Какое сопротивление должно быть на высоковольтных проводах


Как проверить (ВВ) бронепровода? Таблица сопротивлений.

Основная задача высоковольтных проводов системы зажигания бензиновых двигателей – передача импульса зажигания от катушки (катушек) или распределителя зажигания к свечам ДВС.

Наряду с этим высоковольтные провода выполняют следующие функции: обеспечение качественной изоляции высоковольтного импульса; минимизация радиопомех; защита от выхода из строя элементов системы зажигания. При нарушении электрических параметров высоковольтного провода двигатель автомобиля начинает «троить», имеется большая потеря мощности автомобиля, возможен отказ системы запуска авто. Такую неисправность необходимо немедленно устранять, так как она может привести к полному отказу системы зажигания, неисправности механических узлов автомобиля вследствие неравномерной работы двигателя.

Вероятные причины неисправности Наиболее распространенная причина неисправности высоковольтных проводов – естественный износ и старение. Они располагаются в непосредственной близости к двигателю. В процессе эксплуатации автомобиля, особенно в холодное время года, суточный перепад температур может составлять более 100 градусов Цельсия. Изоляционные свойства материала покрытия провода постепенно уменьшаются. Провод начинает растрескиваться, в него проникает влага, пары агрессивных жидкостей (антифриз, омывайка), масла, солевые растворы обработки дорожных покрытий. Как только трещины достигают токоведущей жилы, высоковольтный сигнал может пробить на массу. Изоляционные свойства провода будут нарушены, импульс зажигания к свечам не дойдет. Часто провода теряют токопроводящие свойства в результате механических воздействий. Это обычно имеет место в местах соединения токоведущего проводника с контактными разъемами свечей и катушек зажигания. При монтаже ВВ проводов необходимо правильно их укладывать, обязательно прикреплять обжимные полиэфирвиниловые хомуты, избегать лишних механических усилий. Провода могут выйти из строя в результате превышения максимального уровня высокого напряжения. Такая ситуация возможна в случае пробоя катушки по первичной обмотке.

Как проверить высоковольтные провода зажигания?

Автомобильные высоковольтные (ВВ) провода играют важную роль для ДВС, поскольку с их помощью происходит передача высокого тока от катушки зажигания на свечи зажигания. От исправности и эффективности проводов зависит своевременность и интенсивность воспламенения топливно-воздушной смеси, а значит — правильная и бесперебойная работа двигателя. Несмотря на свою простоту, провода имеют множество различных «болячек» и могут доставить кучу неприятностей своему владельцу, которые так или иначе отразятся его на нервах и кармане.

Неисправности высоковольтных проводов (распространенные болячки):

Как правило, неисправность сводится к тому, что ток либо вовсе не поступает на свечу, либо поступает, но в ограниченном количестве. Происходить это может по следующим причинам:

  • Произошел разрыв токопроводящей жилы, по которой идет импульс.
  • Есть утечка тока, то есть изоляция повреждена и ток бьет на сторону.
  • Сопротивление превышает допустимое значение.
  • Проблемы в контактах (со свечой или катушкой зажигания).

В случае разрыва токопроводящей жилы возникает эффект внутренней искры, другими словами — образуется электрический разряд между концами разорванного провода, которое снижает напряжение и становится причиной электромагнитного паразитического импульса. Этот импульс, в свою очередь, негативно влияет на правильность работы многих датчиков автомобиля. Один такой поврежденный высоковольтный провод может стать причиной вибрации и перебоев в работе двигателя. Из-за поврежденного высоковольтного провода воспламенение в цилиндре происходит с опозданием или через раз, в итоге нарушается синхронная работа цилиндров и двигателя в целом.

Как проверить высоковольтные провода? Эффективные способы:

Прежде всего необходимо проверить ВВ на предмет отсутствия видимых повреждений (трещины, переломы и т. д.).
Убедитесь в отсутствии пробоя, это можно определить даже без приборов, достаточно заглянуть под капот в темное суток, в случае пробоя во время работы двигателя будет видна искра на ВВ проводе.
Проверить высоковольтные провода можно при помощи провода. Для этого нужно в темное время взять кусок провода и зачистить его с двух сторон. Затем один конец нужно замкнуть на «массу» (корпус машины), а вторым кончиком провести по всей длине ВВ проводов, а также стыкам, колпачкам и т. д. В местах пробоя будет образовываться искра.

Можно также проверить сопротивление высоковольтных проводов, для этого вам понадобится мультиметр.
— Включите режим омметра.
— Снимите провод со свечи первого цилиндра и катушки зажигания.
— Подключите электроды мультиметра к концам провода и посмотрите на показания.

В исправных проводах сопротивление должно варьироваться в пределах от 3,5 до 10 кОм, в зависимости от типа самых проводов. Информация о сопротивлении указана чаще всего на изоляции высоковольтных проводов. Проверьте каждый провод, разброс между ними не должен превышать — 2-4 кОма. В случае большого разброса замените провода. Кстати, они меняются комплектно, то есть все вместе.

В завершении вашему показанию сопротивления наиболее популярных высоковольтных проводов:

  • Tesla — 6 кОм
  • Slon — от 4 кОм до 7 кОм (4 кОм — 1-й цилиндр и до 7 кОм — на последнем цилиндре)
  • ProSport — почти нулевое сопротивление
  • Cargen — 0,9 кОм

Примечание! Сопротивление высоковольтных проводов варьируется в зависимости от длины, толщины, а также материала из которого изготовлены провода.

Частичные источники: drive2.ru, voditeliauto.ru.

Смотрим видео:

Как проверить высоковольтные провода: сопротивление и напряжение

С помощью электричества работает подавляющее большинство техники. Для обеспечения током гаджетов и бытовых приборов используют кабели большого или малого сопротивления. Для более серьезных устройств используют высоковольтные шнуры. Их применяют для моторов кораблей, бесперебойной работы лопастей вертолетов, а также работы двигателей автомобилей.

Основная задача высоковольтных проводов зажигания – это периодическая передача тока и надежное соединение между катушкой и распределителем. С учетом сферы использования они производятся крепкими, устойчивыми к среде, но в результате износа и в этом случае возможны неисправности.

Признаки и поиск неисправности

Высоковольтные (вв) шнуры отличаются длительным сроком эксплуатации. Но в течение многих лет службы в условиях постоянного колебания температуры свойства их изоляции ухудшаются. Как только она трескается, в щели попадает влага, масла, различные химические и солевые растворы.

Если не обращать на это внимания, трещины дойдут до токоведущего покрова, тогда импульс запуска не будет активно поступать к распределителю.

