить сезонность смазочного материала и температуру окружаю

что означают цифры, таблица вязкости по температуре, кинематическая вязкость

Выбор моторного масла – серьезная задача для каждого автолюбителя. И главный параметр, по которому должен осуществляться подбор — это вязкость масла. Вязкость масла характеризует степень густоты моторной жидкости и ее способность сохранять свои свойства при температурных перепадах.

Попробуем разобраться, в каких единицах должна измеряться вязкость, какие функции она выполняет и почему она играет огромную роль в работе всей двигательной системы.

Для чего используется масло?

Работа двигателя внутреннего сгорания предполагает непрерывное взаимодействие его конструктивных элементов. Представим на секунду, что мотор работает «на сухую». Что с ним произойдет? Во-первых, сила трения повысит температуру внутри устройства. Во-вторых, произойдет деформация и износ деталей. И, наконец, все это приведет к полной остановке ДВС и невозможности его дальнейшего использования.  Правильно подобранное моторное масло выполняет следующие функции:

Работа моторного масла

  • защищает мотор от перегрева,
  • предотвращает быстрый износ механизмов,
  • препятствует образованию коррозии,
  • выводит нагар, сажу и продукты сгорания топлива за пределы двигательной системы,
  • способствует увеличению ресурса силового агрегата.

Таким образом, нормальное функционирование моторного отдела без смазывающей жидкости невозможно.

Важно! Заливать в мотор транспортного средства нужно только то масло, вязкость которого соответствует требованиям автопроизводителей. В этом случае коэффициент полезного действия будет максимальным, а износ рабочих узлов – минимальным. Доверять мнениям продавцов-консультантов, друзей и специалистов автосервисов, если они расходятся с инструкцией к автомобилю, не стоит. Ведь только производитель может знать наверняка, чем стоит заправлять мотор.

Индекс вязкости масла

Понятие вязкости масел подразумевает способность жидкости к тягучести. Определяется она с помощью индекса вязкости. Индекс вязкости масла – это величина, показывающая степень тягучести масляной жидкости при температурных изменениях. Смазки, имеющих высокую степень вязкости, обладают следующими свойствами:

Вязкость масла

  • при холодном запуске двигателя защитная пленка имеет сильную текучесть, что обеспечивает быстрое и равномерное распределение смазки по всей рабочей поверхности;
  • нагрев двигателя вызывает увеличение вязкости пленки. Такое свойство позволяет удерживать защитную пленку на поверхностях движущихся деталей.

Т.е. масла с высоким значением индекса вязкости легко адаптируются под температурные перегрузки, в то время как низкий индекс вязкости моторного масла свидетельствует о меньших способностях. Такие вещества имеют более жидкое состояние и образуют на деталях тонкую защитную пленку. В условиях отрицательных температур моторная жидкость с низким индексом вязкости затруднит пуск силового агрегата, а при высокотемпературных режимах не сможет предотвратить большую силу трения.

Расчет индекса вязкости осуществляется по ГОСТу 25371-82. Рассчитать его можно с помощью онлайн-сервисов сети Интернет.

Кинематическая и динамическая вязкости

Степень тягучести моторного материала определяется двумя показателями — кинематической и динамической вязкостями.

Моторное масло

Кинематическая вязкость масла — показатель, отображающий его текучесть при нормальных (+40 градусов Цельсия) и высоких (+100 градусов Цельсия) температурах. Методика измерения данной величины основывается на использовании капиллярного вискозиметра. При помощи прибора измеряется время, требуемое для истечения масляной жидкостипри заданных температурах. Измеряется кинематическая вязкость в мм2/с.

Динамическая вязкость масла также вычисляется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающий во время движения двух слоев масла, удаленных друг от друга на расстоянии 1 сантиметра и движущихся со скоростью 1 см/с. Единицы измерения данной величины — Паскаль-секунды.

Определение вязкости масла должно проходить в разных температурных условиях, т.к. жидкость не стабильна и изменяет свои свойства при низких и высоких температурах.

Таблица вязкости моторных масел по температуре представлена ниже.

Таблица вязкости моторных масел по температуре

Расшифровка обозначения моторного масла

Как отмечалось ранее, вязкость — это основной параметр защитной жидкости, характеризующий ее способность обеспечивать работоспособность автомобиля в различных климатических условиях.

Согласно международной системе классификации SAE, моторные смазки могут быть трех видов: зимние, летние и всесезонные.

Схема изучения этикетки автомасла

Масло, предназначенное для зимнего использования, маркируется цифрой и буквой W, например, 5W, 10W, 15W. Первый символ маркировки указывает на диапазон отрицательных рабочих температур. Буква W — от английского слова «Winter» — зима — информирует покупателя о возможности использования смазки в суровых низкотемпературных условиях. Она имеет большую текучесть, чем летний аналог, для того, чтобы обеспечить легкий запуск при низких температурах. Жидкая пленка мгновенно обволакивает холодные элементы и облегчает их прокрутку.

Предел отрицательных температур, при которых масло сохраняет работоспособность следующий: для 0W — (-40) градусов Цельсия, для 5W — (-35) градусов, для 10W — (-25) градусов, для 15W — (-35) градусов.

Летняя жидкость имеет высокую вязкость, позволяющую пленке крепче «держаться» на рабочих элементах. В условиях слишком высоких температур такое масло равномерно растекается по рабочей поверхности деталей и защищает их от сильного износа. Обозначается такое масло цифрами, например, 20,30,40 и т.д. Данная цифра характеризует высокотемпературный предел, в котором жидкость сохраняет свои свойства.

Важно! Что означают цифры? Цифры летнего параметра ни в коем случае не означают максимальную температуру, при которой возможна работа автомобиля. Они  — условные, и к градусной шкале отношения не имеют.

Масло с вязкостью 30 нормально функционирует при температуре окружающей среды до +30 градусов по Цельсию, 40 — до +45 градусов, 50 — до +50 градусов.

Распознать универсальное масло просто: его маркировка включает две цифры и букву W между ними, например, 5w30. Его использование подразумевает любые климатические условиях, будь то суровая зима или жаркое лето. В обоих случаях, масло будет подстраиваться под изменения и сохранять работоспособность всей двигательной системы.

Кстати, климатический диапазон универсального масла определяется просто. Например, для 5W30 он варьируются в пределах от минус 35 до +30 градусов Цельсия.

Всесезонные масла удобны в использовании, поэтому на прилавках автомагазинов они встречаются чаще летних и зимних вариантов.

Для того чтобы иметь более полное представление о том, какая вязкость моторного масла уместна в вашем регионе, ниже представлена таблица, показывающая диапазон рабочих температур для каждого типа смазывающей жидкости.

Усредненные диапазоны работоспособности масел

Стандарт API

Разобравшись, что означают цифры в вязкости масла перейдем к следующему стандарту. Классификация моторного масла по вязкости затрагивает также стандарт API. В зависимости от типа двигателя, обозначение API начинается с буквы S или C. S подразумевает бензиновые моторы, С — дизельные. Вторая буква классификации указывает на класс качества моторного масла. И чем дальше эта буква находится от начала алфавита, тем лучше качество защитной жидкости.

Для бензиновых двигательных систем существую следующие обозначения:

Стандарт API

  • SC –год выпуска до 1964 г.
  • SD –год выпуска с 1964 по 1968 гг.
  • SE –год выпуска с 1969 по 1972 гг.
  • SF –год выпуска с 1973 по 1988 гг.
  • SG –год выпуска с 1989 по 1994 гг.
  • SH –год выпуска с 1995 по 1996 гг.
  • SJ –год выпуска с 1997 по 2000 гг.
  • SL –год выпуска с 2001 по 2003 г.
  • SM –год выпуска после 2004 г.
  • SN –авто, оборудованные современной системой нейтрализации выхлопных газов.

Для дизельных:

  • CB –год выпуска до 1961 г.
  • CC –год выпускадо 1983 г.
  • CD –год выпускадо 1990 г.
  • CE –год выпускадо 1990 г., (турбированный мотор).
  • CF –год выпускас 1990 г., (турбированный мотор).
  • CG-4 –год выпускас 1994 г., (турбированный мотор).
  • CH-4 –год выпускас 1998 г.
  • CI-4 – современные авто (турбированный мотор).
  • CI-4 plus – значительно выше класс.

Что одному двигателю хорошо, то другому грозит ремонтом

Моторное масло

Многие автовладельцы уверены, что выбирать стоит более вязкие масла, ведь они — залог долговечной работы двигателя. Это серьезное заблуждение. Да, специалисты заливают под капоты гоночных болидов масло с большой степенью тягучести для достижения максимального ресурса силового агрегата. Но обычные легковые машины оборудованы другой системой, которая попросту захлебнется при чрезмерной густоте защитной пленки.

О том, какую вязкость масла допустимо использовать в двигателе той или иной машины, описано в любом руководстве по эксплуатации.

Ведь до запуска массовых продаж моделей, автопроизводители проводили большое количество тестов, учитывая возможные режимы езды и эксплуатацию технического средства в различных климатических условиях. Благодаря анализу поведения мотора и его способности поддерживать стабильную работу в тех или иных условиях, инженеры устанавливали допустимые параметры моторной смазки. Отклонение от них может спровоцировать снижение мощности двигательной системы, ее перегрев, увеличение расхода топлива и многое другое.

Моторное масло в двигателе

Почему класс вязкости так важен в работе механизмов? Представьте на минуту мотор изнутри: между цилиндрами и поршнем есть зазор, величина которого должна допускать возможное расширение деталей от высокотемпературных перепадов. Но для максимального коэффициента полезного действия этот зазор должен иметь минимальное значение, предотвращая попадание в двигательную систему выхлопных газов, образующихся во время горения топливной смеси. Для того, чтобы корпус поршня не нагревался от соприкосновения с цилиндрами, и используется моторная смазка.

Уровень вязкости масла должен обеспечивать работоспособность каждого элемента двигательной системы. Производители силовых агрегатов должны добиться оптимального соотношения минимального зазора между трущимися деталями и масляной пленой, предотвращая преждевременный износ элементов и повышая рабочий ресурс двигателя. Согласитесь, доверять официальным представителям автомобильной марки безопаснее, зная, каким путем эти знания были получены, чем верить «опытным» автомобилистам, полагающимся на интуицию.

Что происходит в момент запуска двигателя?

Если ваш «железный друг» простоял всю ночь на морозе, то наутро показатель вязкости залитого в него масла будет в несколько раз выше расчетной рабочей величины. Соответственно, толщина защитной пленки будет превышать зазоры между элементами. В момент запуска холодного мотора происходит падение его мощности и повышение температуры внутри него. Таким образом, возникает прогрев мотора.

Важно! Во время прогрева нельзя давать ему повышенную нагрузку. Слишком густой смазочный состав затруднит движение основных механизмов и приведет к сокращению срока эксплуатации автомобиля.

Вязкость моторного масла в рабочих температурах

После того, как двигатель прогрелся, активируется система охлаждения. Один цикл работы двигателя выглядит следующим образом:

  1. Нажим на педаль газа повышает обороты мотора и увеличивает нагрузку на него, в результате чего увеличивается сила трения деталей (т.к. слишком вяжущая жидкость еще не успела попасть в междетальные зазоры),
  2. температура масла повышается,
  3. степень его вязкости снижается (увеличивается текучесть),
  4. толщина масляного слоя уменьшается (просачивается в междетальные зазоры),
  5. сила трения снижается,
  6. температура масляной пленки снижается (частично с помощью охлаждающей системы).

По такому принципу работает любая двигательная система.

Вязкость моторных масел при температуре — 20 градусов

Зависимость вязкости масла от рабочей температуры очевидна. Так же, как очевидно то, что высокий уровень защиты мотора не должен снижаться в течение всего периода эксплуатации. Малейшее отклонение от нормы может привести к исчезновению моторной пленки, что в свою очередь негативно отразится на «беззащитной» детали.

Каждый двигатель внутреннего сгорания, хоть и имеет схожую конструкцию, но обладает уникальным набором потребительских свойств: мощностью, экономичностью, экологичностью и величиной крутящего момента. Объясняются эти различия разницей моторных зазоров и рабочих температур.

Для того, чтобы максимально точно подобрать масло для транспортного средства, были разработаны международные классификации моторных жидкостей.

Предусмотренная стандартом SAE классификация информирует автовладельцев об усредненном диапазоне рабочих температур. Более четкие представления о возможности использования смазочной жидкости в определенных автомобилях дают классификации API, ACEA и т.д.

Последствия заливки масла повышенной вязкости

Бывают случаи, когда автовладельцы, не знают, как определить требуемую вязкость моторного масла для своего автомобиля, и заливают то, которое советуют продавцы. Что случится, если тягучесть окажется выше требуемой?

Сравнение вязкости моторных масел

Если в хорошо прогретом двигателе «плещется» масло с завышенной тягучестью, то для мотора опасности не возникает (при нормальных оборотах). В этом случае, просто повысится температура внутри агрегата, что приведет к снижению вязкости смазки. Т.е. ситуация придет в норму. Но! Регулярное повторение данной схемы заметно снизит моторесурс.

