Какая плотность электролита должна быть в аккумуляторе
Плотность электролита в аккумуляторе - какая должна быть
Автомобильный аккумулятор предназначен для обеспечения бортовой сети транспортного средства и накопления энергии, которую вырабатывает генератор. Больше века кислотно-свинцовые батареи применяются в автомобильной промышленности и по-прежнему удерживают лидирующие позиции. Причина долголетия проста – высокая эффективность при дешевой себестоимости. Подобные батареи состоят из гальванических элементов, которые взаимодействуя с водным раствором серной кислоты, вырабатывают электрическую энергию. Такие источники питания имеют стабильную плотность электролита в аккумуляторе, отличаются высокой морозоустойчивостью и длительным сроком работы.
Плотность электролита
Электролит — это основной компонент аккумулятора, а именно, вещество, проводящее электрический ток вследствие распада на ионы в растворе. Основным свойством, которое необходимо знать при использовании АКБ в автомобиле, является плотность электролита — в науке данный термин означает соотношение массы жидкости к занимаемому объему. В АКБ роль раствора выполняет электролит, состоящий из кислоты и дистиллированный воды.
Непосредственно плотность зависит от температуры электролита (чем ниже температура, тем выше плотность). Работа аккумулятора – это чередование циклов разрядки и зарядки, во время которых происходит широкий спектр химических реакций. При разрядке батареи химическая энергия трансформируется в электрический ток, при зарядке электричество превращается в химическую энергию. Данные процессы оказывают серьезное влияние на плотность электролитического раствора. Процесс зарядки повышает плотность электролита, разряд элемента питания – понижает это значение.

Температура замерзания электролита в зависимости от плотности — Таблица 1
С помощью прибора ареометра можно замерить плотность электролита в аккумуляторе, а также точно определить степень зарядки АКБ. При полном разряде батареи, показатель плотности падает настолько, что между пластинами остается практически дистиллированная вода. Сульфат свинца, который избыточно вырабатывается во время разряда, полноценно не расходуется при зарядке батареи и покрывает свинцовые пластины белым налетом. Сульфатация негативно влияет на емкость аккумулятора, сокращая рабочий ресурс источника питания. Свинцовые пластины со временем начинают осыпаться, что приводит к короткому замыканию внутри батареи.
Поскольку электролит является смесью воды и кислоты, то плотность электролита в аккумуляторе может возрастать. При зарядке АКБ происходит электролиз – выкипание дистиллированной воды из корпуса, благодаря чему концентрация кислоты в растворе возрастает, увеличивая его плотность. Печальная перспектива электролиза очевидна. Потеря воды неизбежно приведет к уменьшению уровня жидкости. Свинцовые пластины оголятся и вступят в химическую реакцию с кислородом, что приведет к осыпанию свинца и выходу батареи из строя. Именно поэтому важно остановить зарядку батареи при первых признаках кипения жидкости и своевременно доливать дистиллят при низком уровне электролита в обслуживаемых батареях.
Какая должна быть плотность электролита в аккумуляторе
Отечественные автовладельцы ведут отчаянный спор о правилах эксплуатации аккумуляторных батарей. Количество автомобилей стремительно растет, и каждый водитель пытается сформулировать свою позицию по данному вопросу. Даже среди профильных специалистов мнения существенно разнятся. Поэтому будем отталкиваться от рекомендаций производителей, ведь только разработчики элементов питания способны сформулировать нюансы эксплуатации собственных изделий. Любая новая АКБ имеет сопроводительную инструкцию, в которой конкретно прописаны мероприятия по техническому обслуживанию.
Аккумуляторная батарея негативно воспринимает и повышенную, и пониженную плотность электролита. Высокий показатель плотности активизирует химические процессы, делая электролит «агрессивным», что приводит к значительному снижению рабочего ресурса изделия. Низкая плотность уменьшит емкость АКБ, что способствует проблемам запуска силового агрегата, особенно в зимнее время. Именно по этой причине необходимо придерживаться значений, рекомендованных производителем. Плотность полностью заряженного нового аккумулятора должна составлять 1.27 г/см3 при температуре +25 °С. При жарком климате допускается понижение плотности на 0,01 г/см3 , а при морозах — на 0,01 — 0,02 г/см3 больше.
Плотность электролита в аккумуляторе зимой и летом
Современный аккумулятор – устройство, сбалансированное и беспричинно корректировать электролит бессмысленно. Плотность электролита в аккумуляторе 1.27 г/см3 не позволит кристаллизоваться жидкости до –50°С. Подобные экстремальные температуры встречаются только на крайнем севере. В таких регионах плотность увеличивают, чтобы предотвратить замерзание электролита. Лучше своевременно заряжать батарею и не допускать разряда, чтобы показатель плотности держался в номинальном значении. Поскольку температура окружающей среды изменчива, то для замера плотности электролита предлагаем использовать специальную таблицу с поправками.

Плотность электролита в аккумуляторе зимой и летом — Таблица 2
Как проверить плотность электролита в аккумуляторе
Данную процедуру необходимо выполнять с периодичностью в три месяца или каждые 15-20 тыс. км, дабы контролировать работоспособность элемента питания. Также замеры производят при покупке новой батареи или при возникновении проблем во время запуска двигателя. Проверку можно выполнить на станции технического обслуживания или самостоятельно в условиях гаража. Перед проверкой показателя электролита следует полностью зарядить аккумулятор и сделать временную паузу длительностью шесть часов. Ведь во время зарядки плотность электролита повышается и информация будет некорректной. Для процедуры измерения потребуется ареометр, который можно приобрести в любом автомагазине. Данное устройство вполне доступно, так как имеет низкую цену.
Для работы потребуется:
- Ареометр
- Защитные очки
- Сухая хлопчатобумажная ткань
- Резиновые перчатки.
Перед измерением источник питания необходимо установить на ровную поверхность и выкрутить заглушки. Далее следует рукой сжать резиновую грушу прибора и опустить наконечник ареометра в крайнюю банку АКБ. Погрузив устройство в электролит, грушу можно отпустить. Разряженный воздух в колбе, начнёт засасывать жидкость из банки. Теперь нужно визуально оценить уровень раствора в ареометре. Количество жидкости должно позволить измерительному поплавку свободно плавать внутри прибора.
После того, как поплавок прекратит колебательные движения, можно зафиксировать показатель плотности электролита, который должен составлять 1,24 – 1,29 г/см3. Если цифры существенно отличаются, то следует выполнить коррекцию плотности раствора. Аналогичные процедуры необходимо произвести со всеми банками аккумулятора. Следует помнить, что любые операции с электролитом необходимо выполнять в защитных перчатках и очках. После завершения работ пластиковый корпус АКБ рекомендуется насухо протереть чистой тряпкой, дыбы исключить саморазряд батареи.
Коррекция плотности электролита
Эксплуатация автомобиля подразумевает циклическую нагрузку на АКБ, во время которой катализатор электрохимического процесса изменяет свою структуру. Поскольку электролит состоит из кислоты(35%) и дистиллированной воды(65%), то это соотношение способно изменяться в зависимости от степени заряженности источника энергии. Во время движения транспортного средства генератор постоянно подает на батарею электрический ток.
Когда емкость восстанавливается, начинается процесс электролиза, во время которого электролит закипает и испаряется. Аналогичный процесс происходит при длительной зарядке специальным устройством. Количество воды в растворе уменьшается, из-за чего увеличивается плотность и убавляется объем жидкости. Чтобы восстановить номинальное значение необходимо долить дистиллированную воду в каждую банку батареи.
Причины снижения плотности электролита
Чтобы поддержать работоспособность элемента питания автовладельцы добавляют в батарею дистиллированную воду, забывая проверить показатели плотности. Большая концентрация воды приводит к сильному электролизу, во время которого вместе с водой начинает испаряться серная кислота, что снижает плотность электролита. Со временем содержание кислоты в растворе становится критическим и раствор перестает выполнять функцию катализатора химических процессов, что негативно отражается на функциональности аккумулятора.
Как повысить плотность электролита в аккумуляторе в домашних условиях
Любая батарея состоит из нескольких банок, поэтому, чтобы поднять плотность электролита в аккумуляторе, придется корректировать электролитический раствор в каждой отдельной емкости. С помощью спринцовки жидкость выкачивается и отправляется в мерную емкость. После чего в банку заливается аналогичное количество нового электролита, который в готовом виде можно приобрести в магазине. Данная операция выполняется с каждой банкой, после чего аккумулятор необходимо зарядить в течение 30 минут, чтобы раствор перемешался. Затем после двухчасовой паузы повторно измеряем показатели плотности. При необходимости нужно повторить коррекцию электролита. Важно помнить, что разность плотности в банках не должна превышать 0.01 г/см3.
Бывают ситуации, когда показатель плотности падает ниже значения 1.18 г/см3. В таких случаях вышеописанная технология не поможет восстановить работоспособность батареи – необходима полная замена электролитического раствора.
Как поднять плотность электролита зарядным устройством
Существует еще один способ, которым следует поделиться. Он требует меньших трудозатрат и больше времени. Суть процесса проста – необходимо поставить батарею на зарядку, выставив минимальный ток (не более 1A). Достигнув полного заряда, аккумуляторная батарея начнет «кипеть». При этом дистиллированная вода будет активно испаряться. Уровень жидкости в корпусе постепенно снизится. Вместо испарившейся воды, доливаем электролит номинальной плотности. Процесс очень длительный, однако, за несколько суток можно добиться необходимого результата.
Как заменить электролит в аккумуляторе
С помощью замены электролита в аккумуляторе владелец автомобиля может значительно продлить рабочий ресурс АКБ. Замена потребует наличие следующих компонентов:
- Стеклянная линейка с узкой горловиной
- Емкость с дистиллятом
- Электролит необходимой плотности
- Зарядное устройство
- Ареометр
- Пищевая сода
- Средства защиты: (перчатки, фартук, очки)
- Резиновая груша
- Чистая ветошь.
Снятый с машины аккумулятор, тщательно протираем чистой ветошью, удаляя с поверхности грязь и пыль. Рекомендуется производить замену при комнатной температуре. После демонтажа крышек с банок производится откачка раствора. Переворачивать АКБ категорически запрещено, ведь химический осадок, скопившийся на дне, способен вызвать короткое замыкание в пластинах, после чего батарея придёт в негодность. Для удаления остатков электролита необходимо на дне каждой банки просверлить небольшое отверстие, через которое вытекут остатки жидкости.
Теперь в пустые банки заливается дистиллят, чтобы тщательно промыть внутренности батареи. Далее необходимо запаять отверстия специальным пластиком стойким к воздействию кислот. С помощью стеклянной воронки заливаем до необходимого уровня новый электролит, после чего аккумулятор ставится на зарядку. Для восстановления оптимальной емкости источник питания следует разрядить и снова зарядить. Заряженная полностью батарея должна выдавать напряжение 12.7 В. Процесс замены окончен, аккумулятор можно устанавливать на автомобиль.
Использованный электролит необходимо правильно утилизировать. Для этой цели потребуется сода, которая является щелочью и способна нейтрализовать разрушительное действие серной кислоты. В емкость с раствором высыпаем половину пачки соды и наблюдаем бурную химическую реакцию. После окончания бурления получившуюся субстанцию можно вылить в канализацию.