О разной степени неисправности вв провода можно судить по следующим симптомам:

  1. движок периодически не запускается, чаще в холодную погоду;
  2. происходит спад мощности и появляются посторонние шумы при движении;
  3. автомагнитола проявляет радиопомехи;
  4. повышена трата топлива;
  5. появляются пробоины или изменения цвета с наружной стороны.

В первую очередь поиск повреждения нужно искать на глаз – повреждения и трещины можно найти визуально. Если на улице темно, место пробоя будет искрить.

Иногда определить проблему по внешнему виду сложно. Тогда можно воспользоваться простым методом проверки – поочередно отключать проводники от свечи. Если после отключения какого-либо из них мощность двигателя не изменится, то этот шнур нужно заменить на новый.

Второй способ – подключить кусок провода к массе (например, кузову) одним концом, а другим провести по вв кабелю, стыкам, колпачкам. На поврежденных местах появится искра.

Проверка мультиметром

Разрыв и измерение сопротивления R можно определить мультиметром . Перед использованием нужно переключить его в режим омметра со значением 20 кОм. Далее отсоединить кабель с двух сторон и коснуться щупами противоположных концов. Сопротивление должно быть 500–3000 Ом, не выше 20 кОм. Это значение во многом зависит от длины вв шнура.

Устройством можно измерить R токоведущего проводника и изоляции, но если в первом случае подойдет даже самый простой прибор, то во втором справится только довольно дорогой мегаомметр, так как сопротивление изоляции очень высоко, обычные мультиметрами такие замеры не делаются.

В рабочем состоянии центральный проводник будет иметь сопротивление от 0 до нескольких кОм.

Как проверить тестером

Есть еще один способ, как проверить высоковольтные провода и их работоспособность – подключить выход к 100 % рабочей свече. Если двигатель включен, но при подсоединении кабеля к свече не появляется хотя бы незначительная искра, то это свидетельствует о поломке.

Какое должно быть сопротивление

Сопротивление зависит от длины и толщины шнура, а также от самого материала. У высоковольтных шнуров R должно составлять от 3,5 кОм до 10 кОм. Обычно эту информацию печатают производители на изоляции. При этом разница между разными проводниками не должна быть больше 2–4 кОм. Если она больше – нужно менять их, причем комплексно.

Требования к конструкции

Вв провода состоят из токопроводящей части, металлического наконечника, двух колпачков из пластмассы и изоляционной оплетки. Изоляция играет важную роль, так как препятствует попаданию влаги на токопроводящий элемент и не позволяет утекать току при передаче. Наконечник обеспечивает соединение выводов кабеля со свечами и катушкой зажигания, колпачки защищают их от внешней среды.

Поэтому вв шнуры должны выполнять ряд функций:

  • решать токопроводящие задачи;
  • сводить к минимум утечку тока;
  • справляться с воздействием агрессивной внешней среды;
  • быть устойчивым к различным температурам и их перепадам.

Помимо того, вв кабели, а также их изоляция, должны иметь большой срок службы. Обратите внимание, что чем меньше у провода R, тем легче происходит запуск двигателя.
Проверять высоковольтные провода на работоспособность нужно при первых признаках некачественной работы автомобиля, иначе в дальнейшем транспортное средство может перестать запускаться вообще.

Высоковольтные провода зажигания ВАЗ: виды, особенности

Каждый, даже далекий от тонкостей автомеханики автолюбитель, знает, что ни один двигатель не может работать без системы зажигания. При этом основными элементами системы зажигания является коммутатор (или трамблер), катушка и свечи зажигания. Однако в данной статье мы поговорим о другом, не менее важном компоненте системы зажигания – высоковольтных проводах. Высоковольтные провода зажигания ВАЗ, как и высоковольтные провода в автомобиле от любого другого производителя, предназначены для передачи высокого напряжения к свечам зажигания.

Абсолютно все провода для свечей зажигания классифицируются в зависимости от конструктивных особенностей. В частности, все провода разделяют в зависимости от материала, из которого изготовлена токопроводящая жила, а также материала, из которого выполнена изоляция. Рассмотрим разновидности проводов более детально.

Классификация по типу проводника

По типу токопроводящей жилы провода на свечи зажигания могут быть:

  1.  С медным проводником. Такие кабеля считаются классическими и обладают очень низким сопротивлением – около 0,2 Ом/м. Основным недостатком является значительный уровень помех, возникающих в процессе работы системы зажигания.
  2.  С проводником из неметаллического материала. Конструктивно такой провод выполнен из льняной нити, кевлара, стекловолокна с графитовой пропиткой. При этом сердечник заключен в специальную оболочку из проводящей электрический ток пластмассы. Распределенное сопротивление составляет около 2 кОм/м. Использовать такие кабели следует только с помехоподавляющими устройствами.
  3.  С неметаллической токопроводящей жилой, конструктивно выполнены практически аналогично выше описанному проводу. Отличительной особенностью является более высокое распределенное сопротивление – около 40 кОм/м. Такие кабели могут использоваться без помехоподавляющих устройств.
Провода зажигания

Классификация по материалу изоляции

Как уже упоминалось выше, провода к свечам зажигания классифицируются в зависимости материала, из которого выполнена изоляция. В бюджетных кабелях изоляция чаще всего изготавливается из поливинилхлоридного материала. Такая изоляция способна выдерживать температуру в пределах -20 — +120 градусов.

Более качественной считается изоляция из так называемого эластомера. Основной отличительной особенностью кабелей с такой изоляцией является высокая стойкость к негативному воздействию химически агрессивных веществ. Диапазон температур, при которых эластомер не утрачивает своих качеств, лежит в пределах -30 — +180 градусов.

Наиболее высокими характеристиками обладает кабель с силиконовой изоляцией. Силиконовая изоляция способна выдерживать температуру в пределах -50 — +250 градусов и обладает наибольшей долговечностью по сравнению с другими видами изоляции. Именно провода с такой изоляцией рекомендуются многими автопроизводителями, в том числе и отечественными.

Какое должно быть сопротивление высоковольтных проводов зажигания

Многие автолюбители считают, что чем меньше сопротивление проводов зажигания, тем меньшим будет уровень потерь, и тем более эффективно будет функционировать система зажигания. Действительно ли такие утверждения обоснованы и верны?