Если резко «дать газу», вызвав увеличение оборотов, степень вязкости жидкости не будет соответствовать температуре. Это приведет к превышению максимально допустимой температуры в моторном отсеке. Перегрев вызовет повышение силы трения и снижение износостойкости деталей. Кстати, само масло также потеряет свои свойства за достаточно короткий промежуток времени.

О том, что вязкость масла не подошла транспортному средству, моментально узнать вы не сможете.

Первые «симптомы» появятся лишь через 100-150 тысяч км пробега. И главным показателем станет увеличение зазоров между деталями. Однако, определенно связать завышенную вязкость и быстрое снижение ресурса мотора не смогут даже опытные специалисты. Именно по этой причине официальные автомастерские зачастую пренебрегают требованиями производителей транспортных средств. К тому же им выгодно производить ремонт силовых агрегатов автомобилей, у которых уже закончился срок гарантийного обслуживания. Вот почему выбор степени вязкости масла — сложная задача для каждого автолюбителя.

Слишком низкая вязкость: опасна ли она?

Моторное масло

Погубить бензиновые и дизельные двигатели может низкая степень вязкости. Этот факт объясняется тем, что при повышенных рабочих температурах и нагрузках на мотор текучесть обволакивающей пленки повышается, в результате чего не без того жидкая защита попросту «обнажает» детали. Результат: повышение силы трения, увеличение расхода ГСМ, деформация механизмов. Долгая эксплуатация автомобиля с залитой низковязкостной жидкостью невозможна — его заклинит практически сразу.

Некоторые современные модели моторов предполагают использование так называемых «энергосберегающих» масел, имеющих пониженную вязкость. Но использовать их можно только если имеются специальные допуски автопроизводителей: ACEA A1, B1 и ACEA A5, B5.

Стабилизаторы густоты масла

Из-за постоянных температурных перегрузок вязкость масла постепенно начинает уменьшается. И помочь восстановить ее могут специальные стабилизаторы. Их допустимо использовать в двигателях любого типа, износ которых достиг среднего или высокого уровня.

Стабилизаторы позволяют:

Стабилизаторы

  • увеличивать вязкость защитной пленки,
  • снижать количество нагара и отложений на цилиндрах мотора,
  • сокращать выброс вредных веществ в атмосферу,
  • восстанавливать защитный масляный слой,
  • достигать «бесшумности» в работе двигателя,
  • предотвращать процессы окисления внутри корпуса мотора.

Использование стабилизаторов позволяет не только увеличить срок между «масляными» заменами, но и восстановить утраченные полезные свойства защитного слоя.

Разновидности специальных смазок, применяемых на производствах

Смазка веретенного машинного вида обладает низковязкостными свойствами. Использование такой защиты рационально на моторах, имеющих слабую нагрузку и работающих на больших скоростях. Чаще всего, применяется такая смазка в текстильном производстве.

Турбинная смазка. Ее главная особенность заключается защите всех работающих механизмов от окисления и преждевременного износа. Оптимальная вязкость турбинного масла позволяет использовать его в турбокомпрессорных приводах, газовых, паровых и гидравлических турбинах.

Гидравлический насос

ВМГЗ или всесезонное гидравлическое загущенное масло. Такая жидкость идеально подходит для техники, используемой в районах Сибири, Крайнего Севера и Дальнего Востока. Предназначено такое масло двигателям внутреннего сгорания, оборудованным гидравлическими приводами. ВМГЗ не подразделяется на летние и зимние масла, потому что его применение подразумевает только низкотемпературный климат.

В качестве сырья для гидромасла выступают маловязкие компоненты, содержащие минеральную основу. Для того, чтобы масло достигло нужной консистенции, в него добавляют специальные присадки.

Вязкость гидравлического масла представлена в таблице ниже.

Таблица вязкости гидравлических масел

ОйлРайт — еще одна смазка, применяемая для консервации и обработки механизмов. Она имеет водостойкую графитовую основу и сохраняет свои свойства в диапазоне температур от минус 20 градусов Цельсия до плюс 70 градусов Цельсия.

Выводы

Однозначного ответа на вопрос: «какая вязкость моторного масла самая хорошая?» нет и не может быть. Все дело в том, что нужная степень тягучести для каждого механизма — будь то ткацкий станок или мотор гоночного болида — своя, и определить ее «наобум» нельзя. Требуемые параметры смазывающих жидкостей вычисляются производителями опытным путем, поэтому при выборе жидкости для своего транспортного средства в первую очередь руководствуетесь указаниями разработчика. А уже после этого вы можете обратиться к таблице вязкости моторных масел по температуре.

Моторное масло — какое выбрать? — журнал За рулем

Производитель рекомендует масло 0W-20, но на сервисе заливают более густое, с индексом 5W-40. Может ли это негативно сказаться на здоровье мотора?

Вязкостно-температурная характеристика моторного масла заметно влияет почти на все основные показатели двигателя. Мощность, момент, экономичность, ресурс — всё это рассчитывается разработчиками мотора под определенную вязкость масла. Ее классифицируют по системе SAE (англ. society of automotive engineers — сообщество автомобильных инженеров). Эта классификация оговаривает максимальную низкотемпературную вязкость, а также диапазон вязкости при 100 ºС. Но чтобы понять, какое масло выбрать, нужно для начала вспомнить, что скрывают «масляные» обозначения.

Обозначения и скрытый смысл

Работоспособность простейшего шарикового вискозиметра проще всего оценивать на маслах одного бренда, различающихся первой цифрой обозначения. В нашем случае это масла 0W‑40, 5W‑40 и 10W‑40.

Работоспособность простейшего шарикового вискозиметра проще всего оценивать на маслах одного бренда, различающихся первой цифрой обозначения. В нашем случае это масла 0W‑40, 5W‑40 и 10W‑40.

Они весьма условны. Первая цифра говорит о минимальной температуре, на которую рассчитано масло. Если, например, впереди стоит ноль, то проворачивание коленвала гарантируется при температуре до —35 ºС, а прокачиваемость масла — аж до —40 ºС. Точнее говоря, производитель масла ручается, что при указанных температурах вязкость продукта не превысит определенных классификацией SAE значений.

Материалы по теме

Число после дефиса отвечает за высокие температуры: оно говорит о допустимом диапазоне изменения вязкости масла при 100 ºС. К примеру, для «двадцатки» производитель обещает вилку от 5,6 до 9,3 сСт, а для «сороковки» — от 12,6 до 16,3 сСт. Кроме того, это же число характеризует минимальную вязкость при 150 ºС.

Какая вязкость лучше?

На морозе всё понятно: с чересчур вязким маслом стартер не провернет мотор, а насос не сможет прокачать масло. И чем меньше первое число в обозначении, тем меньше износ двигателя при пуске. На работу прогретого мотора этот параметр не влияет.

При высоких температурах картина сложнее. Казалось бы, чем больше вязкость, тем лучше. Но это не так. Если зальете в мотор обычной легковушки «шестидесятку», вовсе для него не предназначенную, то, скорее всего, не только потеряете мощность, а еще и угробите двигатель. Но почему? Ведь вязкое масло должно лучше защищать детали от износа. Чем выше вязкость, тем толще слой масла в подшипниках и под поршневыми кольцами и, соответственно, ниже интенсивность износа.

Материалы по теме

Однако есть и другая сторона медали, связанная с низкой теплопроводностью масла. Ведь чем толще масляный слой, тем хуже тепло отводится от поршня, который при этом начинает перегреваться и расширяться. Растет и трение — так и до заклинивания ­недалеко.

Заметим, что второе число «работает» не только при трехзначных температурах, но и во время прогрева двигателя. Чем выше вязкость, тем больше потерь на трение. А вязкость зависит от температуры. Мы проводили исследования на эту тему (ЗР, № 3, 2008). И обнаружили, что при комнатной температуре разница по вязкости между «тридцаткой» и «пятидесяткой» почти двойная. А потому и расход топлива на более вязком масле во время прогрева будет выше.

Теперь главный вопрос: какое масло нужно именно моему мотору? К сожалению, современные исследования показали, что при выборе подходящего масла для определенного двигателя одного лишь соответствия SAE недостаточно. Нужна более точная «настройка», зависящая как от конструкции мотора, так и от условий его эксплуатации и степени износа.

Нынешней зимой можно было обойтись и без морозильника: за окном те же градусы, что и в камере.

Нынешней зимой можно было обойтись и без морозильника: за окном те же градусы, что и в камере.


Наглядная разница. Первым снижается шарик в масле 0W‑40, последним — в 10W‑40. При комнатной температуре время «падения» шариков составляло соответственно 6, 7 и 12 секунд. При минус двадцати показатели резко подпрыгнули — стало 60, 80 и 160 секунд.

Наглядная разница. Первым снижается шарик в масле 0W‑40, последним — в 10W‑40. При комнатной температуре время «падения» шариков составляло соответственно 6, 7 и 12 секунд. При минус двадцати показатели резко подпрыгнули — стало 60, 80 и 160 секунд.


Что будет, если…

Материалы по теме

А зачем нужны все эти рассуждения, если правильный ответ давно известен? Заливайте исключительно то масло, которое вам рекомендует производитель автомобиля! Но ведь он старается, как правило, угодить максимальному количеству потребителей — вне зависимости от условий эксплуатации машины и ее возраста. К группе качества надо относиться с почтением: сказано SN — значит, ничего из группы SM лить нельзя. А вот с вязкостью в рамках дозволенного можно и поиграть. К примеру, для эксплуатации при низких температурах второе число в обозначении может быть чуть меньше рекомендованного инструкцией — скажем, 30 вместо 40. Это поможет несколько снизить расход топлива, потому что зимой масло прогревается дольше, чем летом, а аппетит при вязком масле будет, естественно, выше.

То же относится к машинам, которые живут в основном в городских условиях. Если мотор чаще работает на умеренных оборотах, то второе число в обозначении масла может быть чуть ниже по сравнению с рекомендованным для автомобиля, который чаще ездит по скоростным магистралям. Причина все в той же взаимосвязи толщины масляной пленки, температуры и трения. Сотрудники профильных лабораторий утверждают, что для каждого мотора и режима его работы существует оптимальная вязкость, снижающая механические потери.

Немножко самодеятельности

Впрочем, один вопрос остается. Насколько отличаются друг от друга рабочие характеристики масел с одинаковой вязкостью, но от разных производителей? Это вопрос, на который без лабораторных исследований ответить невозможно. Но многие автолюбители, особенно в холодных регионах, проводят собственные замеры, сооружая самодельные приборы для сравнительного определения вязкости. Самой наглядной конструкцией нам представляется шариковый вискозиметр. Время падения стального шарика в стеклянной трубке (ди­аметр шарика лишь чуть-чуть меньше ди­аметра трубки), заполненной маслом, косвенно говорит о вязкости продукта. Кстати, подобный принцип использован в профессиональных приборах, например в вискозиметре Гепплера. Мы смастерили такой же. Измерить точно, сколько в масле пуазов или сантистоксов, с его помощью не удастся, зато он позволяет наглядно сопоставить вязкость нескольких масел ­в идентичных условиях.

Материалы по теме

В какой из трубок стальной шарик быстрее достигнет дна, там вязкость жидкости ниже. И если к вам попадет канистра с маслом от неизвестного производителя, то организовать простейшие испытания будет совсем несложно. Скажем, в одну пробирку заливаем испытанное масло, в другую — новичка, затем помещаем всё это в морозильник (или даже в сугроб), а после выдержки переворачиваем пробирки и следим за плавным опусканием шариков. Где шарик опускается медленнее, там вязкость выше.

Нам игрушка понравилась сразу. Если при комнатной температуре шарики гуляют по трубке довольно шустро, то при минус тридцати (ниже мы не забирались) их подви­жность падает настолько, что сразу хочется пересесть на общественный транспорт: жалко мотор… В любом случае всем любителям поэкспериментировать с неизвестными маслами мы советуем соорудить себе нечто подобное, прежде чем заливать неведомую жидкость в мотор. Наглядность эксперимента гарантирована.

А вот на автомобиле экспериментировать не стоит. В любом случае настоятельно советуем прислушиваться к рекомендациям именно производителя мотора, а не масленщиков. В каких случаях и в каких пределах позволительно несколько отклоняться от них, мы рассказали выше.

НАША СПРАВКА

Различают динамическую вязкость и кинематическую вязкость. Динамическую измеряют в паскаль-секундах (Па·с), а также в пуазах (1 П = 0,1 Па·с). Она характеризует сопротивление, которое оказывает масло при попытке сдвигать один его слой относительно другого. Фактически это величина, обратная текучести. На практике чаще пользуются кинематической вязкостью, измеряемой в м²/с, стоксах (1 Ст = 10–4 м²/с) или сантистоксах (1 сСт = 10–6 м²/с. Кинематическая вязкость — это отношение ­динамической вязкости к плотности масла.

Как выбрать моторное масло? Советы экспертов

Производитель рекомендует масло 0W-20, но на сервисе заливают более густое, с индексом 5W-40. Может ли это негативно сказаться на здоровье мотора?