И напоследок совет: своевременно проверяйте плотность электролита своего аккумулятора и регулярно заряжайте батарею. Тогда источник питания «отблагодарит» своего хозяина длительной и бесперебойной работой.
какая должна быть, как проверить, как поднять плотность
Какая плотность электролита должна быть в аккумуляторе
Добраться до электролита, измерить плотность и отрегулировать показатель можно только в обслуживаемых аккумуляторах. Они изготавливаются по технологии WET или иначе мокрых банок. Представляют собой пластиковый корпус, поделенный на 6 отсеков (банок). В отсеках находятся пакеты пластин, залитые электролитом. Каждая банка это отдельный маленький аккумулятор напряжением 2,1 вольт, соединённые последовательно. Поэтому на крайних контактах в сумме получается 12,5 – 12,6 В. Сверху отсеки закрыты крышкой с пробками. Через эти пробки можно контролировать состояние электролита. Внешне всё выглядит как пластиковая коробка с ручкой, пробками и двумя контактами плюс и минус.
Залитые свинцово – кислотные батареи до сих пор остаются самыми распространёнными АКБ (аккумуляторными батареями). Их используют в легковых и гольф автомобилях, газонокосилках и другой садовой технике, грузовиках и на водном транспорте. Имеют две отличительные особенности – низкую цену и необходимость обслуживания. В составе электролита никаких секретов нет, это водный раствор обыкновенной серной кислоты h3SO4.
Показатель плотности измеряют в весе одного кубического сантиметра раствора. В продаже имеется электролит для заливки плотностью - 1,28 г/см3 и так называемый, корректирующий - 1,33. Для изготовления электролита плотностью 1,28 при температуре 25 °С смешивают 0,285 мл кислоты с 0,781 лм дистиллированной воды.
Оптимальная плотность очень важна для стабильной и долговечной работы аккумулятора. Она зависит от уровня заряда и температуры окружающей среды при измерении. Достоверные данные можно получить только на полностью заряженной батарее с температурой электролита 25 °С.
Немаловажным фактором являются условия эксплуатации. Для жаркого и холодного климата используют батареи с различной плотностью. В условия Крайнего Севера при сильных морозах она должна быть 1,3 и снижаться до 1,23 в жарком климате при высокой температуре. Это связано с поведением электролита при различных температурах. На морозе он должен не замерзнуть и не закипеть в жару. Для эксплуатации в средних климатических условиях допускается плотность 1,27 полностью заряженной АКБ. На разряженной показатель снижается до 1,11 и ниже.
Как проверить плотность электролита аккумулятора
Обслуживаемые АКБ требуют повышенного внимания. Они склонны к выкипанию и разбрызгиванию электролита. Плотность в банках может разнонаправленно меняться. Поэтому замеры необходимо проводить через каждые 15 – 20 тыс. км пробега или весной и осенью.
Для измерения необходим ареометр, очки, резиновые или силиконовые перчатки и старая одежда. Электролит очень агрессивен. В зависимости от чувствительности, при попадании на кожу его можно не почувствовать. А вот глаза и слизистые оболочки нужно беречь. Попадание на одежду на первый взгляд незаметно. Но даже небольшие капли проявят себя. После стирки обнаружатся большие и маленькие дырки на любимых джинсах, рубашке или куртке.
Ареометр – единственный прибор для измерения плотности электролита. Состоит из стеклянной колбы с помещенным внутрь денсиметром. Сверху находится резиновая груша. Денсиметр, это запаянная стеклянная трубка с металлическими шариками в нижней части и утончённым верхом. В утонченной части расположена шкала.
Для измерения нужно открутить пробки. Нажать на грушу и поместить в заливное отверстие кончик ареометра. Отпустить грушу и набрать электролит до всплывания денсиметра. Он не должен касаться донышка и стенок колбы. Ареометр нужно держать в вертикальном положении. Денсиметр будет плавать, на плотность укажет шкала на уровне электролита. Предварительный замер укажет на состояние аккумулятора. Обычно крайние банки разряжены сильнее и плотность в них меньше средних. После замера надо проверить уровень электролита, если необходимо долить дистиллированную воду.
Состояние батареи можно оценить только полностью зарядив её. Заряжаем АКБ и даём отдохнуть пару часов. Зарядка сопровождается кипением и повышением температуры электролита. Для достоверного замера газы должны выйти, температура упасть. После остывания можно проводить измерение. В зависимости от этих результатов можно сделать выводы о состоянии АКБ.
Таблица плотности электролита в аккумуляторе
Состояние можно оценить сопоставив плотность и напряжение аккумулятора, это делают руководствуясь данными таблицы:
Плотность электролита, г/см3 |
Напряжение без нагрузки, В |
Напряжение под нагрузкой 100 А, В |
Уровень заряда, % |
1,11 |
11,7 |
8,4 |
0 |
1,12 |
11,75 |
8,5 |
6 |
1,13 |
11,8 |
8,6 |
12 |
1,14 |
11,85 |
8,8 |
19 |
1,15 |
11,9 |
9 |
25 |
1,16 |
12 |
9,2 |
31 |
1,17 |
12 |
9,3 |
37 |
1,18 |
12,1 |
9,4 |
44 |
1,19 |
12,2 |
9,6 |
50 |
1,2 |
12,25 |
9,7 |
56 |
1,21 |
12,3 |
9,9 |
62 |
1,22 |
12,35 |
10 |
69 |
1,23 |
12,4 |
10,2 |
75 |
1,24 |
12,47 |
10,3 |
81 |
1,25 |
12,5 |
10,5 |
87 |
1,26 |
12,6 |
10,6 |
94 |
1,27 |
Не менее 12,66 |
10,8 |
100 |
Не всегда возможно создать идеальные условия для зарядки и измерения плотности электролита. В большинстве случаев применяют поправки. Для этого пользуются таблицей приведения полученных измерений.
Температура электролита от и до, °С |
Температурная поправка, г/см3 |
+ 47 + 50 |
+ 0,02 |
+ 33 + 46 |
+ 0,01 |
+ 18 + 32 |
0 |
+ 4 + 17 |
- 0,01 |
+ 3 – 10 |
- 0,02 |
– 11 – 25 |
- 0,03 |
– 26 – 39 |
-0,04 |
– 40 – 50 |
-0,05 |
На что влияет плотность электролита в аккумуляторе
Отрицательно влияют на аккумулятор колебания плотности в обе стороны.
При повышенной бурный химический процесс ведет к выкипанию воды и разрушению пластин. Необходимо постоянно доливать дистиллированную воду. Срок эксплуатации АКБ резко снижается.
Низкая затрудняет пуск двигателя, а при отрицательной температуре электролит может попросту замерзнуть. В теплый период года затруднения можно не заметить, но зимой стартер не сможет прокрутить двигатель. Электролит плотностью 1,11 замерзает при температуре всег лишь - 10 °С. Аккумулятор с пониженной плотностью полностью не заряжается, что провоцирует сульфатацию пластин.
Соблюсти баланс помогает утвердившаяся практика использования электролита различной плотности в зависимости от климата:
- Очень холодный и в условиях Крайнего Севера 1,3
- Умеренный климат - большая часть РФ от 1,26 до 1,27
- Южные районы страны от 1,23 до 1,25
- Минимально возможное значение 1,23 г/см3
Как следствие, ненормированная плотность приводит к преждевременной сдаче аккумулятора в утиль.
Как поднять плотность электролита
Первое, что необходимо сделать - попробовать поднять плотность полностью зарядив аккумулятор. Открыть пробки, при необходимости долить дистиллированной воды и подключить зарядное устройство. Полная зарядка может привести к следующим результатам:
- Плотность во всех банках одинакова.
- Во всех ниже нормы.
- Различается более на 0,1 г/см3 и более.
В первом случае каких либо действий не требуется.
Во втором случае потребуется специфическая зарядка. На поверхности свинцовых пластин уже хорошо потрудившихся аккумуляторов откладывается сульфат свинца. В таком состоянии батарею невозможно зарядить полностью. Её необходимо разрядить и провести зарядку импульсным устройством автоматически переключив его на Десульфатацию.
Обычным устройством это сделать труднее и процесс длится дольше. Для этого на 2 часа установить ток зарядки в 1/10 от ёмкости АКБ. Например для аккумулятора 65 Ач, ток зарядки выставить 6,5 А. После этого снизить ток до 2 А и заряжать 8 – 12 часов. Дать отстояться батарее до комнатной температуры измерить плотность. Если не пришла в норму, опять разрядить и провести ступенчатую зарядку.
Десульфатация обычно проводится в два – три цикла. Отрицательный результат говорит о том, что с АКБ придётся расстаться. Можно ещё попробовать полностью слить электролит, промыть дистиллированной водой и залить новый. Но этого обычно хватает ненадолго.
В третьем случае, когда плотность в банках разница более чем на 0,1 надо попробовать провести десульфатацию. Не помогло – откорректировать. Для этого приобрести корректирующий электролит плотностью 1,33 – 1,4 и дистиллированную воду. В банках с ненормальной плотностью откачать по 20 мл электролита. Для повышения добавить корректирующий, для снижения дистиллят. Зарядить 30 минут, дать отстояться ещё полчаса и замерить. Скорее всего к успеху приведут несколько корректировок.
Усилия ни к чему не приведут, а аккумулятор окажется непригоден при буром цвете электролита. В этом случае можно не предпринимать никаких действий.
Не сильно изношенным аккумуляторам десульфатация и корректировка значительно продлевает жизнь. Если усилия не увенчались успехом, то с батарей нужно расстаться немедленно и без сожаления. Иначе непредвиденный отказ станет неприятным сюрпризом.
Срок службы АКБ при условии соблюдения элементарных правил до пяти лет. В автомобиле нужно контролировать напряжение, не допускать чрезмерного и нулевого заряда батареи. Периодически заряжать и следить за плотностью электролита. При таком отношении аккумулятор служит долго и безотказно.
самый подробный обзор ?, какие должны быть в заряженном АКБ или при разрядке зимой и летом (таблицы с показателями и видео)
Плотность электролита в аккумуляторе автомобиля представляет собой соотношение химически активного вещества и дистилированной воды, залитых в банки АКБ в определенной пропорции. Данный параметр устанавливается в зависимости от условий использования транспортного средства и совокупности требований к автомобилю.
Какие должны быть плотность и уровень электролита
В регионах с умеренным климатом рабочий параметр плотности электролита должен составлять от 1,25 до 1,27 г/см3 ±0,01 г/см3.
Важно знать
Следует учитывать, что чем ниже плотность электролита в полностью заряженной батарее авто, тем дольше она прослужит.
Плотность кислоты с водой в банках автомобильного аккумулятора разная, и зависит от нескольких параметров:
- заряженность батареи;
- процентного содержания серы — чем больше концентрация раствора, тем более высокая плотность жидкости;
- температуры раствора — чем больше это значение, тем ниже уровень плотности.
Оптимальный уровень электролита в аккумуляторе машины должен быть таким, чтобы в каждой банке раствор покрывал пластины с запасом 10-15 мм.