Признано, что чем меньше сопротивление токопроводящей жилы, тем более высоким является негативное воздействие электромагнитных помех на работу силовой установки автомобиля. В этой связи очень важно чтобы комплект высоковольтных кабелей по уровню помехоподавления соответствовал установленным нормам. Если взять в качестве примера автомобили семейства ВАЗ, то в их технических руководствах утверждено, что в зависимости от длины сопротивление провода должно быть в пределах 3,5-10 кОм.

В то же время чем меньшим будет сопротивление всей лини зажигания, тем более эффективно будет работать силовой агрегат автомобиля. Недаром же в спортивных автомобилях используются провода с практически нулевым сопротивлением. Если же вспомнить о помехах, то сопротивления свечи вполне достаточно.

Высоковольтные провода зажигания

Признаки неисправности высоковольтных проводов зажигания

Свидетельством того, что кабели зажигания пришли в негодность, являются следующие признаки:

  •  трудности с запуском двигателя, особенно в сырую погоду;
  •  на средних и высоких оборотах отмечается нестабильная работа двигателя;
  •  двигатель не развивает полную мощность;
  •  наблюдается повышенный расход топлива.

Как правило, при сильном износе на изоляции провода возникает множество микротрещин, из-за которых возникает утечка тока. В результате этого провод не способен передать к свече зажигания ток, который по своей величине достаточен для ее нормальной работы. Таким образом существенно повышается время выработки искры и нарушается правильная работа цилиндров двигателя.

Достаточно часто встречаются и случаи, когда провода повреждаются в результате соприкосновения с какими-либо элементами двигателя. Также возможны и ситуации потери герметичности колпачка, и как следствие – окисление контактов и утечки тока. Регулярная очистка контактов является обязательной процедурой, особенно при эксплуатации автомобиля в сложных климатических условиях.

Каким образом автовладелец может проверить провода на утечку? На самом деле все очень просто: в темном гараже открываем капот и заводим двигатель. Места утечек будут достаточно ярко светиться синим светом. Существует и несколько другой способ: вместо свечи устанавливается разрядник (два электрода в одном корпусе) и по нему контролируется энергия, подаваемая на свечу.

Для того чтобы повысить долговечность изоляции рекомендуется следить и постоянно поддерживать ее в чистоте. Постоянной проверке и очистке подлежат и контакты между свечами зажигания и каждым проводом.

Высоковольтные провода

Как проверить провода свечей зажигания мультиметром

В первую очередь любая диагностика начинается с детального внешнего осмотра. Очень часто одного лишь визуального осмотра достаточно для того, чтобы выявить износившийся кабель. Наличие значительных дефектов в виде, например, трещин и переломов на изоляции, уже является подтверждением необходимости замены провода.

Если же визуальный осмотр показал, что изоляция в нормальном состоянии и имеются обоснованные сомнения по поводу исправности токопроводящей жилы, можно произвести проверку при помощи мультиметра.

Для того чтобы произвести проверку высоковольтного кабеля потребуется стрелочный или цифровой мультиметр. Сам процесс проверки очень прост: устанавливаем измерительный прибор в режим измерения сопротивления, отсоединяем провод от свечи и катушки зажигания и замеряем его сопротивление. Разумеется, измерение сопротивление должно быть произведено по отношению ко всем проводам.

В процессе работы стоит помнить, что разница между показания не должна быть более 2 кОм. В случае если разница между показаниями выше данного значения, то это является свидетельством необходимости замены провода.

Отдельно следует вспомнить и о другом способе проверки. Для выполнения работы потребуется достаточно длинный отрезок провода с оголенными концами. Один конец подключаем к минусовому выводу АКБ (к «массе»), а вторым концом постепенно проводим по высоковольтному кабелю. В местах повреждений, если они присутствуют, будет проскакивать искра.

Подчеркнем, что если, например, после того, как была произведена проверка высоковольтных проводов зажигания мультиметром, и был выявлен только один пришедший в негодность провод, то замены подлежит весь комплект. Все дело в том, что только установка нового комплекта может гарантировать одинаково стабильную работу каждого цилиндра силового агрегата. По этой же самой причине крайне не рекомендуется производить какой-либо ремонт колпачков и/или изоляции высоковольтного кабеля.

Как показывает многолетний опыт, основной причиной быстрого выхода из строя кабелей системы зажигания является их низкое качество. Помните, что экономия в данном случае неоправданна.

Гораздо выгоднее один раз купить качественное изделие, чем каждый месяц покупать низкокачественное, но зато дешевое.

Facebook

Twitter

Вконтакте

Google+

Как проверить высоковольтные провода зажигания и найти неисправность

Автор Павел Александрович Белоусов На чтение 5 мин. Просмотров 203

По высоковольтным проводам бензинового двигателя ток попадает на свечи зажигания. При  толщине около 7 мм провода должны выдерживать напряжение 40 кВ, генерируемых катушкой высокого напряжения. Провод высокого напряжения должен иметь расчетное сопротивление и качественную изоляцию.

Неисправные или пробитые высоковольтные провода хуже проводят электрический ток, зажигание нарушается, и двигатель теряет мощность, ухудшается динамика, увеличивается расход топлива. При повреждении изоляции искровой разряд может проскакивать непосредственно под капотом, что повышает вероятность пожара.

Поэтому игнорировать проблему нельзя, но нужно знать, как проверить провода зажигания, чтобы выявить причину возникших проблем.

Замер сопротивления высоковольтных проводов

Провода отсоединяются от разрядника и полностью снимаются с двигателя. Для этого используется тестер в режиме измерения сопротивления в диапазоне 20 кОм. Контакты тестера помещаются с двух сторон провода и снимаются показания.

Сопротивление на ВВ проводах может колебаться от 3,5 до 10 кОм, при этом разница этого показателя в одном комплекте проводов двигателя не должна превышать 3 кОм. В противном случае они подлежат замене.

Если провод показывает сопротивление более 10 кОм, он питает дефектную свечу или свеча была с увеличенным зазором. Если в высоковольтной системе зажигания имеется всего один неисправный элемент, нарушается вся работа системы, а элементы выходят из строя.

Проверка высоковольтных проводов зажигания мультиметром – самый надежный способ определения их состояния. Если сопротивление превышает нормативные показатели для данного провода, его нужно заменить.

Проверка высоковольтных проводов при помощи разрядника

Чтобы проверить высоковольтные провода на авто в условиях, близких к эксплуатационным, потребуется специальный разрядник. Они устанавливаются на модуль зажигания и подключаются к устройству. Один провод установлен на разряднике с зазором 14 мм, а второй провод выводится на массу. При помощи специального прибора имитируется работа двигателя.