Как выбрать моторное масло? Советы экспертов

Вязкость автомобильного масла SAE - что такое, таблица характеристик

В этой статье поговорим подробно о вязкости масла по SAE – как расшифровывается, какие характеристики должны иметь масла с разным классом SAE, где используются маловязкие масла и почему нельзя самостоятельно устанавливать вязкость масла, а основывать свой выбор на рекомендациях для двигателя.

Содержание статьи:

Что такое вязкость масла по SAE

Обозначение SAE принято расшифровывать, как применимость масла к температуре за бортом, которая присуща конкретному региону. Это утверждение верно, но лишь отчасти, и применимо только к низкотемпературному индексу SAE.

Что означают эти цифры в масле. К примеру, вязкость 5W-40 обозначает всесезонное масло, о чем говорит его сдвоенный индекс и буква W. Большинство представленных на рынке масел относятся именно к всесезонным видам, времена масел с одинарным индексом давно канули в Лету,за исключением масел для различных механизмов, бензопил, культиваторов и т.п.

5W здесь указывает на низкотемпературные качества масла: при какой температуре оно не утратит свою текучесть, обеспечит безопасную прокрутку коленвала и пуск мотора в мороз, и полностью замерзнет, сделав прокачку по каналам невозможной. Отчасти можно ориентироваться на этот индекс, выбирая масло для зимы, но все же нужно смотреть на показатели конкретной выбранной марки, так как они могут сильно варьировать.

Индекс 40 в нашем примере показывает высокотемпературные свойства масла. Большинство водителей принимают его, как температуру воздуха вне двигателя, при которой масло можно использовать летом, но это не верно. Масло в моторе прогревается до 100 градусов, и температура воздуха не влияет на его качества. Этот индекс указывает на высокотемпературную вязкость масла при температуре 100 градусов. Это не менее важный показатель, чем зимний индекс, так как указывает на толщину масляной пленки и способность масла прокачиваться по каналам разной толщины. Каждый двигатель имеет свои особенности, и вязкость масла важно подбирать именно из рекомендованных производителем.

Для расшифровки вязкости SAE приняты такие таблицы:

Но, как я уже сказал выше, эти цифры верны лишь отчасти и только в отношении низкотемпературного индекса. Для высокотемпературного вернее рассматривать таблицу кинематической вязкости при 100 градусах, а для низкотемпературной динамической вязкости, их мы рассмотрим далее.

Индекс вязкости масла

Эти загадочные цифры на канистре – индекс вязкости, принимает во внимание далеко не каждый владелец авто. Это эмпирический, безразмерный показатель, по нему оценивают зависимость вязкости масла от изменений температуры. Чем больше индекс вязкости, тем меньше будет реакция масла на температурный перепад.

Если у масла высокий индекс вязкости, оно будет меньше густеть в мороз, то есть во время холодного пуска, и тем более густым будет оставаться при прогреве до рабочих температурных показателей. Индекс вязкости зависит от молекулярной структуры соединений, которые составляют базу масла. Чем чище минеральная база, тем выше будет его индекс. Самые высокие индексы у синтетики и гидрокрекинга.

Для расчета индекса вязкости масла используют его фактическую кинематическую вязкости при 40 и 100 градусах. Эти данные вбивают в простую формулу, созданную на основе эмпирических расчетов, выведенных из двух эталонных смазок.

Большинство современных масел имеет индекс от 140 до 180 единиц. Есть категории японских масел с низкой вязкостью, где индекс пересекает черту в 200 единиц. Эти масла создаются на основе технологических баз – полиальфаолефинов, сложных эфиров с добавлением особых присадок.

Какой индекс вязкости лучше – сказать сложно. Всегда лучше тот, который выше, так как показывает, что масло может хорошо адаптироваться под температурные перегрузки, но при этом для каждой категории масел SAE свой предел индекса, зависит он и от состава, у синтетических масел всегда будет выше.

К примеру, для традиционных синтетических и полусинтетических масел SAE 10W-40 нормальный индекс 150-160 единиц. Для масел с меньшей вязкостью 5W-30 он выше – 160-180. Маловязкие материалы будут иметь индекс до 240 единиц. А новейшие ультрамаловязкие масла класса 0W-16 или 0W-10 могут иметь индекс еще больше, но в продаже такие масла не найти, так как сфера их применения очень узкая и не относится к обычным автомобилям.

Кинематическая и динамическая вязкость масла

Именно те показатели, о которых я говорил в начале статьи. От них и зависит установленная вязкость SAE, те самые цифры, которые производитель указывает на канистре.

Кинематическая вязкость показывает текучесть масла при температуре в 40 градусов и 100. Измеряется капиллярным вискозиметром – определяется время истечения жидкости при определенной температуре. Обозначается мм2/с.

Динамическая вязкость тоже измеряется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающую во время движения двух слоев масла, удаленных друг от друга на расстояние 1 см и движущихся со скоростью 1 см/с. Измеряется эта величина в Паскаль-секундах. Как видно из таблицы выше, для разных вязкостей масел температура определения динамической вязкости разная.

Что означает динамическая и кинематическая вязкость

Кинематическая вязкость – два показателя, в пределах которых должно находиться масло, чтобы относиться к той или иной категории SAE. Динамическая вязкость показывает, при какой температуре масло обеспечит безопасный пуск мотора. Чем ниже фактический показатель от принятого верхнего барьера, тем ниже будет температура, при которой можно безопасно запускать мотор с указанным маслом.

К примеру, масло 10W при -25 градусах должно иметь динамическую вязкость не более 7000. То есть, если фактический показатель масла почти равен 7000, при -25 мотор заводить уже не рекомендуется, лучше делать это не ниже -20. А вот есть масло показывает динамическую вязкость 6500, то уже применимо при -25, 6000 – ниже -25 и так далее.

Какая вязкость лучше подходит для двигателя

Чтобы понимать, почему нельзя использовать ту вязкость масла, которая нам больше нравится или кажется более подходящей, нужно понимать, как вязкость влияет на работу двигателя. К примеру, есть ряд маловязких спортивных масел, но, если мы зальем одно из них в обычный двигатель, он не станет от этого спортивным и более быстрым, а, напротив, быстро потеряет мощность и просто «сдохнет».

Вязкость масла подбирается, исходя из его конструкции, рекомендуется производителем и выходить за рекомендованные рамки нельзя. Детали двигателей имеют разные зазоры, новые модели двигателей рассчитаны на экономию топлива и масла, зазоры между деталями минимальные, такие моторы требуют маловязких масел, если же залить более густое, движущиеся элементы будут работать под нагрузкой, постоянно перегреваться, что со временем приведет к ряду неприятных проблем.

Более старые конструкции двигатели имеют большие зазоры между деталями, это предусмотрено и самой конструкцией, и выработкой, которая появляется со временем. Такие двигатели требуют более густых масел, если залить менее густые, образуемая пленка будет недостаточно толстой, в местах контакта разорвется, что приведет к быстрому износу деталей.

Вязкость масла не может быть лучше или хуже, для каждого конкретного двигателя она может быть просто подходящей. В сервисной книжке вы найдете рекомендации как минимум двух подходящих вязкостей для вашего двигателя, и именно между ними нужно выбирать. И не забываем про классы API и ACEA, а также допуски от производителей.

Можно ли смешивать масла разной вязкости

Смешивать разные вязкости нежелательно, как нежелательно доливать масло другой марки или типа – синтетику в минералку и так далее. Но если другого выбора нет, то можно долить, но учитывать, что полученная смесь будет чем-то средним между той вязкостью, которая уже была в картере, и той, которую вы туда добавите. Рекомендую после этого как можно быстрей заменить все масло на новое и не испытывать свой мотор.

Заключение

Подводим итог. Вязкость масла по SAE – это не указание на климат и температурные условия окружающей среды, при которых масло может использоваться, а показатель его вязкости при холодном пуске, прогреве и достижении рабочей температуры.

Выбирать масло в тех рамках, которые установил производитель двигателя, очень важно. Если использоваться более жидкие или густые масла, двигатель будет работать в условиях постоянного перегрева или масляного голодания, и в том, и в другом случае это приведет к его поломке. Не сразу, но со временем.

При выборе масла на зиму опираемся не столько на SAE, сколько на фактический показатель динамической вязкости для конкретного масла, чем он ниже, тем проще будет холодный пуск при определенной температуре.

Вязкость моторного масла - что это такое, расшифровка по SAE

Большинство автолюбителей знает, что при выборе смазочных материалов наиболее важным параметром является вязкость масла.

Однако, не все понимают значение цифр, которые имеются на канистрах.

Моторная смазка подвергается воздействию довольно высокой температуре как внутри самого двигателя, так и извне.

Вязкость как один из важнейших параметров моторного масла

Всю необходимую информацию производители указывают на этикетке, поэтому необходимо уметь ее читать и анализировать.

Кроме всего прочего, следует различать саму вязкость, которая бывает как кинематической, так и динамической. Типы вязкости имеют определенные различия. Они заключаются в плотности, отличающихся методах измерения и предназначены для определения показателей различных классов смазки.

Кинематическая вязкость моторного масла определяет его текучесть при нормальной (стандартной) рабочей температуре, а также максимальной. За основу проведения испытаний берут 40 и 100 градусов по Цельсию, а измерения проводятся в сантистоксах.

По полученным результатам осуществляются расчеты индекса вязкости, поэтому, если вы хотите приобрести действительно хорошее масло — выбирайте, чтобы индекс превышал значение 200. Чаще всего наиболее подходящий индекс имеют всесезонные масла.

Что касается динамической вязкости — то она отображает силу сопротивления в ходе перемещения жидкостей, которая от плотности никак не зависит. Единицей измерения динамической вязкости является сантипуаз.

Ниже приведена таблица вязкости моторного масла для работы двигателя в холодных условиях.

Основные параметры вязкости

Одним из основных параметров являются низкотемпературные показатели.

К данным показателям относятся следующие:

  • проворачиваемость;
  • прокачиваемость.

Первый определяет диапазон текучести при низких температурах и указывает на то, какой должна быть максимально допустимая динамическая вязкость. Последняя позволяет коленчатому валу вращаться с такой скоростью, которая обеспечивает хороший запуск двигателя.

Прокачиваемость всегда имеет значение, которое на 5˚С ниже необходимой. Это нужно для того, чтобы масляный насос не начал закачивать воздух вследствие чрезмерного загустевания смазочной жидкости. Параметры прокачиваемости не должны превышать значения в 60000 мПа*с.

Если вы хотите разобраться в том, как определить вязкость моторного масла — следует познакомиться с таким понятием, как спецификация SAE. Это принятый в большинстве стран стандарт, определяющий необходимый уровень вязкости смазки при том или ином температурном режиме.

Вот таблица, где показано, какая классификация соответствует определенной температуре воздуха.

Международный стандарт вязкости масел

О важности такого свойства, как вязкость масла, стало известно еще с тех времен, как был выпущен первый автомобиль. С тех самых времен инженеры пытались произвести классификацию смазочных материалов. Основываясь на определенных качествах, все имевшиеся масла были разделены на следующие типы:

  • маловязкие смазки
  • средневязкие
  • тяжелые

После того, как были изобретены подходящие для определения вязкости приборы — американским обществом автомобильных инженеров (SAE) была разработана наиболее точная классификация — SAE J300.

Данная классификация моторных масел в процессе своего развития претерпевала определенные изменения и сегодня представляет 11 классов вязкости.

Их полный список выглядит следующим образом:

  1. SAE 0W;
  2. SAE 5W;
  3. SAE 10W;
  4. SAE 15W;
  5. SAE 20W;
  6. SAE 25W;
  7. SAE 20;
  8. SAE 30;
  9. SAE 40;
  10. SAE 50;
  11. SAE 60.

В связи с этим, классы вязкости моторных масел стали в спецификации SAE по степени вязкости, которая определяется условиями, близкими к реально существующим. Вследствие этого и произошло разделение масел на летние и зимние виды.

Летние смазки не имеют буквенного обозначения и обладают более высокой вязкостью, вследствие чего обеспечивают качественную смазку всех деталей двигателя при высокой температуре окружающей среды.

Однако, при низких температурах такие масла становятся чересчур плотными и создают серьезную проблему при запуске холодного двигателя.

Зимнее масло является менее вязким, благодаря чему проблем при холодном пуске двигателя не возникает. Зато в жаркое время года оно становится слишком текучим, поэтому не в состоянии обеспечить детали силового агрегата должной защитой.

Благодаря изобретению всевозможных присадок, появилась новая категория масел, объединивших в себе хорошее соотношение зимних и летних характеристик. Такие смазывающие материалы получили название всесезонных.

Виды масел в зависимости от температурного режима

Вязкость определяется по международному стандарту SAE J300 и подразделяет все смазочные материалы на три основных вида — летние, зимние и всесезонные.

К летним относятся масла, имеющие следующий показатель SAE:

Зимние смазки имеют свои преимущества:

  • невысокая стоимость;
  • невысокая вязкость, благодаря которой запуск холодного двигателя при минусовой температуре происходит лучше, чем с применением всесезонных жидкостей;
  • высокая стойкость к деструкции.
  • К ним относятся следующие виды:
  • SAE 0W;
  • SAE 5W;
  • SAE 10W;
  • SAE 15W;
  • SAE 20W.