Таблица: плотность в зависимости от климатической зоны
Климатический район (среднемесячная температура воздуха в январе, °C) | Время года | Заливаемого | Полностью заряженная батарея | Батарея разряжена | |
на 25% | на 50% | ||||
Очень холодный (от -50 до -30) | Зима | 1,28-1,29 | 1,30 | 1,26 | 1,22 |
Лето | 1,27 | 1,28 | 1,24 | 1,20 | |
Холодный (от -30 до -15) | Круглый год | 1,26 | 1,27 | 1,24 | 1,20 |
Умеренный (от -15 до -8) | Круглый год | 1,24 | 1,27 | 1,24 | 1,20 |
Теплый влажный (от 0 до +4) | Круглый год | 1,22 | 1,23 | 1,19 | 1,05 |
Жаркий сухой (от +4 до +15) | Круглый год | 1,20 | 1,23 | 1,19 | 1,15 |
Плотность электролита в аккумуляторе зимой
В странах, где зимой температура воздуха опускается до -30 градусов данное значение должно быть на 0,01 г/см3 больше, а в областях с жарким климатом — на 0,01 г/см меньше. Если в зимнее время года температура воздуха опускается до -50 °C, то уровень плотности рекомендуется увеличивать до 1,29 г/см3. Если данный показатель будет меньше, это станет причиной снижения электродвижущей силы и возможного замерзания рабочего раствора.
Важно знать
Слишком высокий уровень плотности раствора электролита в банках аккумуляторной батареи повлияет на ее срок службы. Пониженный параметр становится причиной падения напряжения и трудному пуску силового агрегата.
Если плотность рабочего раствора в холодное время года снизится до 1,09 г/см3, это станет причиной замерзания аккумуляторной батареи уже при -7 градусах. Надо учитывать, что кратковременные поездки на транспортном средстве, составляющие менее 30 минут, не дают возможности рабочей жидкости полностью прогреться и эффективно заряжаться. Поэтому разряд электролита при низких температурах ежедневно растет, что серьезно влияет на уровень плотности.
Полезно знать
Для нового и исправного аккумулятора нормальная величина изменения плотности рабочей жидкости при полном заряде и разряжении составляет в диапазоне от 0,15 до 0,16 г/см3.
Таблица: температура замерзания электролита в зависимости от его плотности
Плотность электролита (г/см3) | Степень заряженности (%) | Температура замерзания, °C |
1,11 | 0,0 | -7 |
1,12 | 6 | -8 |
1,13 | 12,56 | -9 |
1,14 | 19 | -11 |
1,15 | 25 | -13 |
1,16 | 31 | -14 |
1,17 | 37,5 | -16 |
1,18 | 44 | -18 |
1,19 | 50 | -24 |
1,2 | 56 | -27 |
1,21 | 62,5 | -32 |
1,22 | 69 | -37 |
1,23 | 75 | -42 |
1,24 | 81 | -46 |
1,25 | 87,5 | -50 |
1,26 | 94 | -55 |
1,27 | 100 | -60 |
Плотность электролита в аккумуляторе летом
Важно знать
Данный параметр для теплых и влажных климатических регионов должен составить не менее 1,22 г/см3 (эта величина является критической).
В конце весны и летом температура в моторном отсеке более высокая, что приводит к испарению воды из кислотного раствора и более активному протеканию электрохимических процессов в аккумуляторе. Это становится причиной повышенной токоотдачи.
В жаркое время года из-за высокой температуры особо остро стоит проблема обезвоживания для аккумулятора. Поскольку высокий уровень плотности негативно влияет на свинцовые пластины обслуживаемых и необслуживаемых батарей, рекомендуется, чтобы этот параметр имел отклонение на 0,02 г/см3 меньше номинального. В частности, если речь идет о южных регионах, где используется устройство. При снижении объема или количества рабочей жидкости и увеличения параметра плотности коррозийные процессы на электродных выходах могут увеличиться.
Причины изменения плотности
Список причин, которые приводят к изменению уровня плотности аккумулятора:
- Снижение уровня электролита в АКБ (приводит к повышению плотности).
- Уменьшение концентрации серной кислоты в аккумуляторе или так называемая сульфатация пластин. Сульфат свинца кристаллизуется, теряя способность участвовать в химических реакциях. В результате такого процесса аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства, поскольку не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений.
- Разряд батареи. Данная проблема особо актуальна для зимы и тех автомобилей, которые редко используются или где замена аккумулятора производилась давно.
- Неоднократная зарядка аккумулятора. Это приводит к закипанию раствора и его испарению, что снижает его количество и повышает концентрацию. В этом случае активных молекул для ионизации свинца и его солей становится меньше, соответственно снижается густота жидкости.
- Не осуществляется контроль за уровнем концентрации раствора в емкостях с электродами после каждого пополнения дистиллятом. С каждым новым разбавлением концентрата снижается доля электролита за счет испарения воды и небольшого количества электролитической жидкости.
Как самостоятельно проверить плотность электролита и степень разряженности батареи?
Прежде чем измерить плотность электролита нужно провести проверку и подготовку аккумулятора, затем произвест
что это такое и ее значения

Что такое плотность электролита
Серная кислота и вода могут смешиваться в любых пропорциях. Понятие плотность электролита введено для того, чтобы показать, какое количество чистой кислоты содержится в единице объем электролита.
Смешивая кислоту с водой, получают промежуточные значения. Чем больше воды содержит раствор, тем меньшее значение плотности он имеет, поскольку концентрированная кислота гораздо тяжелее:
- дистиллированная вода – 1.00 г/см3;
- концентрированная серная кислота – 1.84 г/см3.
Какую плотность имеет электролит в аккумуляторах
Плотность электролита в аккумуляторе имеет определенные значения, которые существенны для нормального протекания химических реакций в процессе работы. В зимний период и летом концентрация кислоты должна иметь разные значения. Особенно это касается регионов с большими колебаниями температуры. Несоответствие плотности оптимальным значениям может привести к отрицательным последствиям:
- Низкая плотность:
- снижение КПД батареи из-за повышения внутреннего сопротивления;
- снижение емкости, так как свинец пластин не полностью вступает в реакцию из-за недостатка кислоты;
- вероятность замерзания при низких отрицательных температурах;
- Высокая плотность:
- Сульфатация пластин из-за образования крупных труднорастворимых кристаллов сульфида свинца;
- Осыпание пластин.
Важно! Плотность электролита в АКБ не является постоянной величиной. Это связано с тем, что во время разряда кислота из раствора реагирует с материалом пластин и ее концентрация падает. Во время зарядки происходит обратная реакция. Разность плотностей заряженного и разряженного аккумулятора составляет примерно 0.15 – 0.16 г/см3.
Таким образом, зная параметры электролита в полностью заряженном аккумуляторе, можно определить степень разрядки, не пользуясь измерительными приборами, а определив состояние электролита при помощи ареометра.
Измерения производят с учетом температуры, так как наблюдается сильная зависимость. Рекомендуемые значения относятся к измерениям при температуре от +20 до +30°С В других случаях поправки к измерениям должны иметь такие значения:
- от +31 до +45°С + 0.01 гр/см3;
- от +20 до +30°С + 0.00 гр/см3;
- от +5 до +19°С — 0.01 гр/см3;
- от +4 до -10°С — 0.02 гр/см3;
- от -11 до -25° -03 гр/см3;
- от -26 до -40° -04 гр/см3.
Зависимость плотности от степени заряженности
Для электролита автомобильного аккумулятора с нормальной плотностью 1.27 гр/см3 можно привести следующую зависимости от степени разряда батареи:
Плотность гр/см3 | Уровень заряда | Температура замерзания |
1.27 | 100%, | – 60°С; |
1.26 | 95%, | – 55°С; |
1.25 | 87%, | – 50°С; |
1.24 | 80%, | – 46°С; |
1.23 | 75%, | – 42°С; |
1.22 | 70%, | – 37°С; |
1.21 | 63%, | – 32°С; |
1.20 | 56%, | – 27°С; |
1.19 | 50%, | – 24°С; |
1.18 | 44%, | – 18°С; |
1.17 | 37%, | – 16°С; |
1.16 | 31%, | – 14°С; |
1.15 | 25%, | – 13°С; |
1.14 | 19%, | – 11°С; |
1.13 | 13%, | – 9°С; |
1.12 | 6%, | – 8°С; |
В таблице плотности электролита приведена зависимость плотности и температуры замерзания. Приведенные данные показывают, что глубокий разряд батареи чреват ее замерзанием уже при температуре 8 — 16°С
Рекомендуемые значения плотности
Часто задаваемый вопрос – какая должна быть плотность электролита для лета и для зимы? Большинство производителей аккумуляторов рекомендуют придерживаться следующих значений плотности, в зависимости от минимальной зимней температуры. Важность контроля плотности электролита зимой связана не только с недопущением перемерзания электролита, но и повышением КПД батареи для успешного запуска непрогретого двигателя:
- от +6 до +4° 22 гр/см3;
- от +4 до -15° 24 гр/см3;
- от -4 до -15° 26 гр/см3;
- от -15 до -30° 28 гр/см3;
- от -30 до -50° 29 гр/см3;
Перечисленные значения справедливы для полностью заряженных батарей. Заливка электролита в новую батарею производится раствором меньшей концентрации – на 0.02 гр/см3. В процессе зарядки значение поднимется до необходимой величины.
Нормой плотности электролита в средней полосе принято считать 1.26 – 1.27 гр/см3.
Коррекция плотности при смене сезона
При большой разнице среднесуточных температур в летний и зимний период рекомендуется корректировать значение плотности. Процесс не представляет сложности, но опасен из-за агрессивности электролита.
Если машина храниться в гараже и эксплуатируется регулярно, то необходимость в коррекции не возникает, поскольку в результате длительных поездок батарея успевает зарядиться до нормального состояния и содержание кислоты не палает до критических значений.
Кратковременные поездки не способствуют нормальному заряду. Старые аккумуляторы имеют повышенные значения саморазряда, поэтому после длительного простоя плотность может упасть до недопустимых значений.
Электролит корректируется на полностью заряженном аккумуляторе. Важно знать, что в большинстве автомобилей с правильно отрегулированной системой регулировки напряжения, уровень заряда аккумулятора не превышает 80 – 90%. В зимнее время при наличии большого числа мощных потребителей (вентилятор печки, обогрев стекол и сидений, свет фар), это значение еще меньше. Для правильной подготовки батареи к зимнему сезону необходима полная зарядка специализированным зарядным устройством.
Заряд производят при слабом кипении электролита до тех пор, пока в течении текущих двух часов плотность расти уже не будет. Рост плотности говорит о том, что заряд еще не окончен.
Плотность электролита в заряженном аккумуляторе измеряют через два часа после зарядки, чтобы пластины полностью освободились от пузырьков газа и снизилась температура. Не забывайте про учет температуры электролита!
Содержание кислоты повышают при помощи корректирующего электролита, который добавляют в банки взамен части основного электролита.
Важно! Отбор раствора из каждой банки батареи должен быть одинаковым! Количество добавляемого корректора также одинаково. Сколько убрано жидкости, столько корректирующего раствора нужно добавлять
Плотность электролита в аккумуляторе и зимой и летом проверяется после получаса дополнительного заряда с последующей двухчасовой выдержкой. Это делается с целью равномерного перемешивания электролита. Обязателен учет температуры.