Устанавливается режим работы в 2000 об/мин., при этом искровой разряд должен быть устойчивым и бесперебойным. После этого провода меняются местами, и проверка повторяется в том же режиме. Эта операция проделывается попарно со всеми проводами, подсоединенными к свечам цилиндров автомобиля.

Проверка проводов на пробой

Проверка на пробой ВВ провода осуществляется при помощи специального приспособления. Это петля из толстой медной проволоки на диэлектрической ручке длиной 30-40 см. Петля закорачивается на массу автомобиля.

Медная петля аккуратно надевается на провод так, чтобы она могла скользить по нему. Провода остаются подключенными к разряднику, который включается в режим имитации работы двигателя на 2000 об./мин. Петля одевается на провод, подключенный к искровому промежутку и проводится по всей его длине.

Если на проводе есть пробой, это будет видно по разряду между проводом и петлей. Обязательно проверяется качество изоляции возле свечного наконечника и колпачка, присоединяемого к катушке высокого напряжения.

Проверка изоляции на пробой

Далее провода меняются местами и тест повторяется. Если в проводе обнаруживается пробой, его необходимо заменить, даже когда его сопротивление отвечает нормативам. Проигнорировав этот момент, можно получить много проблем:

  • провод начнет пробивать на массу и цилиндр, к которому он ведет, перестанет работать;
  • искра под капотом может привести к пожару;
  • перегрузка скажется на работе все электрической системы автомобиля.

Вариант проверки в эксплуатационных условиях

Проверить исправность высоковольтных проводов можно, создавая условия, близкие к реальным. Для этого подкапотное пространство, в том числе высоковольтную катушку и модуль зажигания, обрызгивают «росинкой», создавая эффект сырой погоды. При помощи разрядника имитируется работа двигателя на разных оборотах. Разряд должен оставаться стабильным, без разрывов и пропусков.

Сырая погода является негативным фактором, при котором можно получить пробой провода. Стабильная работа системы зажигания в таких условиях – признак того, что с проводами высокого напряжения все в порядке.

Автолюбители, у которых нет разрядника, могут использовать проводящую петлю на диэлектрической ручке, соединенную с массой автомобиля. Петля надевается на провод, запускается двигатель, слегка увеличиваются обороты. Скользя петлей по поверхности провода, можно проверить их на пробой. Можно прозвонить высоковольтные провода зажигания, подходящие ко всем цилиндрам.

Дополнительно проверяются колпачки провода на свечи зажигания и высоковольтную катушку. Контакт должен быть плотным и надежным, не искрить и не пробиваться на петлю устройства.

Когда нужно менять провода высокого напряжения?

В большинстве автомобилей не указывается регламентная замена ВВ проводов. Но существует несколько основных признаков, указывающих на то, что появились проблемы в работе системы зажигания и виноваты в этом провода:

  1. Автомобиль начал плохо заводиться, особенно часто это случается в дождь, туман или просто сырую погоду.
  2. Когда двигатель выходит на средние или высокие обороты, он начинает работать с перебоями.
  3. При повреждении центрального провода двигатель просто глохнет.
  4. Существенно снижается мощность мотора, он становится туповатым, плохо разгоняется.
  5. Увеличивается расход бензина, иногда на 30-50%.
  6. После запуска двигателя продолжает светиться датчик Check Engine.

Все эти признаки указывают на то, что возможно пробивает провода высокого напряжения, и они подлежат замене. Это происходит потому, что изоляция со временем рассыхается и устаревает, трескается из-за высокой влажности и температурных перепадов. В этом случае лучше проверить ВВ провода мультиметром, чтобы оценить их сопротивление.

Еще одна причина появления проблемы – окисление контактов. Это происходит в местах присоединения к свечам зажигания и блока высокого напряжения. Если нет возможности проверить высоковольтные провода тестером, можно закрепить наконечник на небольшом расстоянии от металлических деталей мотора и включить зажигание. По качеству искры можно оценить состояние провода. Важным параметром является сопротивление бронепроводов, которое можно оценить только при помощи специального оборудования.

сопротивление высоковольтных проводов, высоковольтные провода

просмотров 15 465 Google+

Высоковольтные провода с медным сердечником.

Высоковольтные провода зажигания автомобилей служат для передачи высокого напряжения от катушки зажигания к свечам зажигания. В продаже существуют несколько типов высоковольтных проводов. Самые простые и дешёвые состоят из многожильного провода с толстым слоем изоляции. Они применяются при контактном зажигании. Сопротивление высоковольтных проводов таких марок практически нулевое, что обеспечивает минимальные потери высокого напряжения от катушкой зажигания. Но низкое сопротивление и низкое напряжение пробоя снижает вторичное напряжение, так как снижается напряжение самоиндукции катушки, которое напрямую влияет на накопление энергии. Так же при применении таких проводов возникают очень сильные радиопомехи. Изоляция таких проводов то же оставляет желать лучшего. Как показала практика, эти провода практически не работают.

Высоковольтные провода с угольным сердечником.

Второй тип проводов состоит из центральной льняной нити покрытой ферропластом, на которую намотана железоникелевая проволока. сопротивление проводов этого типа около 2 кОм/м, что позволяет снизить радиопомехи. Эти провода идеально подходят для применения на автомобилях с контактной системой зажигания. Имея относительно небольшое сопротивление и небольшие потери при передаче высокого напряжения. При этом существенно снижаются радиопомехи и несколько повышается вторичное напряжение. Но изоляция, таких проводов, так же оставляет желать лучшего, особенно при перепадах температуры.

Силиконовые высоковольтные провода.

Повышения требований к помехоподавлению проводов и повышение вторичного напряжения привело к созданию с повышенным распределительным сопротивлением и повышенной изоляцией, способной выдерживать высокое напряжение до 40 кВ. Эти провода выполняются из различных материалов и имеют силиконовую изоляцию. Сопротивление таких проводов составляет от 5 кОм/м до 15кОм/м. Изоляция таких проводов очень надёжна и не реагирует на перепады температур, не трескается.

Проверка высоковольтных проводов

Высоковольтные провода применяемые в контактном зажигании рассчитаны на относительно низкое напряжение порядка 12кВ и имеют жёсткую изоляцию. Эта изоляция ломается , особенно при перепаде температур, что приводит к утечке напряжения на корпус. Определить эту неисправность достаточно просто. Необходимо заглянуть под капот при работающем двигателе в темноте. Наличие искрения на проводах свидетельствует о неисправности.