Самыми распространенными являются всесезонные жидкости. Они также имеет свои достоинства, а наиболее главным следует считать его использование в любое время года. Благодаря имеющимся в составе полимерным присадкам, оно способно изменять степень вязкости относительно окружающей температуры. Кроме того, оно имеет хорошие энергосберегающие свойства, благодаря которым силовой агрегат работает в жаркую погоду более экономичней, чем при использовании летнего типа масел.

Всесезонные:

  • SAE 0W-30;
  • SAE 0W-40;
  • SAE 5W-30;
  • SAE 5W-40;
  • SAE 10W-30;
  • SAE 10W-40;
  • SAE 15W-40;
  • SAE 20W-40.

Благодаря прекрасно сбалансированным показателям, всесезонки показывают хорошие результаты в работе с критическими температурами.

Для того, чтобы подобрать для двигателя своего автомобиля наиболее подходящее по вязкости масло — следует опираться на два основных показателя:

  • в каких климатических условиях эксплуатируется автомобиль;
  • сколько лет эксплуатируется двигатель.

Опираясь на первый показатель, для регионов с высокой температурой воздуха следует выбирать жидкости с более высоким показателем вязкости. Данный параметр представлен цифрой, находящейся перед буквой «W».

Так, к примеру, при эксплуатации транспортного средства при температуре воздуха от -10 и до +45 следует выбирать SAE 20W-40.

Второй параметр: в этом случае следует выбирать смазку согласно выработанному ресурсу двигателя. Так для нового двигателя следует подбирать меньшую вязкость, а для мотора постаршеболее вязкое масло. Это необходимо для того, чтобы более выработанные детали, имеющие между собой значительно увеличенные зазоры, могли более или менее нормально функционировать.

Помните, что любая смазка содержит показатели вязкости как при низких, так и при высоких температурах, поэтому при выборе это следует обязательно учитывать. Чем выше первая цифра (стоящая перед буквой W), тем рабочий диапазон на низких температурах будет меньше. Чтобы произвести расчеты — необходимо от цифры 40 отнять первый показатель смазки.

К примеру, жидкость со значением 5W20 имеет температурный диапазон -35˚ С и -30˚ С.

Второе число, расположенное после буквы «W», дает понятие высокотемпературной вязкости. Если не вдаваться в технические тонкости, то можно сказать так — чем больше второе значение — тем выше будет вязкость масла при высоких температурах.

Диапазоны рабочих температур для разных масел по SAE

Основываясь на спецификацию SAE, все смазывающие жидкости можно расшифровать по температурному режиму и определить для себя диапазон их использования.

По классу вязкости и температурному режиму жидкости имеют следующий диапазон:

  • 5 W-30 — предназначена для работы при температуре от -25˚ С и до +20˚ С;
  • 5 W-40 — предназначена для работы от -25˚ С и до +35˚ С;
  • 10 W-30 — предназначена для работы от -20˚ С и до +30˚ С;
  • 10 W-40 — предназначена для работы от -20˚ С и до +35˚ С;
  • 15 W-30 — подходит для работы при температуре воздуха от -15˚ С и до +35˚ С;
  • 15 W-40 — подходит для работы при температуре воздуха от -15˚ С и до +45˚ С;
  • 20 W-40 — подходит для работы при температуре воздуха от -10˚ С и до +45˚ С;
  • 20 W-50 — подходит для работы при температуре воздуха от -10˚ С до +45˚ С и более.

Однако, в подборе наиболее подходящего масла для своего транспортного средства, в первую очередь необходимо руководствоваться информацией, которую предоставляет завод изготовитель.

Выбор моторного масла по его вязкости

Подбор необходимого масла строго индивидуален и направлен на определенный двигатель. Поэтому в первую очередь следует ориентироваться на те указания и рекомендации, которые сделал производитель в технической документации к тому или иному автомобилю.

Помните, что только оригинальное масло либо его качественный аналог способны обеспечить двигатель хорошей работой и максимальным износом деталей.

В том случае, если данного рода документация отсутствует — ориентироваться следует на указанные допуски масла в отношении определенных двигателей, которые, чаще всего, имеются на этикетке производителя.

Видео по теме:

таблица температур, что означает, как измеряется

Неопытные автолюбители сталкиваются с определением – вязкость масла. Она указывает на текучесть лубриканта в эксплуатационной среде. К примеру, как поведет себя формула при критических перепадах температур. В 2020 году существует более 10 классов жидкостей, относящихся к определенным условиям работы.



Чтобы пользователь мог понять, к какому типу относится продукт, изготовители наносят на этикетки индекс SAE. Аббревиатура означает – американский институт нефти, и актуальна на пяти континентах.


Для автомобилей применимы две категории:

Принципиальная разница в том, что первая относится к моторным, а вторая к трансмиссионным смазкам.

От чего зависит вязкость масла

Степень густоты продукта напрямую зависит от внедренных технологий и присадок во время компоновки формулы. Однако ключевыми принято считать такие факторы.

Основа.

Существует три разновидности базовых групп масел. Все отличаются по изначальной густоте.

  1. Минеральная – изготавливается путем перегонки сернистых пород нефти и преимущественно используется летом. В холодное время года быстро кристаллизуется, что делает ее эксплуатацию невозможной.
  2. Полусинтетика – более современная технология. Популярными представителями являются гидрокрекинговые масла. Степень вязкости здесь допускает применение зимой, однако защита от перепадов температуры недостаточна.
  3. Синтетика – передовая технология, показывающая новый технологический уровень, где внедрена процедура расщепления молекул природного газа или рапсовых соков, для получения сложных углеводородов. Эти автомасла выделяются повышенной текучестью и стойкостью к суровым климатическим условиям.

Присадки.



Дополнительные включения в современных смазках в 80% имеют ключевое значение. Депрессорные компоненты стабилизируют поведение смеси во время перепадов температур, однако зависимость индекса вязкости от них мала.

Густота лубриканта зависит от комплекса технологических решений и подбора компонентов формулы.

Маркировка вязкости масла

На канистре любого автомасла всегда находится маркировка спецификации SAE. Отличить к какой категории относится продукт, можно по самому индексу.

Моторные смазки имеют повышенную текучесть относительно трансмиссионных и делятся на три категории:

  • зимние;
  • летние;
  • всесезонные.

Для каждой группы характерна своя аббревиатура.

  1. Жидкость для холодного времени года имеет две части кода – цифра от 0 до 25, вторая часть, буква «W» — говорит о принадлежности смеси к зимней группе.
  2. Летние смеси также имеют аналогичный индекс, однако значения здесь перевернуты задом на перед – сначала «W», затем цифры от 20 до 60.
  3. Всесезонная группа представлена составным кодом из трех частей. Для примера самая популярная в России вязкость – 5W40.

Аналогичное разделение присутствует и для трансмиссионных масел. Однако здесь, ввиду увеличенной густоты актуальны показатели типа 75W80, 80W90.



Далее разберемся в чем отличие маркировок, и на что они влияют.

На что влияет вязкость масла

В современном автомобиле эксплуатационные свойства масла влияют на два ключевых фактора.

  1. Возможность холодного пуска силовой установки при критическом морозе.
  2. Достаточна прочность защитной пленки во время перегрева, для создания необходимого смазочного слоя.

Инженеры в угоду пользователям и автоконцернам, создают смазки с минимальной низкотемпературной и предельной высокотемпературной вязкостью.

Косвенно, правильно подобранная густота сказывается на расходе топлива, продолжительности эксплуатации двигателя без необходимости ремонта, а также его стабильную работу при перегрузках.

Наглядно понять принцип действия можно на примере нового кроссовера Лада Веста. С завода здесь заливают лубрикант типа 5W30, исправно функционирующий в диапазоне от -25 до +30 °С. Если t° за бортом опускается ниже предела, запустить ДВС после простоя будет сложно или невозможно. Также и при эксплуатации в гоночных режимах, диапазоне свыше +35°С защитная пленка разрушится (масло стекает с деталей как вода) и возникнет эффект сухого трения поверхностей, что чревато негативными последствиями.

Что такое динамическая вязкость моторного масла

Это показатель, измеренный при помощи ротационного вискозиметра. Прибор имитирует реальные условия работы моторного масла в двигателе с учетом давления внутри магистралей и температуре +150 градусов Цельсия. Конструкций агрегатов в 2020 году существует более 50, но суть процедуры одинакова:

  • имеется сосуд, заполненный маслом;
  • внутри колбы присутствует дополнительный цилиндр, зазор между их стенками составляет от 1 до 3 мм;
  • внутренняя часть прибора начинает вращаться и лубрикант создает сопротивление;
  • компьютер измеряет усилие, необходимое для проворачивания и передает данные на индикационную панель.

Манипуляции позволяют понять, каким образом отреагирует лубрикант на динамические колебания температур и нагрузки. При этом, рекомендуемая величина для каждого двигателя своя.
На фото стандартный ротационный вискозиметр лабораторного типа.


Лучше больше или меньше

В современной промышленности бывает множество различных формул и модификаций автомасел. Для динамической вязкости лучший вариант – минимальный показатель. Это аргументировано снижением сопротивления внутри силового агрегата. Так при запуске двигателя зимой, лубрикант создает минимальное препятствие для прокручивания коленчатого вала, что способствует облегчению старта. При увеличении индекса происходит обратное, и масло мешает валам вращаться.

Кинематическая вязкость моторного масла

Показатель измеряется при помощи капиллярного вискозиметра в нормальных условиях при температуре +40/100 градусов Цельсия.

Суть процедуры такая:

  • колба с калибровочным отверстием заполняется жидкостью и разогревается до установленного предела;
  • затем измеряется время, за которое смесь вытекает из емкости самотеком.

Кинематическая вязкость не дает определения хорошее масло или плохое.

Коэффициент кинематической вязкости масла

Это сменный показатель, зависящий от фактической температуры самого масла. Точное определение звучит так. Коэффициент КВМ – это индекс, отражающий фактическую текучесть лубриканта при строго заданной температуре.

Какая лучше — выше или ниже

Сборный показатель измеряется при 40 и 100 градусах Цельсия и измеряется в сантистоксах (сСт), при этом густота жидкости существенно отличается. Кинематическая вязкость указывает на то, какой густоты будет лубрикант в указанных условиях и нормальном атмосферном давлении.



Определить какой показатель лучше, поможет сам автомобиль – конструкции ДВС отличаются и требуют использования разных смазок.

Самой высокой густотой обладает минеральное масло. При этом, оно имеет наибольшую кривую изменения плотности. Обратные показатели у синтетики, с понижением температуры, смесь минимально увеличивает вязкость, что положительно сказывается на прокачиваемости и возможности запуска холодной машины.

Однако существуют жесткие ограничения, стабильная густота не говорит о том, что искусственная продукция – это панацея. В некоторых случаях применение «минералки» более оправдано с технической стороны – существующие зазоры внутри силовой установки слишком большие и толщина защитной пленки будет недостаточна, что вызовет увеличенный расход на угар и износ системы. Эффект можно наблюдать на классических авто, где синтетика отказывается нормально работать.

В чем измеряется вязкость масла

Существуют общепринятые обозначения густоты моторного лубриканта. В Российской системе СИ принято две единицы измерения:

  • Па*с – для динамической;
  • м²/с – для кинематической вязкости.

Однако в некоторых инструкциях можно встретить другое обозначение, в сантистоксах (сСт). Индекс относится к стандартной шкале как:1 сСт = 0,000001 м²/с.


Как определяется вязкость моторного масла

Определение густоты автомасла – сложный процесс, требующий использования специальных приборов и наличия знаний. Отбросив все сложности, определить густоту лубриканта можно по типу базового компонента. Если масло применяется синтетическое, априори вязкость будет минимальна. В случае эксплуатации минералки, густота повышена.

При этом возможен и другой исход – к примеру, добавляя депрессоры в «природную» жидкость можно принудительно снизить ее плотность.

Принцип работает для подбора формул дизельного, бензинового и универсального типа.

График вязкости масла от температуры

Основополагающим фактором зависимости густоты лубриканта от температуры окружающей среды является индекс вязкости. Параметр указывает, как работает субстанция на холодную или горячую.

Показатели кинематической вязкости при 100 градусах Цельсия у каждого лубриканта индивидуальны. Также и при порогах +20, +40 °С. Наиболее точно можно увидеть изменения на графике.


Как видно из графика каждая основа по своему реагирует на морозы и жару. При этом на синтетике холодный пуск пройдет легче.

Присадка для повышения вязкости масла

В 2020 году на рынке присутствуют специальные стабилизаторы и сгустители автомасел. Продукты способны повысить густоту смазки без негативных последствий, либо нормализовать ее поведение при перепадах температур. Обычно к формулам прибегают автолюбители при чрезмерном износе ДВС, когда повышается угар лубриканта и идет усиленное выделение дыма. В этом случае чтобы не менять полностью всю порцию смазки, имеет смысл купить средство, повышающее ее естественные параметры.

Прозондировав отзывы покупателей можно выделить три популярные жидкости:

  • XADO Oil Treatment Complex;
  • HIGEAR Motor Medik;
  • Carbonfox VI 80.