Переход на летнюю эксплуатацию делается аналогично, только вместо более крепкой кислоты добавляется дистиллированная вода. Дополнительный заряд должен продолжаться более длительное время, поскольку добавляемая вода из-за низкого удельного веса будет находится в верхнем слое.
Важно! Нельзя ускорять перемешивание покачиванием и переворачиванием батареи, поскольку осадок с дна емкости попадет между пластинами и батарея выйдет из строя.
Выравнивание плотности
В процессе эксплуатации аккумулятора можно увидеть, что разные банки имеют расхождения при измерении плотности. Если эта величина не превосходит 0.01 – 0.02 гр/см3, то ничего страшного нет. Большая разница свидетельствует, что банка с меньшим значением начинает выходить из строя.
Встречаются рекомендации исправлять состояние неисправной банки путем долива корректирующего раствора. Этого делать нельзя ни в коем случае. Простое увеличение концентрации кислоты даст только отрицательный эффект и ускорит выход банки из строя.
В данной ситуации необходимо произвести тренировочный цикл заряда. Полностью заряженный аккумулятор разряжают до 50% номинальной емкости, а затем заряжают малым током до полного заряда. Повторяя процесс несколько раз, можно полностью восстановить неисправные банки батареи.
Такие же требования предъявляются к выравниванию уровня электролита. В процессе зарядки током бортовой сети происходит частичное испарение воды из банок. Особенно активно этот процесс происходит летом. Кислота при этом не испаряется, вопреки некоторым источникам из интернета. Поэтому уровень электролита выравнивается исключительно дистиллированной водой.
Какая плотность должна быть в аккумуляторе зимой: оптимальные значения
Плотность электролита – главный параметр всех свинцово-кислотных электрических аккумуляторов, потому что он оказывает влияние на срок эксплуатации и ёмкость прибора.
Необходимо удерживать оптимальное значение показателя, чтобы гарантировать правильную работу АКБ. Оно зависит не только от климатических характеристик региона, в котором находится автомобиль, но и от времени года. К примеру, если плотность аккумулятора в зимний период составляет 1,25 г/см3, то это свидетельствует о критическом уровне, при котором транспортное средство не сможет завестись. Особенно речь идёт о районах, в которых температура может опускаться до -50 градусов. Однако при умеренном климате такое значение соответствует заявленным требованиям нормы. Следовательно, считается, что показатели в разные временные сезоны должны отличаться друг от друга.
Перед многими автовладельцами встаёт дилемма: разная или одинаковая должна быть плотность аккумулятора зимой и летом? Давайте разбираться.
Зима
Плотность электролита на зиму в аккумуляторе транспортного средства должна составлять около 1,27 г/см3. Но такое значение оптимально лишь для центральных районов России. В регионах, в которых температурный режим ниже -35 градусов, показатель изменяется в диапазоне от 1,28 г/см3 до 1,35 г/см3. Например, если автомобиль работает в условиях Крайнего Севера, то величина колеблется в пределах 1,31–1,35 г/см3. Возникает вопрос: почему плотность электролита в аккумуляторе зимой должна иметь такое значение? Существует две причины, дающих ответ на поставленный вопрос:
- Жидкость с большой вероятностью превратится в лёд при минусовой температуре, так как в ней доля воды превышает допустимую норму.
- Механизмы автомобиля замерзают в мороз и требуют увеличения электродвижущей силы, чтобы осуществить запуск двигателя. Даже лучшие модели автомобилей не смогут работать без дополнительной энергии. Уменьшение значения показателя вплоть до 1,1 г/см3 приведёт к замерзанию электрического аккумулятора.
Зимняя плотность аккумулятора находится на низком уровне. Следовательно, при разрядке она упадёт до критических значений. Чтобы решить эту проблему, желательно постоянно следить за состоянием АКБ. Чтобы проследить взаимосвязь между уровнем заряда и водным соотношением в составе электролита, можно рассмотреть различные сценарии при уменьшении АКБ на 25 % и 50 %:
- При первоначальной плотности в 1,30 г/см3 она сократится до 1,26 г/см3 и 1,22 г/см3.
- При начальном значении показателя в 1,27 г/см3 объём уменьшится до 1,23 г/см3 и 1,19 г/см3.
- При исходной величине в 1,23 г/см3 диапазон упадёт до 1,19 г/см3 и 1,15 г/см3.
Следовательно, плотность аккумулятора на зиму не должна опускаться ниже 1,27 г/см3. Однако нужно помнить, что электролит не может прогреться в результате ежедневных поездок от дома на работу, которые составляют менее получаса. Это в свою очередь влияет на АКБ, который получает необходимый уровень заряда только после осуществления разогрева. Значение показателя стремительно падает по причине того, что аккумуляторная батарея разряжается.
Таким образом, отвечая на вопрос, какая плотность аккумулятора должна быть зимой, можно привести таблицу оптимальных значений. Однако данные показатели характерны исключительно для полностью заряженной батареи. В случае если заряд находится на недостаточном уровне, то они будут больше.
Регион использования транспортного средства | Значение показателя плотности, г/см3 |
---|---|
Южные регионы | 1,25 |
Центральные регионы | 1,27 |
Северные регионы | 1,29 |
Регионы Крайнего Севера | 1,31 |
Лето
В летний период аккумуляторная батарея имеет проблему, связанную с потерей большого количества жидкости. Плотность рекомендуется держать на 0,02 г/см3 ниже значения, которое требуется по стандартам. В первую очередь такое замечание относится к регионам, расположенным на юге России.
Летом температурный режим под капотом, в котором располагается аккумулятор, повышен. Это влечёт за собой следующие моменты:
- Улетучивание жидкости из состава кислоты.
- Активное прохождение процессов превращения электрической энергии в химическую, протекающих в аккумуляторных кислотных батареях.
Всё это обеспечивает сильную отдачу тока, осуществляющуюся даже при минимальных допустимых показателях плотности электролита. Например, значение 1,22 г/см3 характерно для местности с тёплым и влажным климатом. Если уровень электролита систематически опускается, то это приводит к увеличению значения. Такой взаимосвязанный процесс является причиной химического разрушения проводников электрического тока. Поэтому контроль количества воды в АКБ – важная задача, выполнение которой является залогом грамотного ухода за автомобилем. Решение заключается в добавлении дистиллированной жидкости при понижении уровня электролита. Если данное действие опустить, то могут возникнуть проблемы с перезарядом и сульфацией.
Рассеянность автолюбителей – главный фактор, который лежит в основе разрядки аккумулятора. Другими словами, если водитель не уследил за состоянием АКБ, то нужно предпринять определённые меры. Они заключаются в обеспечении батареи зарядом при помощи специального устройства. Однако перед этим необходимо обратить внимание на уровень жидкости, которая могла испариться в процессе функционирования. Если это произошло, требуется долить очищенную воду без содержания каких-либо примесей.
Следовательно, рассмотрев, какая плотность должна быть в аккумуляторе зимой в зависимости от региона, нельзя не привести значения для летнего сезона.
Регион использования транспортного средства | Значение показателя плотности, г/см3 |
---|---|
Южные регионы | 1,25 |
Центральные регионы | 1,27 |
Северные регионы | 1,27 |
Регионы Крайнего Севера | 1,27 |
Как правильно откорректировать плотность электролита?
Автовладельцы часто сталкиваются с необходимостью поднять плотность в аккумуляторной батарее, что объясняется двумя причинами. Во-первых, периодическим регулированием количества дистиллированной жидкости. Во-вторых, частой зарядкой устройства, так как уменьшение интервала осуществления данного действия – первый признак того, что желательно провести процедуру повышения величины. Выделяют два способа корректировки значения показателя:
- применение электролита, обладающего высокой концентрацией;
- использование дополнительных кислот.
Чтобы изменить в нужном направлении плотность в аккумуляторной батарее, следует приобрести следующие предметы:
- специализированный стакан с делениями, применяемыми для измерения объёма;
- цистерна для создания нового раствора;
- электролит или кислота корректирующего содержания;
- очищенная жидкость.
Алгоритм действий по изменению значения включает в себя 5 этапов:
- Взять небольшое количество электролита с банки аккумуляторной батареи.
- Добавить корректирующий раствор в количестве, которое соответствует взятому на предыдущем этапе. Такое действие осуществляется при условии, что поставлена задача поднять плотность. Если необходимо получить противоположный результат, то регулирующий раствор заменяют на дистиллированную жидкость.
- Аккумулятор следует подзарядить с помощью специального устройства, так как номинальный ток даст возможность поступившей воде смешаться.
- После отключения АКБ от батареи целесообразно выждать в районе 2 часов. Это позволит плотности во всех банках встать на один уровень, что сделает вероятность возникновения погрешности при контрольном тестировании минимальной.
- Вторично осмотреть значение электролита. Если оно осталось на прежнем уровне, то повторно осуществить предыдущие этапы.
Плотность электролита изменяется в результате понижения в определённом отсеке аккумулятора. Причём предварительно полезно изучить номинальный объём, который в нём находится. Например, в классической стартерной батарее 6СТ-55 величина электролита равна 633 см3, а в 6СТ-45 – 500 см3. Если рассматривать его состав, то в него входят серная кислота и очищенная вода в процентном соотношении 40 на 60. Достичь необходимой плотности показателя можно, опираясь на представленные данные в следующей таблице:
Плотность аккумулятора, г/см3 | Обязательная величина параметра, г/см3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1,24 | 1,25 | 1,26 | |||||||
Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | |
1,24 | - | - | - | 60 | 62 | - | 120 | 125 | - |
1,25 | 44 | - | 25 | - | - | - | 65 | 70 | - |
1,26 | 85 | - | 88 | 39 | - | 40 | - | - | - |
1,27 | 122 | - | 126 | 78 | - | 80 | 40 | - | 43 |
1,28 | 156 | - | 162 | 117 | - | 120 | 80 | - | 86 |
1,29 | 190 | - | 200 | 158 | - | 162 | 123 | - | 127 |
1,30 | - | - | - | - | - | - | - | - | - |
Продолжение таблицы
Плотность аккумулятора, г/см3 | Обязательная величина параметра, г/см3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1,27 | 1,28 | 1,30 | |||||||
Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | Забор электро-лита | Долив раствора 1,40 г/см3 | Добавление жидкости | |
1,24 | 173 | 175 | - | 252 | 256 | - | - | - | - |
1,25 | 118 | 120 | - | 215 | 220 | - | - | - | - |
1,26 | 85 | 66 | - | 177 | 180 | - | 290 | 294 | - |
1,27 | - | - | - | 122 | 126 | - | 246 | 250 | - |
1,28 | 40 | - | 43 | 63 | 65 | - | 8198 | 202 | - |
1,29 | 75 | - | 78 | - | - | - | 143 | 146 | - |
1,30 | 109 | - | 113 | 36 | - | 38 | 79 | 81 | - |
Отметим, что представленные данные соответствуют корректирующему электролиту с плотностью 1,40 г/см3. Если жидкость будет иметь другое значение, то возникает необходимость использовать следующую формулу расчёта для рассматриваемого показателя:
Представленные вычисления можно заменить методом золотого сечения, который гораздо проще применить на практике:
- Откачать больший объём воды из банки аккумулятора.