Изоляция силиконовых проводов практически не подвержена повреждениям в эксплуатации, разве только могут быть повреждены механически, при ремонте. Но эти провода часто могут иметь обрыв в токопроводящей части. При небольшом обрыве, из-за высокого напряжения бесконтактной системы зажигания, никаких чувствительных изменений в работе двигателя не заметно. Другое дело когда этот обрыв со временем выгорит и увеличится. В зависимости какой именно провод оборван, могут появиться неустойчивая работа двигателя, двигатель троит, провалы при разгоне и т. д.

Но обрыв в высоковольтном проводе страшен не ухудшением работы двигателя, что конечно неприятно, а повышением напряжения самоиндукции. Это приводит к повышению нагрузки на коммутатор или ЭБУ инжекторного двигателя. При больших обрывах происходит пробой управляющего транзистора (тиристора) коммутатора или ЭБУ.

Проверить целостность проводов достаточно  просто. Необходимо замерить сопротивление всех проводов и сравнить их между собой. Так как сопротивление проводов у различных производителей может иметь различные значения. Но сопротивление проводов одного комплекта отличается не значительно и зависит лишь от длинны. Если при сравнении значений будут выявлена большая разница, то этот провод необходимо заменить.

admin 24/04/2011«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» "Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях"

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 108

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть».Невооруженным глазом нельзя увидеть энергию, протекающую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе. Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество - это движение электронов.Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. - все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение - это разница заряда между двумя точками.
  • Текущий - это скорость, с которой происходит начисление.
  • Сопротивление - это способность материала сопротивляться прохождению заряда (тока).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь представляет собой замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением.Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. В этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.На дне этой емкости находится шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем представить этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет по мере разрядки батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей по шлангу за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Амперы представлены в уравнениях буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряда) в баке с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через бак. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга - это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или для краткости «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

В электрических терминах это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно представлено на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • В = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что если мы знаем два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды - это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод непосредственно к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Ну, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток, проходящий через светодиод, не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора является обычным явлением в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации - светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока осуществляется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, то перестала бы течь вся река, а не только одна сторона. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и движение вперед

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции - лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.

.

Напряжение, ток, сопротивление и закон Ома | EAGLE

С возвращением, молодой мастер электроники. В нашем предыдущем блоге мы узнали о простой схеме и ее месте в нашем мире электроники. Но чтобы понять истинную сущность электричества, нужно понять, как управлять и измерять напряжение, ток и сопротивление. Вот где приходит этот блог. Мы поднялись на самые высокие вершины, чтобы найти правильную аналогию, объясняющую природу того, как электричество работает в цепи. И вместо того, чтобы проводить еще одну аналогию с водой, мы подумали, что будем более личными, с нашими телами в движении.

Напряжение - все дело в потенциале

Представьте, что вы просыпаетесь утром. Вы лежите в постели, хотите еще несколько часов поспать, но знаете, что пришло время для страшной утренней пробежки. Вы знаете, что это хорошо для вас, и вы будете чувствовать себя прекрасно, когда начнете двигаться, но каждое утро вам нужно делать выбор. Вы можете либо остаться в постели и поспать немного дольше, либо встать и начать двигаться.

Это суть напряжения; все дело в разнице потенциалов.У всех нас есть потенциал, и когда дело доходит до бега, этот потенциал заключается в выборе: бежать или спать. Если вы не решите бежать сегодня утром, ваш потенциал будет бездействовать, но если вы это сделаете, то этот потенциал вырвется наружу, побуждая вас бежать на несколько миль и заряжая энергией остаток дня.

Напряжение в сети

Подобно наличию потенциала движения или его отсутствия, напряжение накапливает электрическую энергию , с потенциалом движения .Именно эта сила напряжения побуждает электроны течь по цепи и заставляет их работать час за часом.

Voltage - это повсюду, ожидая, когда мы задействуем его потенциал. Посмотрите на каждую неиспользованную розетку в вашем доме - в розетках гудит напряжение, готовые сделать за вас работу. Но, как и в случае выбора бежать, у вас есть выбор, подключать ли этот источник напряжения к вашей розетке. Если оставить его в покое, то напряжение останется там, где оно есть, никогда не реализуя свой полный потенциал.

В электрической цепи напряжение измеряется путем нахождения так называемой разности потенциалов между двумя точками с помощью мультиметра. Возьмем, к примеру, 9-вольтовую батарею. Если вы измеряете положительный и отрицательный полюсы, вы получите разность потенциалов 9 вольт (или близкую к ней). Положительный конец измеряет 9 В, а отрицательный конец - 0 В. Минус два числа, и вы получите разность потенциалов.

Вы можете использовать мультиметр, чтобы быстро измерить напряжение или разность потенциалов в батарее.(Источник изображения)

Напряжение бывает двух разных форм: постоянного (постоянного тока) напряжения, которое обеспечивает постоянный поток отрицательного электричества, или переменного (переменного тока) напряжения, которое постоянно переключается с отрицательного на положительное. Вот символы, которые вы хотите найти на схеме для постоянного, переменного напряжения и батареи:

Вот некоторые символы напряжения, на которые следует обратить внимание на следующей схеме: батареи, постоянный и переменный ток.

Отец напряжения - Алессандро Вольта

Человек часа, которому приписывают открытие напряжения - Алессандро Вольта (Источник изображения)

Человеком, первым обнаружившим напряжение, был итальянский физик Алессандро Вольта.Он также обнаружил массу других интересных вещей, в том числе:

  • Обнаружение того, что, если вы смешиваете метан с воздухом, вы можете создать электрическую искру, которая положила начало знаменитому теперь двигателю внутреннего сгорания.
  • Обнаружение того, что электрический потенциал, хранящийся в конденсаторе, пропорционален его электрическому заряду.
  • Volta также приписывают создание первой электрической батареи, названной Voltaic Pile, которая позволила ученым того времени создать устойчивый поток электронов.

Пример гальванической батареи, впервые созданной Вольтой, позволяющей ученым создавать устойчивый поток электронов. (Источник изображения)

Однако

Вольта не обошелся без своих причуд. Пока ему не исполнилось четыре года, он не произнес ни слова, и его родители опасались, что он либо умственно отсталый. Хорошо, что они ошибались!

Ток - плывя по течению

Возвращаясь к нашей аналогии с бегом, представьте, что вы сделали выбор в пользу утренней пробежки.Вы в обуви и шортах и ​​выходите за дверь, чтобы отправиться в путь. В этот момент у вас есть движение, когда вы начинаете бег, поток.

Вот ток, движущийся в наших телах, кто знал, что электричество может быть таким личным?