Однако, согласно рекомендациям специалистов не стоит излишне увлекаться подобной продукцией.

Как выбрать вязкость моторного масла

Для каждой конструкции мотора выбор смазки выполняется индивидуально. К примеру, для четырех и двухтактных ДВС, разница вязкости будет огромна. В системах смазки, требующих предварительного перемешивания лубриканта с бензином, добавленная жидкость должна быть предельно текучей, чтобы не нарушать физические свойства топлива. Там где применяется разновидность мокрого картера, наоборот необходима оптимальная густота, для покрытия подвижных частей прочной пленкой.


Подбор масла для двигателя осуществляется исходя из требований производителя автомобиля. Внутри руководства пользователя указывается, какая необходима основа, вязкость. Примерное сравнение можно привести на машинах Рено Логан с мотором Н4М, и Деу Лаос с ВАЗовским ДВС.
Когда в первом случае актуально заливать 5W30, во вторую машину можно подобрать 10W40.

На зиму

Если порцию лубриканта планируется эксплуатировать исключительно зимой, допускается лить жидкости, предназначенные только для холодного времени года.

Примечание! Точный выбор густоты выполняется согласно климатическим условиям. К примеру, для Лада Гранта, используемой в умеренных широтах можно брать лубриканты типа 5W, 10W, 15W.

Какой вязкости масло лучше заливать в двигатель летом

Аналогично осуществляется подбор для теплого времени года. Здесь нет разницы, какая машина обслуживается Киа Рио 3 или Шевроле Нива – выбор основывается исключительно на допусках завода и температуре окружающей среды.

Какую вязкость масла выбрать после 100 тысяч пробега

Когда пробег авто переваливает за 100000 км пробега, имеет смысл залить масло гуще, чем советует завод. Решение обосновано увеличением рабочих зазоров и необходимостью использования более плотных смесей.

Однако здесь учитываются индивидуальные особенности и ресурс ДВС. Для примера в Приору 16 клапанную, при таком пробеге уже можно повысить вязкость лубриканта на порядок (было 5W30 стало 10W40), а для силовых установок Митсубиси и Хонды изменения не требуются.

После 200 тысяч пробега

На старых машинах с большим пробегом типа ВАЗ 2107, а также иномарках, износ поршневой группы наблюдается более выражено. Здесь требуется лить смеси гуще на порядок или два. К примеру, в Ладу 2114 после 200000 км, отмотанных спидометром можно заливать лубриканты типа 15W40, когда для новой версии будет актуален индекс 5W30.


Что будет если долить масло другой вязкости в двигатель

Распространенный миф – при смешивании автомасел различной вязкости происходит обязательное пенообразование и выпадение осадка, это в корне не так. Если сделать все правильно, никаких негативных последствий не произойдет.

К примеру, во время передвижения по трассе произошла утечка лубриканта, требуется срочная доливка, а необходимой жидкости под рукой нет. Допускается частичное смешивание формул одного завода с соответствием допусков. Это обосновано использованием одинаковых базовых компонентов и присадок на предприятии. Таким образом, при доливке в картер смеси типа 5W30, где уже залито 10W40 того же бренда и основы, ничего страшного не произойдет.

Можно ли смешивать масла одинаковой вязкости

Здесь еще проще, при использовании одной основы и соблюдении допусков API, ACEA мешать жидкости можно вообще без чувствительных последствий.

Главным аргументом здесь является то, что при полной замене масла, в картере остается в среднем 10-12% отработки.

Как определить вязкость моторного масла по формуле

Определение вязкости лубриканта по стандартной формуле SAE не вызывает затруднений даже у начинающих автомобилистов. Для этого организация создала специальную таблицу, где уже все просчитано.

Расчет вязкости смеси масел

Процедура выполняется по стандартной схеме, где учитывается вязкость обоих компонентов и пропорция смеси. Для примера можно взять типичную ситуацию, в моторе залита смесь 0W30, при доливке было использовано 25% лубриканта 5W40, в картере образуется смесь 2W34. При обратном соотношении (3:1) получится примерно 4W38.

Как проверить вязкость масла в двигателе

Точно измерить вязкость лубриканта, уже залитого в силовую установку, в домашних условиях невозможно. Это аргументировано тем, что для выполнения работы потребуется лабораторное оборудование и специальные приспособления.

Однако имеется способ измерения с помощью эталонной пробы – методика подойдет, если после заливки в канистре осталось немного неиспользованной жидкости. Последовательность действий такова:

  • слить с ДВС шприц смазки и взять аналогичное количество свежего продукта;
  • подвесить вертикально воронку с отверстием 1-2 мм на конце и влить в нее эталонный образец;
  • измерить количество упавших капель за определенный промежуток времени с помощью секундомера;
  • повторить процедуру с отработкой;
  • установить разницу показателей двух проб.

Измерение поможет установить, насколько выработалось масло, обычно при разнице более 25% — жидкость уже требуется менять.

Изменение вязкости масла от наработки



При выработке ресурса номинальная вязкость автомасла изменяется. Метаморфозы происходят в двух направлениях.
  1. Уплотнение субстанции при нормальной температуре. Вызывается появлением посторонних примесей, сажи в составе, что провоцирует сгущение лубриканта. Это особенно чувствуется во время заморозков – усложняется холодный пуск ДВС.
  2. Разжижение при нагреве. Включения серной кислоты и воды минимизируют высокотемпературную вязкость продукта, вызывая стекание защитной пленки и износ нагруженных частей.

Этим объясняется густота жидкости при сливе из картера и отсутствие необходимой защиты во время активной эксплуатации ДВС.

Нужно ли промывать двигатель при смене вязкости масла

Рекомендации заводов говорят о необходимости промывки при каждом переходе с одного типа лубриканта на другой. Это аргументируется тем, что для смесей, каждый изготовитель применяет уникальные формулы, способные вызвать непредвиденную реакцию при контакте. Однако факт нивелируется спецификациями ACEA и API. При получении сертификата жидкости проходят обязательное тестирование на совместимость. Иными словами, если синтетика одного бренда 0W30 меняется на аналог 5W30, промывку можно не делать, но и лишней она не будет.

Абсолютная, динамическая и кинематическая вязкость

Вязкость - важное свойство жидкости при анализе поведения жидкости и ее движения вблизи твердых границ. Вязкость жидкости - это мера ее сопротивления постепенной деформации под действием напряжения сдвига или напряжения растяжения. Сопротивление сдвигу в жидкости вызвано межмолекулярным трением, возникающим, когда слои жидкости пытаются скользить друг относительно друга.

  • вязкость - это мера сопротивления жидкости течению
  • меласса высоковязкая
  • вода средней вязкости
  • газ низкая вязкость

Есть два связанных показателя вязкости жидкости

  • 20004 9000 динамическая ( или абсолютная )
  • кинематическая
  • Динамическая (абсолютная) вязкость

    Абсолютная вязкость - коэффициент абсолютной вязкости - является мерой внутреннего сопротивления.Динамическая (абсолютная) вязкость - это тангенциальная сила на единицу площади, необходимая для перемещения одной горизонтальной плоскости относительно другой плоскости - с единичной скоростью - при сохранении единичного расстояния друг от друга в жидкости.

    Напряжение сдвига между слоями нетурбулентной жидкости, движущейся по прямым параллельным линиям, может быть определено для ньютоновской жидкости как

    Напряжение сдвига можно выразить

    τ = μ dc / dy

    = μγ (1)

    где

    τ = напряжение сдвига в жидкости (Н / м 2 )

    μ = динамическая вязкость жидкости (Н · с / м 2 )

    dc = единичная скорость (м / с)

    dy = единичное расстояние между слоями (м)

    γ = dc / dy = скорость сдвига (с - 1 )

    Уравнение (1) известно как закон трения Ньютона.

    (1) можно преобразовать для выражения Динамическая вязкость как

    μ = τ dy / dc

    = τ / γ (1b)

    В системе СИ единицы измерения динамической вязкости: Н с / м 2 , Па с или кг / (мс) - где

    • 1 Па с = 1 Н с / м 2 = 1 кг / (мс) = 0.67197 фунтов м / (фут с) = 0,67197 оторочка / (фут с) = 0,02089 фунта f с / фут 2

    Динамическая вязкость также может быть выражена в метрических единицах CGS (сантиметр) -грамм-секунда) система как г / (см с) , дин с / см 2 или пуаз (p) где

    • 1 пуаз = 1 дин с / см 2 = 1 г / (см · с) = 1/10 Па · с = 1/10 Н · с / м 2

    Для практического использования Poise обычно слишком велик, а единица измерения поэтому часто делится на 100 - на меньшую единицу сантипуаз (сП) - где

    • 1 P = 100 сП
    • 1 сП = 0.01 пуаз = 0,01 грамм на см секунду = 0,001 Паскаль секунды = 1 миллиПаскаль секунда = 0,001 Нс / м 2

    Вода при 20,2 o C (68,4 o F) имеет абсолютную вязкость единиц - 1 сантипуаз .

    Жидкость Абсолютная вязкость *)
    ( Н с / м 2 , Па с)
    Воздух 1.983 10 -5
    Вода 10 -3
    Оливковое масло 10 -1
    Глицерин 10 0 Мед Жидкость 10 1
    Golden Syrup 10 2
    Стекло 10 40

    *) при комнатной температуре

    Кинематическая вязкость

    соответствует кинематическому соотношению - абсолютная (или динамическая) вязкость до плотности - величина, при которой никакая сила не задействована.Кинематическая вязкость может быть получена делением абсолютной вязкости жидкости на ее массовую плотность, например

    ν = μ / ρ (2)

    , где

    ν = кинематическая вязкость (м 2 / с)

    μ = абсолютная или динамическая вязкость (Н · с / м 2 )

    ρ = плотность (кг / м 3 )

    В системе SI теоретическая единица кинематической вязкости - м 2 / с - или обычно используемый Сток (St) , где

    • 1 St (Стокса) = 10 -4 м 2 / s = 1 см 2 / с

    Сток происходит от системы единиц CGS (сантиметр грамм-секунда).

    Поскольку Stoke является большим блоком, его часто делят на 100 на меньший блок сантисток (сСт) - где

    • 1 St = 100 сСт
    • 1 сСт (сантисток) ) = 10 -6 м 2 / с = 1 мм 2 / с
    • 1 м 2 / с = 10 6 сантистокс

    Удельный вес воды при 20,2 o C (68.4 o F) - это почти единица, и кинематическая вязкость воды при 20,2 o C (68,4 o F) для практических целей 1,0 мм 2 / с ( cStokes). Более точная кинематическая вязкость воды при 20,2 o C (68,4 o F) составляет 1,0038 мм 2 / с (сСт).

    Преобразование абсолютной вязкости в кинематическую в британских единицах измерения может быть выражено как

    ν = 6.7197 10 -4 μ / γ (2a)

    где

    ν = кинематическая вязкость (футы 2 / с)

    μ = абсолютная или динамическая вязкость (сП)

    γ = удельный вес (фунт / фут 3 )

    Вязкость и эталонная температура

    Вязкость жидкости сильно зависит от температуры, и для динамической или кинематической вязкости значение эталонной температуры Необходимо указать .В ISO 8217 эталонная температура остаточной жидкости составляет 100 o C . Для дистиллятной жидкости эталонная температура составляет 40 o C .

    • для жидкости - кинематическая вязкость уменьшается при более высокой температуре
    • для газа - кинематическая вязкость увеличивается при более высокой температуре

    Связанные мобильные приложения из Engineering ToolBox

    Это бесплатное приложение, которое может использоваться в автономном режиме на мобильных устройствах.

    Другие единицы измерения вязкости

    Универсальные секунды Сейболта (или SUS, SSU )

    Универсальные секунды Сейболта (или SUS ) являются альтернативной единицей измерения вязкости. Время истечения составляет универсальные секунды Сейболта ( SUS ), необходимое для протекания 60 миллилитров нефтепродукта через калиброванное отверстие вискозиметра Saybolt Universal - при тщательно контролируемой температуре и в соответствии с методом испытаний ASTM D 88. Этот метод имеет в значительной степени заменен методом кинематической вязкости.Saybolt Universal Seconds также называется номером SSU (Seconds Saybolt Universal) или номером SSF (Saybolt Seconds Furol) .

    Кинематическая вязкость в SSU в зависимости от динамической или абсолютной вязкости может быть выражена как

    ν SSU = B μ / SG

    = B ν сантистокс (3)

    7 где

    7

    ν SSU = кинематическая вязкость (SSU)

    B = 4.632 для температуры 100 o F (37,8 o C)

    B = 4,664 для температуры 210 o F (98,9 o C)

    μ = динамический или абсолютный вязкость (сП)
    SG = Удельный вес
    ν сантистокс = кинематическая вязкость (сантистокс)
    градус Энглера

    градус Энглера используется в Великобритании в качестве шкалы измерить кинематическую вязкость.В отличие от весов Saybolt и Redwood , шкала Engler основана на сравнении потока тестируемого вещества с потоком другого вещества - воды. Вязкость по Энглеру градусов - это отношение времени истечения 200 кубических сантиметров жидкости, вязкость которой измеряется, ко времени истечения 200 кубических сантиметров воды при той же температуре (обычно 20 o C , но иногда 50 o C или 100 o C ) в стандартизированном измерителе вязкости Engler .