- Вылить полученную воду в специальный стакан с делениями, чтобы получить информацию о величине.
- Заполнить половину освободившегося объёма банки необходимым количеством электролита.
- Если значение ещё не соответствует требуемому, то долить ¼ от откаченной величины.
- Продолжать добавлять раствор до достижения оптимального результата.
Кислотная среда небезопасна для человека при неграмотном обращении. Целесообразно соблюдать все меры предосторожности, чтобы раствор электролита не попал на кожу или в дыхательные пути. Осуществлять корректировку рассматриваемой величины рекомендуется в помещениях с хорошей вентиляцией.
Возникают ситуации, в которых значение показателя опускается ниже 1,18 г/см3. В таких случаях использование электролита должно сопровождаться применением кислоты. Причём алгоритм действий изменения плотности включает в себя аналогичные этапы с одной поправкой: шаг разбавления при таком значении должен быть небольшим. Это связано с тем фактом, что плотность электролита имеет очень большую концентрацию, и возникает вероятность пропустить нужную отметку.
В процессе приготовления раствора в жидкость нужно вливать кислоту, а не наоборот.
При определённых обстоятельствах не представляется возможным исправить плотность электролита. Поэтому есть только один выход: купить новый аккумулятор. Возникает вопрос: как определить такие случаи? Очень просто: электролит становится коричневого оттенка, что свидетельствует об осыпании активной массы, принимающей участие в реакции электрохимического плана. Следовательно, это приводит к постепенной поломке аккумуляторной батареи.
Чтобы такая ситуация не застала врасплох, необходимо знать, что хороший АКБ будет служить в течение 5 лет при следовании всем эксплуатационным правилам. Следовательно, если данный срок истёк, то нет смысла проводить манипуляции по ремонту батареи. Если вы хотите, чтобы ваш прибор прослужил положенный срок, то следуйте следующим указаниям:
- контролируйте плотность с помощью ареометра;
- обеспечивайте грамотное обслуживание;
- проверять уровень заряда.
Чем грозит завышенная или заниженная плотность электролита?
Оптимальный уровень плотности находится в пределах от 1,27 до 1,35 г/см3 в соответствии с сезоном и температурным режимом региона. Если значение рассматриваемого показателя выше нормы, то это свидетельствует о завышении, что отрицательно влияет на функционирование автомобиля. Данный процесс может привести к повреждениям аккумуляторной батареи. В ситуациях, при которых наблюдается противоположная картина, существует вероятность того, что автомобиль не заведётся. Главная причина в том, что АКБ замёрзнет при низких температурах.
Следовательно, необходимо контролировать значение, чтобы плотность электролита в аккумуляторе зимой и летом соответствовала оптимальной. Это поможет избежать возникновения непредвиденных обстоятельств. Однако сделать подобное проблематично, так как плотность изменяется при разных уровнях заряда аккумулятора. Например, при её уменьшении происходит поглощение дистиллированной жидкости батареей, что приводит к увеличению концентрации показателя. В обратных ситуациях возникает процесс сульфатации, ведущий к снижению уровня плотности. В результате этой химической реакции пластины наглухо закрываются и теряют возможность правильно заряжаться. Главный исход – выход из строя АКБ.
как измерить ее в батарее, почему она бывает высокой
Практически каждый автомобилист знает, насколько важно держать аккумуляторную батарею своего автомобиля в порядке. От ее состояния зависит не только возможность пуска двигателя, но и нормальная работа всего электрооборудования машины. К сожалению, далеко не всем известно, что исправность и «боеготовность» батареи зависит не только от своевременной и качественной ее зарядки, но и от нормальной плотности электролита в аккумуляторе.
Устройство и принцип работы АКБ
Для того чтобы качественно провести обслуживание аккумулятора и обеспечить правильную его работу, необходимо хотя бы приблизительно представлять, что у него внутри и как все это работает. Поэтому, прежде чем перейти к вопросам об электролите, необходимо понять, как устроен автомобильный аккумулятор и по какому принципу он работает.
Конструкция батареи
Практически все свинцово–кислотные батареи имеют одинаковую конструкцию. Состоят они из отдельных секций (банок), каждая из которых имеет набор положительных и отрицательных пластин. Первые называются катодными и выполнены из металлического свинца. Вторые, анодные, сделаны из диоксида свинца. Пластины собраны в пакет и помещены в кислотостойкую емкость, в которую впоследствии заливается рабочая жидкость – водный раствор серной кислоты или так называемый электролит.
Устройство секции свинцово-кислотного аккумулятора:
- 1 – крышка банки;
- 2 – корпус банки;
- 3 – ребристый отстойник;
- 4 – пластины, собранные в пакет;
- 5 – отрицательный (анодный) вывод;
- 6 – отрицательный (анодные) пластины;
- 7 – диэлектрическая прокладка – сепаратор;
- 8 – положительный (катодный) вывод;
- 9 – положительные (катодные) пластины.
Готовые секции, соединенные последовательно, и являются аккумуляторной батареей. В шестивольтовых АКБ таких секций три, в 12-ти вольтовых – шесть.
Как это работает
Итак, конструкция АКБ достаточно проста, но каким образом на ее выводах появляется напряжение? Действительно, если взять батарею прямо из магазина и подключить к ней вольтметр, то прибор покажет «0». Отсутствие тока обусловлено тем, что электролит не заливается в батарею сразу после изготовления, и в стоящем на магазинной полке аккумуляторе пластины сухие. Рабочая жидкость заливается в АКБ уже после покупки.
Самое время выяснить, для чего нужен электролит. Поскольку положительные и отрицательные пластины имеют различный химический состав, между ними, погруженными в кислотный раствор, возникает разность потенциалов (примерно 2 В на секцию, чем и обусловлено количество секций в батарее). При подключении к клеммам АКБ нагрузки между пластинами, благодаря высокой электропроводности электролита, начинает течь ток. Одновременно начинается химический процесс преобразования диоксида свинца в сульфат свинца с участием серной кислоты. Как только количество диоксида и серной кислоты упадет до определенного уровня, процесс прекратится, и батарея перестанет вырабатывать ток – разрядится.
В процессе разрядки серная кислота и диоксид свинца расходуются на образование сульфата свинца
Но аккумуляторы, в отличие от гальванических элементов (батареек), могут восстанавливать свои химические свойства. Если подключить АКБ к источнику постоянного тока, то под его действием сульфат начнет разлагаться на диоксид свинца и серную кислоту. Батарея начнет заряжаться, преобразуя электрическую энергию в химическую. Как только количество диоксида и кислоты достигнет исходных величин, батарею можно считать заряженной.
Химические процессы, возникающие в батарее при ее разрядке и зарядке
Серная кислота, входящая в состав электролита, играет одну из основных ролей в работе АКБ. Именно от ее свойств будет зависеть качественная и долговременная работа батареи в целом.
Понятие плотности электролита
Вполне понятно, что количество серной кислоты и диоксида свинца в батарее должно быть сбалансированным – ведь они расходуются вместе. Поскольку количество диоксида свинца определяется производителем, автомобилисту после покупки аккумулятора остается лишь заправить АКБ необходимым количеством кислоты. Емкость секций батареи тоже фиксирована, поэтому в нее больше нормы не зальешь.
Остается единственный вариант – разбавить кислоту нейтральной к свинцу жидкостью, что и делается. Разбавляется кислота обычной водой, но дистиллированной, чтобы соли, содержащиеся в обычной воде, не нарушили чистоту раствора и не вывели АКБ из строя. Обычно автолюбитель покупает уже готовый электролит нужной плотности в автомагазине, хотя приготовить его можно и самостоятельно.
Процентное отношение воды к кислоте в полностью заряженном аккумуляторе составляет 70/30. Но при составлении электролита и его измерениях намного удобнее пользоваться единицами плотности – г/см. куб. или кг/м. куб. Удельный вес воды и кислоты различен, а значит, по общей плотности раствора можно судить о процентном соотношении его составляющих – концентрации.
Оптимальная концентрация кислоты
Пониженная концентрация, как правило, приводит к ускоренной сульфатации пластин – образованию на них нерастворимого сульфата свинца, который уже не может разложиться на кислоту и диоксид. В результате емкость батареи катастрофически падает, КПД уменьшается, а внутреннее сопротивление увеличивается (сульфат – диэлектрик).
Даже полностью заряженная, но сульфатированная батарея, выдающая, казалось бы, нормальное напряжение, садится после первого пуска, а то и вообще не в состоянии провернуть стартер. Кроме того, электролит с низкой плотностью замерзает при более высоких температурах, а значит, на стоянке даже при легком морозе батарею попросту разорвет льдом.
Чрезмерно высокая плотность электролита в аккумуляторной батарее не менее опасна, поскольку излишняя кислотность сокращает ресурс батареи в разы, буквально съедая пластины. Конечно, аккумулятор, залитый одной кислотой, будет крутить «как зверь», но сколько проживет такая АКБ? Сутки, может неделю. Если повезет – месяц.
А теперь пора вернуться к оптимальной плотности. В сети можно увидеть множество таблиц «рекомендованной» плотности, в зависимости от климатических условий. Если тепло – пониже, если мороз – повыше. Чем грозят эти «повыше» и «пониже», было описано в предыдущих абзацах. Поэтому не стоит изобретать велосипед, поскольку все эксперименты уже провели производители АКБ, а рекомендованная плотность приводится в сопроводительной документации.
С новым, сухим (сухозаряженным) аккумулятором все просто – в него заливается электролит комнатной температуры с плотностью 1.28 г/см. куб. Через час концентрация упадет до 1.26 – 1.27 г/см. куб., и батарея готова к работе. Далее, в процессе заряда/разряда аккумулятора и в зависимости от температуры окружающей среды, плотность раствора будет все время колебаться. Больше разряд – ниже плотность, идет заряд – плотность повышается. В нормально функционирующей АКБ отношение плотности к степени заряда и напряжению на клеммах выражается следующими показателями:
- 1.265 кг/м. куб. — 12.6 … 12.7 В — полностью заряжена;
- 1.225 кг/м. куб. — 12.3 … 12.4 В — 75%;
- 1.190 кг/м. куб. — 12.0 … 12.1 В — 50%;
- 1.115 кг/м. куб. — 11.8 … 11.9 В — 25%;
- 1.120 кг/м. куб. — 11.6 … 11.7 В — разряжена;
- ниже 1.120 кг/м. куб. — ниже 11.6 В — глубокий разряд.
Стоит обратить внимание на то, что все параметры батареи, включая плотность и напряжение, сильно зависят от температуры. Поэтому значения справедливы только при 26.7 градусах Цельсия. Если нужно провести измерения при другой температуре окружающей среды, то дополнительно придется воспользоваться таблицей плотности электролита от температуры, которую несложно найти в сети.
Выяснив зависимость плотности от выходного напряжения батареи, а значит, и от степени ее заряда, контролировать концентрацию электролита несложно. Достаточно замерить напряжение на клеммах отключенного аккумулятора любым вольтметром, затем измерить плотность и проверить их соответствие.
Проверка плотности рабочей жидкости
Для измерения плотности жидкостей существуют специальные приборы – ареометры или плотномеры. Есть такой и для автомобильных аккумуляторов. Выполнен он в виде большого шприца, внутри которого расположен поплавок со специально отградуированной шкалой.