Может быть, через час пробежки вы начнете бежать, готовые пробежать несколько миль. Когда вы бежите, ваши умные часы точно измеряют, как далеко вы прошли и как быстро вы прошли. Этот процесс запуска и измерения процесса - вот что такое Current .

Ток в электричестве

Как и шаги для завершения утренней пробежки, ток - это постоянное движение или поток электричества в цепи . Электрический ток, протекающий по вашей цепи, всегда измеряется в амперах или амперах. Но что держит этот ток в движении?

Это напряжение, о котором мы говорили ранее. Точно так же, как вам нужно сказать себе, чтобы продолжать бегать, когда вы устали, напряжение является движущей силой тока, которая поддерживает его движение.Есть две школы мысли о том, как течет ток в цепи; Обычный поток или Электронный поток , давайте посмотрим на оба:

Традиционный поток - Традиционный поток был первым в период научных открытий, когда люди не понимали электроны и то, как они текут в цепи. В рамках этой модели предполагалось, что электричество перетекает с положительного на отрицательный.

Обычный поток с электричеством, протекающим с положительной стороны на отрицательную батареи.

Вы все еще увидите, что этот образ мышления используется в схемах и сегодня, и хотя он не совсем точен, его немного легче понять, чем Electron Flow. В конце концов, если мы вернемся к нашей аналогии с бегом, вы начнете с положительного источника энергии и бежите до тех пор, пока энергия не иссякнет. Это отношение положительное к отрицательному, как и многое в жизни.

Электронный поток - Электронный поток был продолжением обычного потока. Эта модель точно описывает электроны как движущиеся в противоположном направлении, от отрицательного к положительному.Поскольку электроны по своей природе отрицательны, они всегда будут вытекать из отрицательного и бесконечно пытаться найти свой путь к положительной стороне источника питания с низким напряжением.

И более текущий поток электронов, причем электроны текут, как и в действительности, от отрицательного к положительному.

Имеет ли значение, каким образом вы показываете ток, протекающий в цепи? На самом деле, нет. Вы, вероятно, увидите, что это представлено в обоих направлениях, если взглянуть на множество схем. Взгляните на диоды или транзисторы на следующей схеме, которую вы исследуете; все они будут указывать в направлении обычного потока.

Человек, стоящий за течением - Андре-Мари Ампер

Андре-Мари Ампер, самоучка и человек, совершивший гораздо больше, чем просто открытие Ампера. (Источник изображения)

Ампер был французским физиком и математиком, а также одним из основоположников науки о классическом электромагнетизме. Вы можете поблагодарить Ampere за несколько замечательных вещей, в том числе:

  • Его главное открытие, продемонстрировавшее, что провод, по которому проходит электрический ток, может притягивать или отталкивать другой провод, по которому также течет ток, без использования физических магнитов.
  • Он был также первым, кто высказал идею о существовании частицы, которую все мы широко признаем как электрон.
  • Он также организовал химические элементы по их свойствам в периодической таблице за полвека до того, как появилась современная периодическая таблица Менделеева.

Интересный факт об образовании Ампера - у него не было никакого формального образования! Вместо этого отец позволял ему делать то, что он хотел, узнавая все. Хотя это могло вызвать у остальных из нас лень и чрезмерное увлечение видеоиграми, Ампер обнаружил врожденную любовь к знаниям, поглощая столько книг из семейной библиотеки, сколько мог, и даже заучивая страницы из энциклопедии.

Сопротивление - это материальный мир

Наша последняя концепция - Сопротивление. Представьте себя снова на беговой дорожке, по какой поверхности вы бежите? Если вам повезет, то вы, возможно, путешествуете по мягкой траве или грунтовой дороге. Или, может быть, вы предпочитаете твердость улицы или тротуара. Но что, если он начнет литься наружу? Тогда вы можете застрять в густой грязи

Независимо от того, по какой дороге вы бежите, ваши ноги сталкиваются с некоторым сопротивлением, когда вы продолжаете двигаться вперед.Естественно, не все пути сопротивления созданы равными. Бег по грязи значительно снижает вашу способность к бегу по сравнению с бегом по грунтовой дороге или улице. В этом вся суть сопротивления, тяга и тяга материального мира.

Сопротивление электричеству

Какой бы материал ни проходил через электричество, он столкнется с трением, препятствующим его движению. Проще говоря, сопротивление замедляет ток . Хотя в электрической цепи есть определенные компоненты, такие как резистор, единственная задача которого - сопротивление электричеству, любой физический материал будет обеспечивать некоторое сопротивление.

Сопротивление измеряется в Ом Ом, и оно напрямую зависит от силы тока и напряжения. Вот простой пример: чем больше у вас сопротивление, тем меньше тока может протекать по цепи. Это похоже на бег: чем гуще грязь, тем медленнее вы бежите. Обратное также работает, если вы увеличиваете напряжение, чтобы ваш ток двигался быстрее, чем ваше сопротивление будет меньше влиять на вашу схему.

Мастер сопротивления - Георг Симон Ом

Георг Ом - Человек, который объединил напряжение, ток , ток и сопротивление в известный ныне закон Ома.(Источник изображения)

Г-н Ом был немецким физиком и математиком, и именно в те годы, когда он был школьным учителем, он начал свои исследования с использованием новой электрической батареи, изобретенной Вольтой. С помощью собственного оборудования Ом смог обнаружить прямую зависимость между напряжением, приложенным к проводнику (например, медному проводу), и возникающим в результате электрическим током. Это стало известно как известный ныне закон Ома, на который мы все сегодня полагаемся.

Интересно отметить, что Ом представил свои открытия в своей первой книге «Гальваническая цепь, исследуемая математически», но колледж, в котором он работал в то время, не заботился об этом.Так что же сделал Ом? Он уволился и устроился на новую работу в Политехническую школу Нюрнберга. К счастью, именно здесь его работа привлекла заслуженное внимание.

Объединяя все вместе с Законом Ома

Хорошо, пора объединить все наши концепции. Вот с чем нам предстоит работать:

  • Напряжение (В) - это накопленное электричество, которое может двигаться. Когда этот потенциал активируется, напряжение действует как своего рода давление, проталкивая ток по цепи.
  • Ток (I) - Поток электричества в цепи. Его можно измерить непосредственно в амперах, и есть две школы мысли о том, как протекает ток - обычный поток и электронный поток.
  • Сопротивление (R) - Сопротивление, с которым электричество сталкивается, просто протекая через какой-то физический материал. Измеряется в Ом.