    Ньютоновские жидкости

    Жидкость, в которой напряжение сдвига линейно связано со скоростью сдвиговой деформации, обозначается как ньютоновская жидкость .

    Ньютоновский материал называется истинной жидкостью, поскольку на вязкость или консистенцию не влияет сдвиг, такой как перемешивание или перекачка при постоянной температуре. Наиболее распространенные жидкости - как жидкости, так и газы - представляют собой ньютоновские жидкости. Вода и масла - примеры ньютоновских жидкостей.

    Разжижающие при сдвиге или Псевдопластические жидкости

    Разжижающие при сдвиге или псевдопластические жидкости - это жидкости, вязкость которых уменьшается с увеличением скорости сдвига.Структура не зависит от времени.

    Тиксотропные жидкости

    Тиксотропные жидкости имеют структуру, зависящую от времени. Вязкость тиксотропной жидкости уменьшается с увеличением времени - при постоянной скорости сдвига.

    Кетчуп и майонез являются примерами тиксотропных материалов. Они кажутся густыми или вязкими, но их можно довольно легко перекачивать.

    Дилатантные жидкости

    Сгущающая жидкость при сдвиге - или дилатантная жидкость - увеличивает вязкость при перемешивании или деформации сдвига.Дилатантные жидкости известны как неньютоновские жидкости.

    Некоторые дилатантные жидкости могут почти затвердеть в насосе или трубопроводе. При взбалтывании сливки превращаются в составы масла и конфет. Глиняная суспензия и подобные сильно наполненные жидкости делают то же самое.

    Bingham Plastic Fluids

    Пластиковая жидкость Bingham имеет предел текучести, который необходимо превысить, прежде чем она начнет течь как жидкость. С этого момента вязкость уменьшается с увеличением перемешивания. Зубная паста, майонез и томатный кетчуп - примеры таких продуктов.

    Пример - воздух, преобразование кинематической и абсолютной вязкости

    Кинематическая вязкость воздуха при 1 бар (1 10 5 Па, Н / м 2 ) и 40 o C составляет 16,97 сСт (16,97 10 -6 м 2 / с) .

    Плотность воздуха можно оценить с помощью закона идеального газа

    ρ = p / (RT)

    = (1 10 5 Н / м 2 ) / ((287 Дж / (кг · К)) ((273 o C) + (33 o C)))

    = 1.113 (кг / м 3 )

    где

    ρ = плотность (кг / м 3 )

    p = абсолютное давление (Па, Н / м 2 )

    R = индивидуальная газовая постоянная (Дж / (кг K))

    T = абсолютная температура (K)

    Абсолютная вязкость может быть рассчитана как

    μ = 1,113 (кг / м ) 3 ) 16,97 10 -6 2 / с)

    = 1.88 10 -5 (кг / (мс), Н с / м 2 )

    Вязкость некоторых обычных жидкостей

    200 9024 9024 Масло картера 9024 440 902 98
    сантистокс
    (сСт, 10 -6 м 2 / с, мм 2 / с )
    Секунда Сейболта
    Универсальная
    (SSU, SUS)
    Типичная жидкость
    0,1 Меркурий 1
    31 Вода (20 o C)
    4.3 40 Молоко
    SAE 20 Масло картера
    SAE 75 Трансмиссионное масло
    15,7 80 Мазут № 4
    20,6 100 Сливки Масло растительное
    110 500 Масло картера SAE 30
    SAE 85 Трансмиссионное масло
    220 1000 Томатный сок
    SAE 50 Масло картера
    2000 SAE 140 Gear Oil
    1100 5000 Глицерин (20 o C)
    SAE 250 Gear Oil
    2200 10000 Мед Мед 28000 Майонез
    19000 86000 Сметана

    Кинематическая вязкость может быть преобразована из SSU в сантистоксов с

    ν сантистоксов = 0.226 ν SSU - 195/ ν SSU (4)

    где

    ν 100143 SSU < ν Сантистокс = 0,220 ν SSU - 135/ ν SSU

    где

    ν 900 Вязкость > и температура

    Кинематическая вязкость жидкостей, таких как вода, ртуть, масла SAE 10 и масла №.3 - и такие газы, как воздух, водород и гелий, показаны на схеме ниже. Обратите внимание, что

    • для жидкостей - вязкость уменьшается с температурой
    • для газов - вязкость увеличивается с температурой

    Измерение вязкости

    Для измерения вязкости используются три типа устройств

    • капиллярный вискозиметр
    • Вискозиметр Сейболта
    • Вискозиметр вращающийся
    .

    Жидкости - кинематическая вязкость

    Вязкость - это сопротивление сдвигу или течению в жидкости, а также мера адгезионных / когезионных или фрикционных свойств. Вязкость, возникающая из-за внутреннего молекулярного трения, создает эффект сопротивления трению.

    Существует два связанных показателя вязкости жидкости: динамическая (или абсолютная ) и кинематическая вязкость.

    Кинематическая вязкость некоторых распространенных жидкостей:

    900
    104

    05

    пресная
    130
    Жидкость Температура Кинематическая вязкость
    ( o F) ( o C) сантистокс (сСт) ) Секунды Saybolt Universal (SSU)
    Ацетальдегид CH 3 CHO 61
    68
    16.1
    20
    0,305
    0,295
    36
    Уксусная кислота - уксус - 10% CH 3 COOH 59 15 1,35 31,7
    Уксусная кислота - 50% 59 15 2,27 33
    Уксусная кислота - 80% 59 15 2,85 35
    Уксусная кислота - концентрированная ледяная 59 15 1.34 31,7
    Ангидрид уксусной кислоты (CH 3 COO) 2 O 59 15 0,88
    Ацетон CH 3 COCH 3 68 20 0,41
    Спирт - аллил 68
    104
    20
    40
    1,60
    0,90 cp
    31,8
    Спирт - бутил-н 68 20 3.64 38
    Спирт - этил (зерно) C 2 H 5 OH 68
    100
    20
    37,8
    1,52
    1,2
    31,7
    31,5
    Спирт - метил (дерево) CH 3 OH 59
    32
    15
    0
    0,74
    1,04
    Спирт - пропил 68
    122
    20
    50
    2,8
    1.4
    35
    31,7
    Сульфат алюминия - 36% раствор 68 20 1,41 31,7
    Аммиак 0 -17,8 0,30
    Анилин 68
    50
    20
    10
    4,37
    6,4
    40
    46,4
    Асфальт RC-0, MC-0, SC-0 77
    100
    25
    37.8
    159-324
    60-108
    737-1.5M
    280-500
    Автоматическое масло для картера SAE 10W 0 -17.8 1295-max 6M-max
    Масло в картер автоматов SAE 10W 0 -17,8 1295-2590 6M-12M
    Масло в картер автоматов SAE 20W 0 -17,8 2590-10350 12M-48M
    Масло картера АКПП SAE 20 210 98.9 5,7-9,6 45-58
    Масло для автоматических картерных двигателей SAE 30 210 98,9 9,6-12,9 58-70
    Масло для автоматических картеров SAE 40 210 98,9 12,9-16,8 70-85
    Масло для автоматических картерных двигателей SAE 50 210 98,9 16,8-22,7 85-110
    Автомобильное трансмиссионное масло SAE 75W 210 98.9 4,2 мин 40 мин
    Автомобильное трансмиссионное масло SAE 80W 210 98,9 7,0 мин 49 мин
    Автомобильное трансмиссионное масло SAE 85W 210 98,9 11,0 мин 63 мин
    Автомобильное трансмиссионное масло SAE 90W 210 98,9 14-25 74-120
    Автомобильное трансмиссионное масло SAE 140 210 98.9 25-43 120-200
    Автомобильное трансмиссионное масло SAE150 210 98,9 43 - мин 200 мин
    Пиво 68 20 1,8 32
    Бензол (бензол) C 6 H 6 32
    68
    0
    20
    1,0
    0,74
    31
    Костное масло 130
    212
    54.4
    100
    47,5
    11,6
    220
    65
    Бром 68 20 0,34
    Бутан-н -50
    30
    -1,1 0,52
    0,35
    Масляная кислота n 68
    32
    20
    0
    1,61
    2,3 cp
    31,6
    Хлорид кальция 5% 65 18.3 1,156
    Хлорид кальция 25% 60 15,6 4,0 39
    Карболовая кислота (фенол) 65
    194
    18,3
    90
    11,83
    1,26 сП
    65
    Тетрахлорид углерода CCl 4 68
    100
    20
    37,8
    0,612
    0,53
    Дисульфид углерода CS 2 32
    68
    0
    20
    0.33
    0,298
    Касторовое масло 100
    130
    37,8
    54,4
    259-325
    98-130
    1200-1500
    450-600
    Китайское древесное масло 69
    100
    20,6
    37,8
    308,5
    125,5
    1425
    580
    Хлороформ 68
    140
    20
    60
    0,38
    0,35
    Кокосовое масло 100
    13052
    .8
    54,4
    29,8-31,6
    14,7-15,7
    140-148
    76-80
    Жир трески (рыбий жир) 100
    130
    37,8
    54,4
    32,1
    19,4
    150
    95
    Кукурузное масло 130
    212
    54,4
    100
    28,7
    8,6
    135
    54
    Раствор кукурузного крахмала, 22 Baumé 70
    100
    21.1
    37,8
    32,1
    27,5
    150
    130
    Раствор кукурузного крахмала, 24 Бауме 70
    100
    21,1
    37,8
    129,8
    95,2
    600
    440
    Раствор кукурузного крахмала , 25 Baumé 70
    100
    21,1
    37,8
    303
    173,2
    1400
    800
    Масло из семян хлопка 100
    130
    37.8
    54,4
    37,9
    20,6
    176
    100
    Сырая нефть 48 o API 60
    130
    15,6
    54,4
    3,8
    1,6
    39
    31,8
    Сырая нефть 40 o API 60
    130
    15,6
    54,4
    9,7
    3,5
    55,7
    38
    Сырая нефть 35,6 o API 60
    130
    15.6
    54,4
    17,8
    4,9
    88,4
    42,3
    Сырая нефть 32,6 o API 60
    130
    15,6
    54,4
    23,2
    7,1
    110
    46,8
    Декан- n 0
    100
    17,8
    37,8
    2,36
    1,001
    34
    31
    Диэтилгликоль 70 21,1 32 149.7
    Диэтиловый эфир 68 20 0,32
    Дизельное топливо 2D 100
    130
    37,8
    54,4
    2-6
    1.-3.97
    32.6-45.5
    -39
    Дизельное топливо 3D 100
    130
    37,8
    54,4
    6-11,75
    3,97-6,78
    45,5-65
    39-48
    Дизельное топливо 4D 100
    130
    37.8
    54,4
    29,8 макс
    13,1 макс
    140 макс
    70 макс
    Дизельное топливо 5D 122
    160
    50
    71,1
    86,6 макс
    35,2 макс
    400 макс
    165 макс
    Этилацетат CH 3 COOC 2 H 3 59
    68
    15
    20
    0,4
    0,49
    Бромистый этил C 2 H 5 Br 68 20 0.27
    Этиленбромид 68 20 0,787
    Хлорид этилена 68 20 0,668
    Этиленгликоль 70 21,1 17,8 88,4
    Муравьиная кислота 10% 68 20 1,04 31
    Муравьиная кислота 50% 68 20 1.2 31,5
    Муравьиная кислота 80% 68 20 1,4 31,7
    Концентрированная муравьиная кислота 68
    77
    20
    25
    1,48
    1,57cp
    31,7
    Трихлорфторметан, R-11 70 21,1 0,21
    Дихлордифторметан, R-12 70 21.1 0,27
    F Дихлорфторметан, R-21 70 21,1 1,45
    Фурфурол 68
    77
    20
    25
    1,45
    1,49 cp
    Мазут 1 70
    100
    21,1
    37,8
    2,39-4,28
    -2,69
    34-40
    32-35
    Мазут 2 70
    100
    21.1
    37,8
    3,0-7,4
    2,11-4,28
    36-50
    33-40
    Мазут 3 70
    100
    21,1
    37,8
    2,69-5,84
    2,06-3,97
    35 -45
    32,8-39
    Мазут 5A 70
    100
    21,1
    37,8
    7,4-26,4
    4,91-13,7
    50-125
    42-72
    Мазут 5B 70
    100
    21.1
    37,8
    26,4-
    13,6-67,1
    125-
    72-310
    Мазут 6 122
    160
    50
    71,1
    97,4-660
    37,5-172
    450-3M
    175-780
    Газойли 70
    100
    21,1
    37,8
    13,9
    7,4
    73
    50
    Бензин а 60
    100
    15,6
    37,8
    0.88
    0,71
    Бензин b 60
    100
    15,6
    37,8
    0,64
    Бензин c 60
    100
    15,6
    37,8
    0,46
    0,40
    Глицерин 100% 68,6
    100
    20,3
    37,8
    648
    176
    2950
    813
    Глицерин 50% вода 68
    140
    20
    60
    5.29
    1,85 сП
    43
    Гликоль 68 52
    Глюкоза 100
    150
    37,8
    65,6
    7,7M-22M
    880-2420
    35M-100M
    4М-11М
    Гептаны-н 0
    100
    -17,8
    37,8
    0,928
    0,511
    Гексан-н 0
    100
    -17.8
    37,8
    0,683
    0,401
    Мед 100 37,8 73,6 349
    Соляная кислота 68 1,9
    Чернила, принтеры
    130
    37,8
    54,4
    550-2200
    238-660
    2500-10M
    1100-3M
    Изоляционное масло 70
    100
    21.1
    37,8
    24,1 макс
    11,75 макс
    115 макс
    65 макс
    Керосин 68 20 2,71 35
    Jet Fuel -30. -34,4 7,9 52
    Лард 100
    130
    37,8
    54,4
    62,1
    34,3
    287
    160
    Лард масло 100
    130
    37.8
    54,4
    41-47,5
    23,4-27,1
    190-220
    112-128
    Льняное масло 100
    130
    37,8
    54,4
    30,5
    18,94
    143
    93
    Меркурий 70
    100
    21,1
    37,8
    0,118
    0,11
    Метилацетат 68
    104
    20
    40
    0,44
    0,32 cp
    Метилиодид 20
    40
    0.213
    0,42 сП
    Масло Менхадена 100
    130
    37,8
    54,4
    29,8
    18,2
    140
    90
    Молоко 68 20 1,13 31,5
    Меласса A, первая 100
    130
    37,8
    54,4
    281-5070
    151-1760
    1300-23500
    700-8160
    Меласса B, вторая 100
    130
    37 .8
    54,4
    1410-13200
    660-3300
    6535-61180
    3058-15294
    Меласса C, черная полоса 100
    130
    37,8
    54,4
    2630-5500
    1320-16500
    12190-25500
    6120-76500
    Нафталин 176
    212
    80
    100
    0,9
    0,78 cp
    Neatstool oil 100
    130
    37.8
    54,4
    49,7
    27,5
    230
    130
    Нитробензол 68 20 1,67 31,8
    Нонан 0
    100
    -17,8
    37,8
    1,728
    0,807
    32
    Октан-н 0
    100
    -17,8
    37,8
    1,266
    0,645
    31,7
    Оливковое масло 100
    130
    37.8
    54,4
    43,2
    24,1
    200
    Пальмовое масло 100
    130
    37,8
    54,4
    47,8
    26,4
    Арахисовое масло 100
    130
    37,8
    54,4
    42
    23,4
    200
    Пентан-н 0
    80
    17,8
    26,7
    0,508
    0,342
    Петролатум 130
    160
    54.4
    71,1
    20,5
    15
    100
    77
    Петролейный эфир 60 15,6 31 (оценка) 1,1
    Фенол, карболовая кислота 11,7
    Пропионовая кислота 32
    68
    0
    20
    1,52 сП
    1,13
    31,5
    Пропиленгликоль 70 21.1 52 241
    Закалочное масло
    (типовое)
    100-120 20,5-25
    Рапсовое масло 100
    130
    37,8
    54,4
    54,1
    31
    250
    145
    Канифольное масло 100
    130
    37,8
    54,4
    324,7
    129,9
    1500
    600
    Канифоль (дерево) 100
    200
    37.8
    93,3
    216-11M
    108-4400
    1M-50M
    500-20M
    Кунжутное масло 100
    130
    37,8
    54,4
    39,6
    23
    184
    110
    Силикат натрия 79
    Хлорид натрия 5% 68 20 1,097 31,1
    Хлорид натрия 25% 60 15.6 2,4 34
    Гидроксид натрия (каустическая сода) 20% 65 18,3 4,0 39,4
    Гидроксид натрия (каустическая сода) 30% 65 18,3 10,0 58,1
    Гидроксид натрия (каустическая сода) 40% 65 18,3
    Соевое масло 100
    130
    37.8
    54,4
    35,4
    19,64
    165
    96
    Масло спермы 100
    130
    37,5
    54,4
    21-23
    15,2
    110
    78
    Серная кислота 100% 68
    140
    20
    60
    14,56
    7,2 cp
    76
    Серная кислота 95% 68 20 14,5 75
    Серная кислота 60% 68 20 4.4 41
    Серная кислота 20% 3М-8М
    650-1400
    Гудрон, коксовая печь 70
    100
    21,1
    37,8
    600-1760
    141- 308
    15М-300М
    2М-20М
    Гудрон, газовый газ 70
    100
    21,1
    37,8
    3300-66М
    440-4400
    2500
    500
    Гудрон, сосна 100
    132
    37.8
    55,6
    559
    108,2
    200-300
    55-60
    Толуол 68
    140
    20
    60
    0,68
    0,38 сП
    185,7
    Триэтиленгликоль 70 21,1 40 400-440
    185-205
    Скипидар 100
    130
    37,8
    54,4
    86,5-95,2
    39,9-44,3
    1425
    650
    Лак, лонжерон 68
    100
    20
    37.8
    313
    143
    Вода, дистиллированная 68 20 1.0038 31