Поплавок автоареометра комплектуется специальным «шприцем» для работы в узкогорлых секциях аккумуляторов.
Для того чтобы измерить плотность в аккумуляторе, со всех его секций сворачиваются пробки. Далее грушу ареометра сжимают, а его иглу погружают в секцию. Отпустив грушу, набирают в шприц электролит. При этом поплавок прибора всплывает. Плотность жидкости считывают со шкалы по тому уровню, до которого всплыл поплавок.
Поплавок всплыл до уровня 1.200. Плотность электролита – 1.2 г/см. куб.
После измерения грушу вновь сжимают, а после слива электролита обратно в батарею ареометр промывают проточной водой и сушат. Не следует забывать, что каждая секция – отдельная, независимая часть АКБ, поэтому плотность нужно измерить в каждой.
Когда и чем доливают аккумулятор
Необходимость доливки рабочей жидкости в батарею возникает нечасто, но она бывает необходимв. Что, сколько и в каких случаях нужно доливать? Всего таких случаев два: низкий уровень электролита и ненормальная кислотность рабочей жидкости.
Низкий уровень в секциях
Эта ситуация возникает часто, поскольку в процессе работы батареи вода испаряется или, как принято говорить, выкипает. При этом уровень раствора в секциях уменьшается, и края пластин оказываются сухими. Определить это можно визуально, просто свинтив пробки с секций и заглянув в заливные горловины. Нормальный уровень жидкости в секции должен быть примерно на 1 см выше уровня среза пластин. В некоторых АКБ даже имеется специальная метка, отштампованная на корпусе. Если уровень низкий, то ситуация хоть и серьезна, но устранить ее легко. Для этой операции понадобятся:
- медицинский шприц без иглы или автомобильный ареометр;
- дистиллированная вода;
- средства защиты (очки и резиновые перчатки).
Дистиллированная вода набирается в шприц и заливается в соответствующие секции, до нужного уровня. После доливки жидкости в аккумулятор его ставят на зарядку. В этом плане автоареометр намного предпочтительней, поскольку, долив воду, тут же можно проконтролировать плотность раствора.
Следует соблюдать осторожность: нельзя работать с кислотой, если глаза не защищены.
Ненормальная кислотность
Если изначально батарея была заправлена как положено, то чрезмерно большая плотность электролита в аккумуляторе может появиться только в случае, если выкипела вода или измерения проводились при сильном морозе (с понижением температуры плотность повышается, и это нормально). В первом случае достаточно просто долить воду, во втором – произвести перерасчет или, что проще и правильнее, заняться измерениями в отапливаемом помещении.
А вот падение концентрации кислоты – ситуация реальная. Обычно это происходит из-за неправильной эксплуатации АКБ или ввиду ее «преклонного возраста». Причина – появление нерастворимого сульфата, который при своем образовании использовал кислоту, но уже не разлагается при зарядке, а значит, вернуть ее обратно в раствор не может. Ситуация не особо радостная, но восстановить плотность необходимо хотя бы для того, чтобы дотянуть до покупки новой батареи.
Прежде чем принять решение о доливке кислоты, необходимо еще раз убедиться в том, что плотность действительно ниже положенной при текущем состоянии АКБ. Если решение принято, то понадобятся ареометр, перчатки, очки и корректирующий электролит плотностью 1.35 — 1.40 г/см. куб. (в продаже есть и такой).
Корректирующий электролит для доливки в автомобильный аккумулятор
В крайнем случае подойдет и стандартный 1.28 г/см. куб., но, возможно, придется отобрать лишнюю жидкость из секции в отдельную емкость, чтобы освободить место для более «крепкого».
Методика доливки та же, что и воды, но при этом плотность в банке постоянно контролируется тем же ареометром.
Категорически запрещается поднимать концентрацию раствора доливкой чистой серной кислоты. Во-первых, это очень опасно, во-вторых, даже нескольких грамм концентрированной кислоты достаточно, чтобы кардинально изменить плотность раствора в секции, а значит, выставить нужную плотность пол-литровым ареометром исключительно сложно.
Как работают батареи? | Живая наука
Батарейки везде. Современный мир зависит от этих портативных источников энергии, которые можно найти во всем: от мобильных устройств до слуховых аппаратов и автомобилей.
Но, несмотря на то, что они широко используются в повседневной жизни людей, батареям часто не уделяют должного внимания. Подумайте об этом: вы действительно знаете, как работает аккумулятор? Не могли бы вы объяснить это кому-нибудь другому?
Вот краткое изложение научных данных об источниках энергии для смартфонов, электромобилей, кардиостимуляторов и многого другого.[Тест: электрические и газовые автомобили]
Анатомия аккумулятора
Большинство аккумуляторов состоят из трех основных частей: электродов, электролита и сепаратора, по словам Энн Мари Састри, соучредителя и генерального директора Sakti3, базирующейся в Мичигане. запуск аккумуляторных технологий.
В каждой батарее по два электрода. Оба сделаны из токопроводящих материалов, но выполняют разные функции. Один электрод, известный как катод, подключается к положительному концу батареи и является местом, где электрический ток выходит (или электроны входят) в батарею во время разряда, то есть когда батарея используется для питания чего-либо.Другой электрод, известный как анод, подключается к отрицательному полюсу батареи и является местом, где электрический ток входит (или электроны покидают) батарею во время разряда.
Между этими электродами, а также внутри них находится электролит. Это жидкое или гелеобразное вещество, содержащее электрически заряженные частицы или ионы. Ионы соединяются с материалами, из которых состоят электроды, производя химические реакции, которые позволяют батарее генерировать электрический ток.[Взгляд изнутри на работу батарей (инфографика)]
Типичные батареи питаются за счет химической реакции. [См. Полную инфографику] (Изображение предоставлено Карлом Тейтом, художником по инфографике)
Последняя часть батареи, разделитель, довольно проста. Роль сепаратора состоит в том, чтобы удерживать анод и катод отдельно друг от друга внутри батареи. По словам Састри, без разделителя два электрода соприкоснутся, что приведет к короткому замыканию и нарушит нормальную работу батареи.
Как это работает
Чтобы представить себе, как работает батарейка, представьте, как вы вставляете щелочные батарейки, такие как двойные AA, в фонарик. Когда вы вставляете эти батарейки в фонарик, а затем включаете его, на самом деле вы замыкаете цепь. Накопленная в батарее химическая энергия преобразуется в электрическую, которая выходит из батареи в основание лампы фонарика, заставляя ее загораться. Затем электрический ток снова входит в батарею, но на противоположном конце от того места, где он выходил изначально.
Все части батареи работают вместе, чтобы фонарик загорался. Электроды в батарее содержат атомы определенных проводящих материалов. Например, в щелочной батарее анод обычно изготавливается из цинка, а диоксид марганца действует как катод. Электролит между электродами и внутри них содержит ионы. Когда эти ионы встречаются с атомами электродов, между ионами и атомами электродов происходят определенные электрохимические реакции.
Серия химических реакций, протекающих в электродах, известна как окислительно-восстановительные (окислительно-восстановительные) реакции.В батарее катод известен как окислитель, потому что он принимает электроны от анода. Анод известен как восстановитель, потому что он теряет электроны.
В конечном итоге эти реакции приводят к потоку ионов между анодом и катодом, а также к освобождению электронов от атомов электрода, - сказал Састри.
Эти свободные электроны собираются внутри анода (нижняя плоская часть щелочной батареи). В результате два электрода имеют разные заряды: анод становится отрицательно заряженным, когда высвобождаются электроны, а катод становится положительно заряженным, поскольку электроны (которые заряжены отрицательно) поглощаются.Эта разница в заряде заставляет электроны двигаться к положительно заряженному катоду. Однако у них нет возможности попасть внутрь батареи, потому что разделитель не позволяет им сделать это.
Когда вы щелкаете выключателем на фонарике, все меняется. У электронов теперь есть путь к катоду. Но сначала они должны пройти через основание лампы фонарика. Схема замыкается, когда электрический ток повторно входит в батарею через верхнюю часть батареи у катода.
Перезаряжаемые и неперезаряжаемые
Для первичных батарей, например, в фонарике, реакции, питающие батарею, в конечном итоге прекратятся, а это означает, что электроны, которые обеспечивают батарею ее зарядом, больше не будут создавать электрический ток. Когда это происходит, аккумулятор разряжен или «мертв», - сказал Састри.
Вы должны выбросить такие батареи, потому что электрохимические процессы, которые заставили батарею производить энергию, не могут быть обращены вспять, объяснил Састри.Однако электрохимические процессы, происходящие во вторичных или перезаряжаемых батареях, могут быть обращены вспять, подавая в батарею электрическую энергию. Например, это происходит, когда вы подключаете аккумулятор мобильного телефона к зарядному устройству, подключенному к источнику питания.
Некоторые из наиболее распространенных используемых сегодня вторичных батарей - это литий-ионные (литий-ионные) батареи, от которых питается большинство бытовых электронных устройств. Эти батареи обычно содержат угольный анод, катод из диоксида лития-кобальта и электролит, содержащий соль лития в органическом растворителе.Другие перезаряжаемые батареи включают никель-кадмиевые (NiCd) и никель-металлогидридные (NiMH) батареи, которые можно использовать в таких вещах, как электромобили и аккумуляторные электроинструменты. Свинцово-кислотные (Pb-кислотные) батареи обычно используются в автомобилях и других транспортных средствах для запуска, освещения и зажигания.
По словам Састри, все эти аккумуляторные батареи работают по одному и тому же принципу: когда вы подключаете батарею к источнику питания, поток электронов меняет направление, и анод и катод возвращаются в исходное состояние.[10 лучших подрывных технологий]
Battery lingo
Хотя все батареи работают более или менее одинаково, разные типы батарей имеют разные характеристики. Вот несколько терминов, которые часто встречаются при любом обсуждении батарей:
Напряжение : Когда дело доходит до батарей, напряжение - также известное как номинальное напряжение ячейки - описывает величину электрической силы или давления, при которой свободные электроны - переходите от положительного полюса батареи к отрицательному, - пояснил Састри.В батареях с более низким напряжением ток выходит из батареи медленнее (с меньшей электрической силой), чем в батареях с более высоким напряжением (с большей электрической силой). Батареи в фонарике обычно имеют напряжение 1,5 В. Однако, если в фонарике используются две батареи последовательно, эти батареи или элементы имеют общее напряжение 3 вольта.
Свинцово-кислотные батареи, подобные тем, которые используются в большинстве неэлектрических автомобилей, обычно имеют напряжение 2,0 вольт. Но обычно в автомобильном аккумуляторе последовательно соединено шесть таких элементов, поэтому вы, вероятно, слышали, что такие аккумуляторы называются 12-вольтовыми батареями.
Литий-кобальтооксидные батареи - наиболее распространенный тип литий-ионных батарей, используемых в бытовой электронике, - имеют номинальное напряжение около 3,7 вольт, сказал Састри.
Ампер : Ампер или ампер - это мера электрического тока или количества электронов, которые проходят через цепь в течение определенного периода времени.
Емкость : Емкость, или емкость элемента, измеряется в ампер-часах, то есть количество часов, в течение которых батарея может подавать определенное количество электрического тока, прежде чем ее напряжение упадет ниже определенного порога, согласно сообщению Райса. Кафедра электротехники и вычислительной техники университета.