Собирая все это вместе, мы приходим к закону Ома:

В этом уравнении V = напряжение, I = ток и R = сопротивление.Гибкость закона Ома впечатляет, и его можно использовать для нахождения любого из этих трех значений, когда известны только два из них. Давайте рассмотрим пример, чтобы увидеть, как это работает.

Использование треугольника Ома

Посмотрите на треугольник Ома ниже. Он дает простое и наглядное представление о том, как можно манипулировать законом Ома, чтобы получить нужные ответы. Чтобы использовать его, все, что вам нужно сделать, это скрыть букву значения, которое вам нужно выяснить, а оставшиеся буквы покажут вам, как этого добиться.

Треугольник Ома, ваш удобный инструмент, чтобы точно определить, какой вариант закона Ома необходимо использовать.

Взгляните на схему ниже. У нас есть батарея 9V, подключенная к светодиоду и резистору. Единственная проблема заключается в том, что нам нужно выяснить, каково значение резистора.

Наша тренировочная схема, чтобы познакомиться с законом Ома. Мы можем использовать известные значения ампер и вольт, чтобы получить значение резистора.

Для этого давайте посмотрим на треугольник Ома.Прикрыв R, мы можем увидеть, что у нас есть V над I или V, деленное на I. Итак, разделив эти два числа, мы получим значение нашего резистора. Давайте подставим эти числа в это уравнение: R = V / I.

  • Начнем с самого очевидного, у нашей батареи напряжение 9 вольт.
  • Глядя на техническое описание нашего светодиода, мы можем увидеть предполагаемый максимальный ток 16 мА (миллиампер), который преобразуется в 0,016 ампер.
  • Подставляя эти два числа в наше уравнение, мы получаем R = 9V / 0.016A, что равно 473,68. Это означает, что нам нужен резистор 473 Ом, чтобы наш светодиод включился!

Сопротивление бесполезно

Понимать, как напряжение, ток и сопротивление работают вместе, было не так уж сложно, не так ли? Надеемся, что в следующий раз, когда вы отправитесь на утреннюю пробежку, у вас будет новый взгляд на электричество. Почувствуйте, как ваши ноги летят по тротуару или грязи, и помните, что это сопротивление. А когда вы проверяете, как далеко вы пробежали, то видите, как поток движется! И та сила, которая вытащила тебя из постели и заставила бежать? Вольтаж.

Готовы сделать свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно!

.

Рекомендации по безопасности IEEE для испытаний под высоким напряжением

IEEE Std 510-1983 Рекомендуемые практики IEEE по безопасности при испытаниях высокого напряжения и большой мощности

Институт инженеров по электротехнике и радиоэлектронике

1. ОБЛАСТЬ ПРИМЕНЕНИЯ
В этом разделе перечислены выдержки из стандарта IEEE 510-1983, чтобы предостеречь весь персонал, имеющий дело с приложениями и измерениями высокого напряжения, и предоставить рекомендуемые меры безопасности в отношении опасности поражения электрическим током.

Соображения по безопасности при электрических испытаниях относятся не только к персоналу, но и к испытательному оборудованию и аппаратуре или тестируемой системе. Эти рекомендуемые методы в целом касаются безопасности в связи с испытаниями в лабораториях, в полевых условиях, а также систем, включающих высоковольтные источники питания и т. Д. Для целей этих рекомендуемых практик в качестве практического минимума принималось напряжение приблизительно 1000 вольт. для этих типов тестов. Необходимо индивидуальное суждение, чтобы решить, применимы ли требования этих рекомендуемых практик в случаях, когда задействованы более низкие напряжения или особые риски.

  1. Все незаземленные клеммы испытательного оборудования или оборудования следует рассматривать как
    под напряжением.
  2. Общие заземляющие соединения должны быть прочно подключены как к испытательному комплекту, так и к испытательному образцу.
    Как минимум, допустимая токовая нагрузка заземляющих проводов должна превышать допустимую для
    максимально возможного тока заземления. Следует учитывать влияние повышения потенциала земли из-за сопротивления и реактивного сопротивления
    заземляющего соединения.
  3. Следует принять меры для предотвращения случайного прикосновения персонала к клеммам, находящимся под напряжением, либо путем экранирования клемм под напряжением, либо путем создания барьеров вокруг зоны.
  4. Схема должна включать приборы для индикации испытательных напряжений.
  5. В целях безопасности необходимо обеспечить соответствующее переключение и, при необходимости, наблюдателя для немедленного выключения питания
    испытательных цепей. В случае испытаний на постоянном токе также должны быть включены условия для разряда
    и заземления заряженных клемм и поддерживающей изоляции.
  6. Испытания высокого напряжения и высокой мощности должны проводиться под контролем квалифицированного персонала.


2. ПРАКТИКА ТЕХНИКИ БЕЗОПАСНОСТИ ИСПЫТАНИЙ

  1. Соответствующие предупреждающие знаки, например, ОПАСНОСТЬ - ВЫСОКОЕ НАПРЯЖЕНИЕ, должны быть вывешены на воротах
    или рядом с ними.
  2. Насколько это практически возможно, должны быть предусмотрены автоматические заземляющие устройства для нанесения видимого заземления на высоковольтные цепи
    после того, как они обесточены.В некоторых высоковольтных цепях, особенно в цепях
    , элементы которых подвешиваются от одной установки к другой, это может оказаться невозможным. В этих случаях оператор
    должен подключить заземление к высоковольтной клемме с помощью рукоятки с соответствующей изоляцией. В случае
    , когда несколько конденсаторов соединены последовательно, не всегда достаточно заземлить только высоковольтный вывод
    . Открытые промежуточные клеммы также следует заземлить. Это относится к
    , в частности, к генераторам импульсов, где конденсаторы должны быть закорочены и заземлены до
    и во время работы с генератором.
  3. Безопасное заземление контрольно-измерительных приборов должно иметь приоритет перед надлежащим сигнальным заземлением, если не были приняты другие особые меры предосторожности
    для обеспечения безопасности персонала.

3. ЦЕПИ УПРАВЛЕНИЯ И ИЗМЕРЕНИЯ

Провода

не следует выводить из испытательной зоны, если они не заключены в заземленную металлическую оболочку
и оканчиваются в заземленном металлическом корпусе, или если не приняты другие меры предосторожности для
, обеспечивающие безопасность персонала.В эту категорию попадают управляющая проводка, соединения счетчиков и кабели, идущие к осциллографам. Счетчики и другие приборы с доступными клеммами обычно следует помещать
в металлический отсек со смотровым окном.