    005 Вода6

    05

    15,6
    54,4
    1,13
    0,55
    31,5
    Вода, море 1.15 31,5
    Китовое масло 100
    130
    37,8
    54,4
    35-39,6
    19,9-23,4
    163-184
    97-112
    Xylene-o 68
    104
    20
    40
    0,93
    0,623 cp
    .

    В чем разница между динамической и кинематической вязкостью?

    Вязкость жидкости - важное физическое свойство, которое влияет на поведение жидкости при ее течении. Высоковязкие жидкости более устойчивы к деформации под действием напряжений и менее легко текут, в то время как менее вязкие жидкости текут легче и менее устойчивы к нагрузкам. Два основных способа измерения вязкости - это динамическая и кинематическая вязкость. Эти меры взаимосвязаны, но имеют разное применение.

    Моторное масло должно работать в различных физических условиях.

    Динамическая вязкость, также называемая абсолютной вязкостью, является наиболее часто используемым измерением. Он измеряет сопротивление жидкости течению - другими словами, внутреннее трение жидкости или насколько легко она может деформироваться под действием механического напряжения при данной температуре и давлении.Техническое определение динамической вязкости - это отношение напряжения сдвига к градиенту скорости. Когда сила прикладывается перпендикулярно к поверхности жидкости, она деформируется вбок или срезает. Легкость или сложность этой деформации - это динамическая вязкость, которую иногда называют просто вязкостью.

    Паскаль, единица давления, был назван в честь француза Блеза Паскаля.

    Кинематическая вязкость, напротив, измеряет сопротивление жидкости течению в присутствии силы тяжести. Этот показатель получается путем деления динамической вязкости жидкости на ее плотность. Чем выше вязкость жидкости, тем труднее она будет течь под действием силы тяжести и тем выше будет ее кинематическая вязкость.

    Динамическая и кинематическая вязкость выражаются в разных единицах измерения. В Международной системе единиц (СИ) единицами измерения динамической вязкости являются паскаль-секунды. Паскали - это измерение давления - в данном случае напряжения сдвига, приложенного к жидкости, - а секунды измеряют время, необходимое для деформации.Динамическую вязкость также можно измерить с помощью единицы, называемой пуазом, еще одной мерой зависимости давления от времени. Общая единица измерения кинематической вязкости - стоксы или квадратные сантиметры в секунду, хотя иногда используется единица СИ - квадратные метры в секунду.

    Использование этих измерений необходимо для различных реальных приложений.Например, важно составить краску с определенной динамической вязкостью, чтобы гарантировать, что ее можно смешивать и наносить с правильной толщиной. Измерение кинематической вязкости чаще всего используется в случаях, когда жидкость должна течь по трубе или смазывать механизмы, как в двигателе автомобиля.

    Продукты, такие как моторное масло, которые подвергаются различным физическим условиям, должны иметь определенную динамическую и кинематическую вязкость для правильного поведения.Вязкость жидкостей изменяется в зависимости от температуры и давления. Например, в холодную погоду масло густеет и становится более плотным, что затрудняет его растекание. В этой ситуации важно знать как динамическое, так и кинематическое соотношение вязкости, чтобы предсказать, как масло будет вести себя при различных температурах.

    .

    Вязкость масла - PetroWiki

    Абсолютная вязкость является мерой внутреннего сопротивления жидкости потоку. Для жидкостей вязкость соответствует неформальному понятию «толщина». Например, мед имеет более высокую вязкость, чем вода.

    Любой расчет, связанный с движением жидкостей, требует значения вязкости. Этот параметр необходим для условий, начиная от наземных систем сбора и заканчивая резервуаром. Можно ожидать, что корреляции для расчета вязкости позволят оценить вязкость в диапазоне температур от 35 до 300 ° F.

    Ньютоновские жидкости

    Жидкости, вязкость которых не зависит от скорости сдвига, описываются как ньютоновские жидкости. Корреляции вязкости, обсуждаемые на этой странице, применимы к ньютоновским жидкостям.

    Факторы, влияющие на вязкость

    Основными факторами, влияющими на вязкость, являются:

    • Состав масла
    • Температура
    • Растворенный газ
    • Давление

    Состав масла

    Обычно состав нефти описывается только плотностью API.Использование плотности в градусах API и характеристического фактора Ватсона обеспечивает более полное описание нефти. В таблице 1 показан пример масла с плотностью 35 ° API, который указывает на взаимосвязь вязкости и химического состава, напоминая, что характеристический коэффициент 12,5 отражает высокопарафиновые масла, а значение 11,0 указывает на нафтеновое масло. Очевидно, что химический состав, помимо плотности в градусах API, играет роль в поведении вязкости сырой нефти. На рис. 1 показано влияние характеристического фактора сырой нефти на вязкость мертвой нефти. В целом характеристики вязкости предсказуемы. Вязкость увеличивается с уменьшением удельного веса по API сырой нефти (при условии, что коэффициент характеристики Ватсона постоянен) и с понижением температуры. Воздействие растворенного газа заключается в снижении вязкости. Выше давления насыщения вязкость увеличивается почти линейно с давлением. На рис. 2 представлена ​​типичная форма вязкости пластовой нефти при постоянной температуре.

    • Рис. 1 - Вязкость мертвого масла в зависимости от плотности в градусах API и характеристического коэффициента Ватсона.

    • Рис. 2 - Типовая кривая вязкости масла.

    Расчет вязкости

    Для расчетов вязкости живых пластовых масел требуется многоступенчатый процесс, включающий отдельные корреляции для каждого этапа процесса. Вязкость мертвой или безгазовой нефти определяется как функция плотности и температуры сырой нефти по API.Вязкость насыщенной газом нефти определяется как функция вязкости мертвой нефти и газового фактора раствора (ГФ). Вязкость ненасыщенной нефти определяется как функция вязкости газонасыщенной нефти и давления выше давления насыщения.

    Фиг. 3 и 4 суммируют все корреляции вязкости мертвого масла, описанные в таблицах 2 и 3 . [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] ) [21] [22] [23] [24] [25] Результаты, предоставленные Рис.4 показывают, что метод, предложенный в Стандарте [23] , не подходит для сырой нефти с плотностью менее 28 ° API. Аль-Кафаджи и др. Метод [10] не подходит для нефти с плотностью менее 15 ° API, в то время как метод Беннисона [21] , разработанный в основном для нефти Северного моря с низкой плотностью API, не подходит для нефти с плотностью выше 30 ° API. .

    • Рис. 3 - Зависимость вязкости мертвого масла от температуры.

    • Фиг.4 - Вязкость мертвого масла в зависимости от плотности в градусах API.

    Сравнение различных методов

    На рис. 5 представлен аннотированный список наиболее часто используемых методов корреляции для расчета вязкости. Результаты иллюстрируют тенденцию изменения вязкости и температуры мертвого масла. При понижении температуры вязкость увеличивается. При температурах ниже 75 ° F метод Беггса и Робинсона [5] значительно переоценивает вязкость, тогда как метод Стэндинга фактически показывает снижение вязкости.Эти тенденции делают эти методы непригодными для использования в диапазоне температур, связанном с трубопроводами. Метод Била [3] [4] был разработан на основе наблюдений за вязкостью мертвого масла при 100 и 200 ° F и имеет тенденцию недооценивать вязкость при высокой температуре. Корреляции вязкости мертвой нефти несколько неточны, потому что они не учитывают химическую природу сырой нефти. Только методы, разработанные Стэндингом [23] и Фитцджеральдом [18] [19] [20] , учитывают химическую природу сырой нефти за счет использования характеристического фактора Ватсона.Метод Фитцджеральда был разработан для широкого диапазона условий, как подробно описано в таблицах 2, и 3 , и является наиболее универсальным методом, подходящим для общего использования корреляций, перечисленных в этой таблице. Глава 11 Справочника технических данных API - Переработка нефти [19] включает график, показывающий область применимости метода Фитцджеральда.

    • Рис. 5 - Аннотированный список обычно используемых корреляций вязкости мертвого масла.