9-вольтовая щелочная батарея, используемая в портативных радиоприемниках, рассчитана на 1 ампер-час, что означает, что эта батарея может непрерывно обеспечивать один ампер тока в течение 1 часа, прежде чем она достигнет порога напряжения и считается разряженной.
Плотность мощности : Плотность мощности описывает количество энергии, которое батарея может выдать на единицу веса, сказал Састри. По словам Састри, для электромобилей важна плотность мощности, потому что она показывает, насколько быстро автомобиль может разогнаться от 0 до 60 миль в час (97 км / ч).Инженеры постоянно пытаются найти способы сделать батареи меньше, не уменьшая при этом их удельной мощности.
Плотность энергии : Плотность энергии описывает, сколько энергии способна отдавать батарея, деленное на ее объем или массу, сказал Састри. Это число соответствует вещам, которые имеют большое влияние на пользователей, например, сколько времени вам нужно пройти, прежде чем зарядить мобильный телефон, или как далеко вы можете проехать на электромобиле, прежде чем остановиться, чтобы подключить его.
Follow Elizabeth Palermo @ techEpalermo .Следуйте за Live Science @livescience , Facebook и Google+ .
Дополнительные ресурсы
.Заряд в секундах, в последние месяцы
(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.
Крупные технологические и автомобильные компании слишком хорошо осведомлены об ограничениях литий-ионных аккумуляторов.Несмотря на то, что чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона перед подзарядкой.
Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.
NAWA TechnologiesЭлектрод из углеродных нанотрубок с вертикальной ориентацией
Компания NAWA Technologies разработала и запатентовала сверхбыстрый углеродный электрод, который, как утверждается, изменил правила игры на рынке аккумуляторов.В нем используется конструкция с вертикально расположенными углеродными нанотрубками (VACNT), и NAWA заявляет, что он может повысить мощность батареи в десять раз, увеличить запас энергии в три раза и увеличить срок службы батареи в пять раз. Компания считает, что электромобили являются основным бенефициаром, сокращая углеродный след и стоимость производства аккумуляторов при одновременном повышении производительности. NAWA заявляет, что дальность действия 1000 км может стать нормой, а время зарядки сокращено до 5 минут, чтобы достичь 80 процентов. Технология может быть запущена в производство уже в 2023 году.
Литий-ионная батарея без кобальта
Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт. Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт - наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», - сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уокера и директор Техасского института материалов.«И мы полностью устраняем это». Команда говорит, что с помощью этого решения они преодолели типичные проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.
SVOLT представляет батареи для электромобилей, не содержащие кобальта.
Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт. Компания SVOLT, штаб-квартира которой находится в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей.Помимо сокращения количества редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.
Тимо Иконен, Университет Восточной ФинляндииНа шаг ближе к кремниевым анодным литий-ионным батареям
В поисках решения проблемы нестабильного кремния в литий-ионных батареях исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки.В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.
Университет МонашаЛитий-серные аккумуляторы могут превзойти литий-ионные, менее вредно для окружающей среды
Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные питать смартфон в течение 5 дней, превосходя литий-ионные.Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.
Утверждается, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая возможность питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.
Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный
IBM Research сообщает, что он обнаружил новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные.IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.
Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей - он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь как более высокую мощность. и плотности энергии. Все это доступно в аккумуляторах с низкой горючестью электролитов.
IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.
PanasonicСистема управления батареями Panasonic
Хотя литий-ионные батареи повсюду и их число растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.
Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые можно найти в электромобиле. Panasonic считает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.
Асимметричная модуляция температуры
Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к экстремально быстрой зарядке - XFC - который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой - это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальванику, но ограничивает это до 10-минутных циклов, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод снижает износ аккумулятора, позволяя заряжать XFC.
Pocket-lintПесочная батарея дает в три раза больше времени автономной работы
В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у современных графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.
Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.
Silanano - это стартап в области аккумуляторных технологий, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.
Захват энергии от Wi-Fi
Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.
Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток, либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (более безопасно для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.
Энергия, полученная от владельца устройства
Вы можете стать источником энергии для вашего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.
Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала понять, как эту технологию можно использовать для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.
Золотые нанопроволочные батареи
Великие умы Калифорнийского университета в Ирвине создали треснувшие нанопроволочные батареи, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.
Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для будущих батарей. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никаких повреждений.
Твердотельные литий-ионные
Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.
В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до 100 градусов Цельсия.
Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.
Графеновые батареи Grabat
Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.
Graphenano, компания, стоящая за разработкой, утверждает, что аккумуляторы можно полностью зарядить всего за несколько минут, и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.
Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.
Лазерные микроконденсаторы
Rice UniveristyУченые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но используются лазеры, которые вскоре могут измениться.
При использовании лазеров для выжигания электродных рисунков на листах пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.
Пенные аккумуляторы
Прието считает, что будущее аккумуляторов - за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.
Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.
Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но там говорится, что аккумуляторы можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.
Carphone WarehouseСкладной аккумулятор похож на бумагу, но прочный
Jenax J.Аккумулятор Flex был разработан, чтобы сделать гибкие гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.
Батарея уже создана и даже прошла испытания на безопасность, в том числе складывалась более 200 000 раз без потери производительности.
Ник Билтон / The New York TimesuBeam по воздуху зарядка
uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем снова преобразуются в энергию при достижении устройства.
С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства для передачи энергии на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.
StoreDotStoreDot заряжает мобильные телефоны за 30 секунд
StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды - короткие цепочки аминокислот, которые являются строительными блоками белков.
В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.
Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и обеспечивает запас хода до 300 миль.
Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.
Pocket-lintПрозрачное солнечное зарядное устройство
Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.
Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.
PhienergyАлюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки
Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, что дает автомобилю гораздо больший запас хода.
Бристольская робототехническая лабораторияБатареи с питанием от мочи
Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?
Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.
Звук работает
Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в атмосфере вокруг него.
Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.
Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой телефон во время разговора.
Двойная угольная батарея Ryden заряжается в 20 раз быстрее.
Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и заряжается быстрее, чем литиевые, но его можно производить на тех же заводах, где производятся литиевые батареи.
В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, с возможностью выдерживать до 3000 циклов зарядки, а также они более безопасны с меньшей вероятностью возгорания или взрыва.
Натрий-ионные аккумуляторы
Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.
Исследования натриево-ионных аккумуляторов ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие 5-10 лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.
UppЗарядное устройство для водородных топливных элементов Upp
Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам отвлекаться и оставаться экологически чистым.
Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.
Батареи со встроенным огнетушителем
Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 - яркий тому пример. Исследователи из Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.
В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.
Майк ЦиммерманБатареи, защищенные от взрыва
Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.
Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет выйти на рынок, но хорошо знать, что существуют более безопасные варианты.
Аккумуляторы Liquid Flow
Гарвардские ученые разработали аккумулятор, который накапливает свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.
Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.
Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения прерывистых источников энергии, таких как ветер или солнце, для быстрого выпуска в сеть по запросу.
IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности зарезервирован для питания аккумулятора.
Zap & Go Карбон-ионный аккумулятор
Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.
Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.
Цинково-воздушные батареи
Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, намного более дешевый, чем существующие методы.Цинково-воздушные батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты в работе.
Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а скорее с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!
Умная одежда
Исследователи из Университета Суррея разрабатывают способ, позволяющий использовать одежду в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.
Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ленточных ламп или в шинах автомобиля. может привести машину в действие.
Растягиваемые батареи
Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что вырабатываемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды он сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.
Графеновый аккумулятор Samsung
Samsung удалось разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.
Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он может выдерживать температуру до 60 градусов Цельсия.
Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов
Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы в пять раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи намного точнее, чем существующие методы.
Ученые обнаружили, что нынешние батареи фактически могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!
Написано Крисом Холлом.
.Simple English Wikipedia, бесплатная энциклопедия
Схематический символ батареиАккумулятор преобразует химическую энергию в электрическую с помощью химической реакции. Обычно химические вещества хранятся внутри батареи. Он используется в цепи для питания других компонентов. Батарея производит электричество постоянного тока (DC) (электричество, которое течет в одном направлении и не переключается взад и вперед).
Использование электричества из розетки в здании дешевле и эффективнее, но аккумулятор может обеспечивать электричеством в районах, где нет распределения электроэнергии.Это также полезно для движущихся вещей, например электромобилей и мобильных телефонов.
Батареи могут быть первичными или вторичными. Первичная цепь выбрасывается, когда она больше не может обеспечивать электричество. Вторичный аккумулятор можно заряжать и использовать повторно.
Батарея может состоять из одной ячейки или нескольких элементов . Каждая ячейка имеет анод, катод и электролит. Электролит - это основной материал внутри батареи. Часто это кислота, к которой прикасаться опасно.Анод реагирует с электролитом с образованием электронов (это отрицательный конец или конец -). Катод реагирует с электролитом и забирает электроны (это положительный конец или + ). [1] Электрический ток возникает, когда провод соединяет анод с катодом, а электроны перемещаются от одного конца к другому. (Но аккумулятор может быть поврежден просто проводом, соединяющим два конца, поэтому между двумя концами также необходима нагрузка .Нагрузка - это то, что замедляет электроны и обычно делает что-то полезное, например, лампочка в фонарике или электроника в калькуляторе). [2]
Батареи, подключенные параллельно - показаны на схеме и на чертежеЭлектролит может быть жидким или твердым. Батарея называется аккумулятором с влажным или сухим элементом, в зависимости от типа электролита.
Химические реакции, происходящие в батарее, являются экзотермическими реакциями. Этот тип реакции вызывает тепло.Например, если вы оставите ноутбук включенным на долгое время, а затем прикоснетесь к аккумулятору, он будет теплым или горячим.
Аккумуляторная батарея заряжается путем обращения вспять химической реакции, происходящей внутри батареи. Но перезаряжаемый аккумулятор можно заряжать только определенное количество раз (время зарядки). Даже встроенные батареи нельзя заряжать вечно. Более того, каждый раз, когда батарея заряжается, ее способность удерживать заряд немного снижается. Неперезаряжаемые батареи нельзя заряжать, так как могут вытечь различные вредные вещества, например гидроксид калия.
Элементы могут быть подключены, чтобы сделать батарею большего размера. Соединение плюса одной ячейки с минусом следующей ячейки называется соединением их последовательно . Напряжение каждой батареи складывается. Две батареи по шесть вольт, соединенные последовательно, будут составлять 12 вольт. [3]
Соединение плюса одной ячейки с плюсом другой, а минус с минусом называется соединением их параллельно . Напряжение остается прежним, но ток складывается.Напряжение - это давление, проталкивающее электроны по проводам, оно измеряется в вольтах. Ток - это то, сколько электронов может пройти одновременно, он измеряется в амперах. Комбинация тока и напряжения - это мощность (ватты = вольт x ампер) батареи.
Батареи бывают разных форм, размеров и напряжений.
Элементы AA, AAA, C и D, включая щелочные батареи, имеют стандартные размеры и форму и имеют напряжение около 1,5 В. Напряжение ячейки зависит от используемых химикатов.Электрический заряд, который он может передать, зависит от размера ячейки, а также от химических веществ. Заряд аккумулятора обычно измеряется в ампер-часах. Поскольку напряжение остается неизменным, больший заряд означает, что более крупный элемент может подавать больше ампер или работать в течение более длительного времени.