    Метод Андраде [1] [2] основан на наблюдении, что логарифм вязкости, нанесенный на график в зависимости от обратной абсолютной температуры, образует линейную зависимость от точки несколько выше нормальной точки кипения до точки, близкой к точке замерзания масла, как показано на рис. 6 . Метод Андраде применяется посредством использования измеренных точек данных вязкости мертвого масла, полученных при низком давлении и двух или более температурах. Данные следует получать при температурах в интересующем диапазоне.Этот метод рекомендуется при наличии данных о вязкости мертвого масла.

    • Рис. 6 - Вязкость мертвого масла в зависимости от обратной абсолютной температуры.

    Методы определения вязкости масла до точки пузыря

    Таблицы 4 и 5 [5] [7] [8] [10] [11] [12] [13] [14] [15] [16] [17] [22] [23] [24] [25] [26] [27] [28] ) [29] предоставляют полное описание методов определения вязкости нефти до точки кипения.

    Корреляции для вязкости масла при температуре кипения обычно принимают форму, предложенную Чу и Конналли. [26] Этот метод формирует корреляцию с вязкостью мертвого масла и газовым фактором раствора, где A и B определяются как функции газового фактора раствора.

    .................... (1)

    Фиг. 7 и 8 показаны корреляции для параметров A и B, разработанные разными авторами. Фиг.9 показано влияние параметров корреляции A и B на прогноз вязкости. Этот график был разработан для вязкости мертвого масла 1,0 сП, чтобы можно было изучить влияние газового фактора раствора. Корреляции, предложенные Labedi, [7] [8] Khan et al. , [28] и Almehaideb [29] специально не используют вязкость мертвого масла и газовый фактор раствора и не были включены в этот график.

    • Фиг.7– Параметр корреляции вязкости при температуре пузыря A.

    • Рис. 8 - Параметр корреляции вязкости при температуре пузыря B.

    • Рис. 9 - Вязкость масла до точки пузыря в зависимости от газового фактора раствора.

    Корреляция для недонасыщенного масла

    Когда давление повышается выше точки кипения, масло становится недонасыщенным. В этой области вязкость масла увеличивается почти линейно с увеличением давления. Таблицы 6 и 7 [3] [4] [7] [8] [11] [12] [13] [14] [ 15] [16] [17] [19] [22] [25] [29] [30] [31] [32] [ 33] предоставляют корреляции для моделирования вязкости ненасыщенной нефти. На рис. 10 представлено визуальное сравнение методов.

    • Рис. 10 - Вязкость ненасыщенного масла в зависимости от давления.

    Номенклатура

    мк об = Вязкость масла при температуре кипения, м / л, сП
    мкм од = Вязкость мертвого масла, м / л, сП

    Список литературы

    1. 1.0 1,1 Andrade, E.N. да C. 1930. Вязкость жидкостей. Природа 125: 309–310. http://dx.doi.org/10.1038/125309b0
    2. 2,0 2,1 Reid, R.C., Prausnitz, J.M., и Sherwood, T.K. 1977. Свойства газов и жидкостей, третье издание, 435–439. Нью-Йорк: Высшее образование Макгроу-Хилла.
    3. 3,0 3,1 3,2 Бил, К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и ее попутных газов при температурах и давлениях нефтяного месторождения, No.3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE. Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием
    4. 4,0 4,1 4,2 Стоя, М. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание. Ричардсон, Техас: Общество инженеров-нефтяников AIME
    5. 5.0 5,1 5,2 Beggs, H.D. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
    6. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
    7. 7,0 7,1 7,2 7,3 Лабеди Р. 1982. PVT-корреляция африканской сырой нефти.Кандидатская диссертация. 1982 г. Докторская диссертация, Колорадская горная школа, Ледвилл, Колорадо (май 1982 г.).
    8. 8,0 8,1 8,2 8,3 Лабеди, Р. 1992. Улучшенные корреляции для прогнозирования вязкости легкой нефти. J. Pet. Sci. Англ. 8 (3): 221-234. http://dx.doi.org/10.1016/0920-4105(92)
    9. -Y
    10. ↑ Нг, J.T.H. и Эгбогах, Э. 1983. Улучшенная корреляция вязкости и температуры для сырой нефти. Представлено на ежегодном техническом совещании, Банф, Канада, 10–13 мая.PETSOC-83-34-32. http://dx.doi.org/10.2118/83-34-32
    11. 10,0 10,1 10,2 Аль-Хафаджи, А.Х., Абдул-Маджид, Г.Х. и Хассун, С.Ф. 1987. Корреляция вязкости для мертвой, живой и ненасыщенной сырой нефти. J. Pet. Res. (Декабрь): 1–16.
    12. 11,0 11,1 11,2 Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Докторская диссертация, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
    13. 12,0 12,1 12,2 Петроски Г. Младший и Фаршад, Ф.Ф. 1995. Корреляции вязкости для сырой нефти Мексиканского залива. Представлено на симпозиуме SPE по производственным операциям, Оклахома-Сити, Оклахома, США, 2-4 апреля. SPE-29468-MS. http://dx.doi.org/10.2118/29468-MS
    14. 13,0 13,1 13,2 Kartoatmodjo, R.S.T. 1990. Новые соотношения для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
    15. 14,0 14,1 14,2 Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
    16. 15,0 15,1 15,2 Картоатмоджо, Т. и З., С. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Oil Gas J. 92 (27): 51–55.
    17. 16,0 16,1 16,2 Де Гетто, Г.и Вилла, М. 1994. Анализ надежности на корреляции PVT. Представлено на Европейской нефтяной конференции, Лондон, Великобритания, 25-27 октября. SPE-28904-MS. http://dx.doi.org/10.2118/28904-MS
    18. 17,0 17,1 17,2 Де Гетто, Г., Паоне, Ф. и Вилла, М., 1995. Корреляция давления-объема-температуры для тяжелых и сверхтяжелых масел. Представлено на Международном симпозиуме по тяжелой нефти SPE, Калгари, 19-21 июня. SPE-30316-MS. http://dx.doi.org/10.2118/30316-MS
    19. 18,0 18,1 Фитцджеральд, Д.Дж. 1994. Метод прогнозирования для оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
    20. 19,0 19,1 19,2 19,3 Daubert, T.E. и Даннер, Р. П. 1997. Книга технических данных API - Переработка нефти, 6-е издание, гл. 11. Вашингтон, округ Колумбия: Американский институт нефти (API).
    21. 20.0 20,1 Саттон, Р.П. и Фаршад, Ф. 1990. Оценка полученных эмпирическим путем PVT свойств для сырой нефти Мексиканского залива. SPE Res Eng 5 (1): 79-86. SPE-13172-PA. http://dx.doi.org/10.2118/13172-PA
    22. 21,0 21,1 Беннисон Т. 1998. Прогноз вязкости тяжелой нефти. Представлено на конференции IBC по разработке месторождений тяжелой нефти, Лондон, 2–4 декабря.
    23. 22,0 22,1 22,2 Эльшаркави, А. и Алихан А.A. 1999. Модели для прогнозирования вязкости ближневосточной сырой нефти. Топливо 78 (8): 891–903. http://dx.doi.org/10.1016/S0016-2361(99)00019-8
    24. 23,0 23,1 23,2 23,3 Whitson, C.H. и Брюле, М.Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
    25. 24,0 24,1 Бергман Д.Ф. 2004. Не забывайте вязкость. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
    26. 25,0 25,1 25,2 Диндорук Б. и Кристман П.Г. 2001. PVT-свойства и корреляции вязкости нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября - 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
    27. 26,0 26,1 Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol.216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
    28. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
    29. 28,0 28,1 Хан, С.А., Аль-Мархун, М.А., Даффуаа, С.О. и другие. 1987. Корреляции вязкости для сырой нефти Саудовской Аравии. Представлен на выставке Middle East Oil Show, Бахрейн, 7-10 марта. SPE-15720-MS. http://dx.doi.org/10.2118/15720-МС
    30. 29,0 29,1 29,2 Almehaideb, R.A. 1997. Улучшенная корреляция PVT для сырой нефти ОАЭ. Представлено на выставке и конференции Middle East Oil Show, Бахрейн, 15-18 марта. SPE-37691-MS. http://dx.doi.org/10.2118/37691-MS Ошибка цитирования: недопустимый тег ; имя "r29" определено несколько раз с разным содержанием Ошибка цитирования: Недействительный тег ; имя "r29" определено несколько раз с разным содержанием
    31. ↑ Кузель, Б.1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
    32. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
    33. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
    34. ↑ Абдул-Маджид, Г.Х., Кларк, К.К. и Салман, Н.Х. 1990. Новая корреляция для оценки вязкости ненасыщенной сырой нефти.J Can Pet Technol 29 (3): 80. PETSOC-90-03-10. http://dx.doi.org/10.2118/90-03-10

    Интересные статьи в OnePetro

    Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

    Внешние ссылки

    Используйте этот раздел для предоставления ссылок на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

    См. Также

    Вязкость газа

    Трение жидкости

    Плотность масла

    Свойства нефтяной жидкости

    PEH: Масло_Система_Взаимосвязи

    .

    % PDF-1.4 % 1 0 obj >>> endobj 2 0 obj > поток 2015-01-28T15: 24: 11-06: 002015-01-28T15: 24: 15-06: 002015-01-28T15: 24: 15-06: 00Adobe InDesign CS6 (Macintosh) 1uuid: 82e2bc5c-d4d2-ae42- a2b2-68dcf2b86bbcadobe: docid: indd: cbb3e55a-7ae7-11df-aa2f-835f4b84b6a5xmp.id: 80D686080D206811822AA19511AB46F5proof: pdf

  • adobe: docid: indf2c9-bf6f4-bf668
  • Adobe: docid: indd: 7bed4fba-6256-11d9-a753-89b2188038f9proof: pdf
  • xmp.iid: 0A8011740720681180839FFC820F1471xmp.did: 17014E8F382068118083AEDF8A9175E9adobe: docid: indd: cbb3e55a-7ae7-11df-aa2f-835f4b84b6a51default / приложение для Macintosh
  • -06: преобразованное приложение для Macintosh для Macintosh в формат / 11Dinfesto6 00
  • application / pdf Adobe PDF Library 10.0.1 Ложь конечный поток endobj 5 0 obj > endobj 3 0 obj > endobj 7 0 obj > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Тип / Страница >> endobj 8 0 объект > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 9 0 объект > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 10 0 obj > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 11 0 объект > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0,0 585,0 783,0] / Тип / Страница >> endobj 12 0 объект > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 13 0 объект > / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 99 0 объект > поток HWk۸> ~ -RE`II0S3% WO_ {IIel-s = r ~% dOOgK] ~ Bbx = ʂ $ (8Ϭoz @, q ك v2pihp)) Ug [4Ih`pe0Xvn + oQ Ù6 "fr ֍ G.۷o9ag ܄ m [Ǔ +` ޸ n 俅 qd ݯ {Le "vbYecXhF

    .

    Динамическая вязкость обычных жидкостей

    Абсолютная или динамическая вязкость некоторых обычных жидкостей при температуре 300 K указаны ниже:

    Жидкость Абсолютная вязкость
    (Н · с / м 2 , Па · с) (сантипуаз, сП) (10 -4 фунт / с · фут)
    Уксусная кислота 0,001155 1.155 7,76
    Ацетон 0,000316 0,316 2,12
    Спирт этил (этанол) 0,001095 1,095 7,36
    0,0008 Спирт, метил (метанол) 0,56 3,76
    Спирт пропил 0,00192 1,92 12,9
    Бензол 0.000601 0,601 4,04
    Кровь 0,003 - 0,004
    Бром 0,00095 0,95 6,38
    Дисульфид углерода 0,00036 0,36 0,00036 0,36
    Тетрахлорид углерода 0,00091 0,91 6,11
    Касторовое масло 0,650 650
    Хлороформ 0.00053 0,53 3,56
    Декан 0,000859 0,859 5,77
    Додекан 0,00134 1,374 9,23
    Эфир 0,000223 0,000223
    Этиленгликоль 0,0162 16,2 109
    Трихлорфторметановый хладагент R-11 0.00042 0,42 2,82
    Глицерин 0,950 950 6380
    Гептан 0,000376 0,376 2,53
    0,00029 0,00029 0,00029
    Керосин 0,00164 1,64 11,0
    Льняное масло 0,0331 33.1 222
    Ртуть 0,0015 1,53 10,3
    Молоко 0,003
    Октан 0,00051 0,51 3,43
    8,0 54
    Пропан 0,00011 0,11 0,74
    Пропилен 0.00009 0,09 0,60
    Пропиленгликоль 0,042 42
    Толуол 0,000550 0,550 3,70
    Скипидар 0,001375 900,24
    Вода, пресная 0,00089 0,89 6,0

    Жидкости - температура и динамическая вязкость

    • Уксусная кислота
      Ацетон
      Анилин
      Бензол
      Бромбензол
      Дисульфоксид углерода
      N-Бутилкарбонат Тетрахлорид углерода
      Хлороформ
      Диэтиловый эфир

    • Этанол
      Этилацетат
      Этилформиат
      N-гексан
      н-гексадекан.
      Ртуть
      Метанол
      Нитробензол
      N-Октан
      Масло касторовое
      Масло оливковое
      N-Пентан
      N-Пропан
      Серная кислота
      Толуол

    .

    Смотрите также