Первая батарея была изобретена в 1800 году Алессандро Вольта. В наши дни его аккумулятор называют гальваническим. [4]
В современных небольших батареях жидкость иммобилизируется в виде пасты, и все это помещается в герметичный корпус.Из-за этого ничего не может вылиться из аккумулятора. В более крупных аккумуляторах, таких как автомобильные, все еще есть жидкость, и они не герметичны. Разновидность батареи, в которой в качестве электролита используются расплавленные соли, была изобретена во время Второй мировой войны.
- Сухие элементы, элементы, не содержащие жидкости (или содержащие иммобилизованную жидкость, такую как паста или гель) в качестве электролита
- Первичная ячейка, ячейки, которые нельзя перезарядить
- Щелочная батарея, «щелочная», не перезаряжаемая
- Батарея ртутная, неперезаряжаемая
- Аккумулятор Leclanche, сверхтяжелый, не перезаряжаемый
- Литиевая батарейка, неперезаряжаемая, «таблетка»
- Батарея из оксида серебра, неперезаряжаемая, батарейка для часов
- Вольтаическая свая, первая батарея Аллесандро Вольтаса
- Вторичный элемент, элементы, которые можно заряжать
- Первичная ячейка, ячейки, которые нельзя перезарядить
- Влажные элементы, элементы, содержащие жидкость в качестве электролита
- Топливный элемент, перезаряжаемый за счет добавления топлива
Топливные элементы и солнечные элементы не являются батареями, потому что они не накапливают энергию внутри себя.
Конденсатор не является батареей, потому что он не накапливает энергию в химической реакции. Конденсатор может накапливать электричество и производить электричество намного быстрее, чем батарея, но обычно он стоит слишком дорого, чтобы сделать его настолько большим, насколько может быть батарея. Ученые и инженеры-химики работают над улучшением конденсаторов и аккумуляторов для электромобилей.
Небольшие электрические генераторы, управляемые руками и ногами, могут обеспечивать питание небольших электрических устройств. Радиоприемники с часовым механизмом, заводные фонари и аналогичные устройства также имеют заводную пружину для хранения механической энергии.
.Практические соображения - Аккумуляторы | Аккумуляторы и системы питания
- Сетевые сайты:
-
- Последний
- Новости
- Технические статьи
-
- Последний
- Проектов
- Образование
-
- Последний
- Новости
- Технические статьи
- Обзор рынка
- Образование
-
- Последний
- Новости
- Мнение
- Интервью
- Особенности продукта
- Исследования
- Форумы
- Авторизоваться
- Присоединиться
- Авторизоваться
- Присоединиться к AAC
-
Или войдите с помощью
-
0:00 / 0:00
- Подкаст
- Самый последний
- Подписывайся
Определение, функции, дисбаланс и источники
Электролиты участвуют во многих важных процессах в организме.
Они играют роль в проведении нервных импульсов, сокращении мышц, поддержании гидратации и регулировании уровня pH в организме (1, 2, 3, 4).
Следовательно, вам необходимо получать достаточное количество электролитов из своего рациона, чтобы ваше тело функционировало должным образом.
В этой статье подробно рассматриваются электролиты, их функции, риск дисбаланса и возможные источники.
«Электролит» - это общий термин для частиц, которые несут положительный или отрицательный электрический заряд (5).
В области питания этот термин относится к важным минералам, содержащимся в крови, поте и моче.
Когда эти минералы растворяются в жидкости, они образуют электролиты - положительные или отрицательные ионы, используемые в метаболических процессах.
К электролитам, содержащимся в вашем теле, относятся:
Эти электролиты необходимы для различных процессов организма, включая правильную работу нервов и мышц, поддержание кислотно-щелочного баланса и поддержание гидратации.
РезюмеЭлектролиты - это минералы, несущие электрический заряд. Они содержатся в крови, моче и поте и имеют жизненно важное значение для определенных процессов, которые поддерживают нормальное функционирование вашего тела.
Электролиты имеют решающее значение для поддержания функционирования нервной системы и мышц, а также для поддержания баланса внутренней среды.
Функция нервной системы
Ваш мозг посылает электрические сигналы через нервные клетки для связи с клетками по всему телу.
Эти сигналы называются нервными импульсами, и они генерируются изменениями электрического заряда мембраны нервной клетки (6).
Изменения происходят из-за движения электролита натрия через мембрану нервной клетки.
Когда это происходит, запускается цепная реакция, перемещая больше ионов натрия (и изменяя заряд) по длине аксона нервной клетки.
Функция мышц
Электролит кальция необходим для сокращения мышц (7).
Позволяет мышечным волокнам скользить вместе и перемещаться друг над другом по мере того, как мышца укорачивается и сокращается.
Магний также необходим в этом процессе, чтобы мышечные волокна могли скользить наружу, а мышцы расслаблялись после сокращения.
Правильная гидратация
Вода должна храниться в нужных количествах как внутри, так и снаружи каждой клетки вашего тела (8).
Электролиты, особенно натрий, помогают поддерживать баланс жидкости за счет осмоса.
Осмос - это процесс, при котором вода движется через стенку клеточной мембраны от разбавленного раствора (больше воды и меньше электролитов) к более концентрированному раствору (меньше воды и больше электролитов).
Это предотвращает разрыв клеток от переполнения или сморщивание из-за обезвоживания (9).
Внутренние уровни pH
Чтобы оставаться здоровым, вашему организму необходимо регулировать свой внутренний pH (10).
pH - это показатель кислотности или щелочности раствора. В вашем теле это регулируется химическими буферами или слабыми кислотами и основаниями, которые помогают минимизировать изменения во внутренней среде.
Например, в вашей крови установлен уровень pH около 7.От 35 до 7,45. Если он отклоняется от этого, ваше тело не может нормально функционировать, и вы заболеете.
Правильный баланс электролитов имеет основополагающее значение для поддержания уровня pH в крови (10).
РезюмеЭлектролиты необходимы для поддержания функционирования нервной системы и мышц. Они также обеспечивают оптимальную внутреннюю среду вашего тела, поддерживая гидратацию и помогая регулировать внутренний pH.
В некоторых случаях уровень электролитов в крови может стать слишком высоким или низким, вызывая дисбаланс (11, 12, 13).
Нарушения электролитов могут нанести вред вашему здоровью, а в редких случаях даже привести к летальному исходу (14).
Нарушение баланса электролитов часто возникает из-за обезвоживания, вызванного чрезмерным нагревом, рвотой или диареей. Вот почему вы должны помнить о восполнении любых потерянных жидкостей, когда вам жарко или когда вы больны (15).
Некоторые болезни, в том числе болезни почек, расстройства пищевого поведения и травмы, такие как тяжелые ожоги, также могут вызывать нарушение электролитного баланса (16, 17, 18, 19).
Если у вас легкое нарушение электролитного баланса, у вас, вероятно, не будет никаких симптомов.
Однако более серьезные дисбалансы могут вызывать такие симптомы, как (20, 21):
- Усталость
- Быстрое или нерегулярное сердцебиение
- Онемение и покалывание
- Путаница
- Слабость и спазмы мышц
- Головные боли
- Судороги
Если вы подозреваете, что у вас дисбаланс электролитов, обязательно обсудите свои симптомы с врачом.
РезюмеНарушение баланса электролитов чаще всего возникает, когда люди сильно обезвожены из-за рвоты, диареи или чрезмерного потоотделения. Сильный дисбаланс может мешать функционированию вашего тела.
Когда вы потеете, вы теряете воду и электролиты, особенно натрий и хлорид.
В результате длительные физические нагрузки или активность, особенно в жару, могут вызвать значительную потерю электролитов.
По оценкам, пот в среднем содержит около 40–60 ммоль натрия на литр (22).
Но фактическое количество электролитов, теряемых с потом, может варьироваться от человека к человеку (23, 24).
В США максимальная рекомендуемая доза натрия составляет 2300 мг в день, что эквивалентно 6 граммам или 1 чайной ложке поваренной соли (25).
Поскольку около 90% взрослых американцев потребляют намного больше, большинству людей не нужно восполнять потерю натрия с потом (26).
Однако некоторые группы населения, такие как спортсмены на выносливость, которые тренируются более двух часов, или те, кто тренируется в условиях сильной жары, могут захотеть подумать о том, чтобы пить спортивные напитки, обогащенные электролитом, чтобы восполнить свои потери (27).
Для всех остальных достаточно получать нормальное количество натрия из продуктов и питьевой воды, чтобы оставаться гидратированным.
РезюмеКогда вы потеете, вы теряете воду и электролиты, особенно натрий. Тем не менее, натрия, потребляемого с пищей, обычно достаточно, чтобы покрыть любые потери.
Лучший способ достичь и поддерживать баланс электролитов - это здоровое питание.
Основными пищевыми источниками электролитов являются фрукты и овощи.Однако в западной диете обычным источником натрия и хлоридов является поваренная соль.
Ниже приведены некоторые продукты, содержащие электролиты (28, 29, 30):
- Натрий: Маринованные продукты, сыр и поваренная соль.
- Хлорид: Поваренная соль.
- Калий: Фрукты и овощи, такие как бананы, авокадо и сладкий картофель.
- Магний: Семена и орехи.
- Кальций: Молочные продукты, витаминизированные заменители молока и зеленые листовые овощи.
Электролиты, такие как бикарбонат, вырабатываются естественным путем в организме, поэтому вам не нужно беспокоиться о том, чтобы включить их в свой рацион.
РезюмеЭлектролиты содержатся во многих продуктах питания, включая фрукты, овощи, молочные продукты, орехи и семена.
Некоторые люди пьют воду с электролитом или добавляют электролиты, такие как натрий и кальций, чтобы обеспечить их достаточное количество.
Однако сбалансированной диеты, включающей источники электролитов, должно хватить для большинства.
Ваше тело обычно может эффективно регулировать электролиты и поддерживать их на нужном уровне.
Но в некоторых случаях, например, во время приступов рвоты и диареи, когда потери электролитов чрезмерны, может оказаться полезным добавление раствора для регидратации, содержащего электролиты (31).
Сумма, которую вам нужно будет израсходовать, будет зависеть от ваших потерь. Всегда читайте инструкции по замене без рецепта.
Также обратите внимание, что если у вас не низкий уровень электролитов из-за чрезмерных потерь, то прием добавок может вызвать аномальный уровень и, возможно, болезнь (32).
Перед добавлением электролитов лучше сначала проконсультироваться с врачом или фармацевтом.
РезюмеЕсли вы придерживаетесь сбалансированной диеты, содержащей хорошие источники электролитов, добавление добавок обычно не требуется.
Электролиты - это минералы, которые несут электрический заряд при растворении в воде.
Они жизненно важны для вашей нервной системы, мышц и поддержания оптимальной среды тела.
Большинство людей удовлетворяют свои потребности в электролитах с помощью сбалансированной диеты, хотя может возникнуть дисбаланс, если вы обезвожены из-за болезни или чрезмерного тепла.
Если вы подозреваете, что у вас нарушение баланса электролитов, поговорите со своим врачом.
.