Временные цепи

  1. Временные измерительные цепи должны быть полностью расположены в пределах испытательной зоны и
    просматриваться через забор. В качестве альтернативы, счетчики могут быть расположены за забором
    при условии, что счетчики и провода, находящиеся вне зоны, заключены в заземленные металлические корпуса
    .
  2. Временные цепи управления должны обрабатываться так же, как и измерительные цепи, и размещаться
    в заземленной коробке со всеми элементами управления, доступными для оператора при потенциале земли.

4. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Для лаборатории или испытательного центра необходимо установить и обеспечить соблюдение ряда правил безопасности. Копию этого следует передать и обсудить с каждым человеком, назначенным для работы в зоне тестирования. Следует установить и выполнять процедуру периодического пересмотра этих правил с операторами.

5. ПРОВЕРКА БЕЗОПАСНОСТИ
Должна быть установлена ​​и проведена процедура периодических проверок зон испытаний. После рекомендаций
эти проверки должны сопровождаться корректирующими действиями в отношении небезопасного оборудования или действий, которые не соответствуют требуемым нормам.

ПРИМЕЧАНИЕ : Комитет по безопасности, состоящий из нескольких операторов, назначаемых на ротационной основе, доказал свою эффективность не только с точки зрения инспекции, но и с точки зрения информирования всего персонала о безопасности.

6. ЗАЗЕМЛЕНИЕ И ЗАКРЫТИЕ]

  1. Прокладка и подключение временной электропроводки должны быть такими, чтобы они были защищены от случайных прерываний
    , которые могут создать опасность для персонала или оборудования.
  2. Устройства, в которых в качестве изоляции используется твердый или твердый / жидкий диэлектрик, желательно заземлить
    и замкнуть накоротко, когда они не используются.
  3. Надлежащая практика безопасности требует короткого замыкания емкостных объектов в следующих ситуациях:
  4. Любой емкостный объект, который не используется, но может находиться под воздействием постоянного электрического поля
    , должен иметь заземленный открытый высоковольтный вывод.Несоблюдение этой меры предосторожности
    может привести к появлению напряжения в емкостном объекте из-за поля.
  5. Емкостные объекты, имеющие твердый диэлектрик, должны быть закорочены после испытания на стойкость к постоянному току.
    . Несоблюдение этой меры предосторожности может привести к нарастанию напряжения на объекте
    из-за рассеивания диэлектрической абсорбции или до тех пор, пока объект
    не будет повторно подключен к цепи.

ПРИМЕЧАНИЕ : Хорошая практика состоит в том, чтобы все емкостные устройства оставались замкнутыми накоротко, когда они не используются.

  1. Любое емкостное устройство с разомкнутой цепью должно быть замкнуто накоротко и заземлено, прежде чем к нему
    прикасался персонал.

7. РАССТОЯНИЕ

  1. Все объекты с потенциалом земли должны быть размещены вдали от всех открытых точек высокого напряжения на минимальном расстоянии
    1 дюйм (25,4 мм) на каждые 7500 Вольт, например Для 50 кВ требуется расстояние не менее
    6,7 дюйма (171 мм)
  2. Обеспечьте длину пути утечки 1 дюйм (25,4 мм) на каждые 7500 В для изоляторов, находящихся в контакте
    с точками высокого напряжения.

8. ИСПЫТАНИЕ ВЫСОКОЙ МОЩНОСТИ

  1. Испытание высокой мощности включает в себя особый тип измерения высокого напряжения, при котором уровень тока
    очень высок. В связи с этим фактом
    следует уделить особое внимание мерам безопасности при испытании на большой мощности. Взрывоопасный характер испытуемого образца также вызывает особую озабоченность в отношении безопасности
    в лаборатории.
  2. Защитное оборудование для глаз и лица должно быть надето всему персоналу, проводящему или наблюдающему за мощным испытанием
    , если есть разумная вероятность того, что такое оборудование
    может предотвратить травмы глаз или лица.

ПРИМЕЧАНИЕ : Типичные опасности для глаз и лица, присутствующие в испытательных зонах высокой мощности, включали интенсивный свет
(включая ультрафиолет), искры и расплавленный металл.

  1. Защитные очки с поглощающими линзами должен носить весь персонал, соблюдающий испытание с высокой мощностью
    , даже если не ожидается образования электрической дуги. Линзы должны быть ударопрочными и иметь номер оттенка
    , соответствующий уровню внешней освещенности рабочей зоны, но при этом обеспечивать защиту
    от опасного излучения из-за непреднамеренного электрического дугового разряда.

9. ОБЩЕЕ

  1. Все высоковольтное генерирующее оборудование должно иметь единый очевидный орган управления для отключения оборудования
    в аварийных условиях.
  2. Все высоковольтное генерирующее оборудование должно иметь индикатор, сигнализирующий о том, что высоковольтный выход
    включен.
  3. Все высоковольтное генерирующее оборудование должно иметь устройства для внешних подключений (блокировки)
    , которые при размыкании вызывают отключение источника высокого напряжения.Эти соединения могут использоваться
    для внешних защитных блокировок в барьерах или для ножного или ручного предохранительного выключателя.
  4. Конструкция любого высоковольтного испытательного оборудования должна включать анализ отказов, чтобы определить
    , не создаст ли отказ какой-либо части цепи или образца, к которому он подключен, опасную ситуацию
    для оператора. Основной отказ должен быть истолкован с учетом вероятности отказа
    элементов, которые будут перенапряжены в результате основного отказа.Анализ может быть ограничен
    эффектом одного крупного отказа за раз, при условии, что основной отказ очевиден для оператора.

Нажмите здесь, чтобы загрузить статью в формате PDF.


.

% PDF-1.4 % 262 0 объект > endobj xref 262 41 0000000017 00000 н. 0000001292 00000 н. 0000002480 00000 н. 0000002866 00000 н. 0000002931 00000 н. 0000003123 00000 п. 0000003396 00000 н. 0000003756 00000 н. 0000003926 00000 н. 0000003958 00000 н. 0000004161 00000 п. 0000004244 00000 п. 0000004549 00000 н. 0000023454 00000 п. 0000024077 00000 п. 0000024525 00000 п. 0000024722 00000 п. 0000025000 00000 н. 0000025322 00000 п. 0000025514 00000 п. 0000025795 00000 п. 0000028076 00000 п. 0000028104 00000 п. 0000028276 00000 п. 0000028308 00000 п. 0000028513 00000 п. 0000028824 00000 п. 0000056587 00000 п. 0000057200 00000 п. 0000057734 00000 п. 0000057933 00000 п. 0000058217 00000 п. 0000058502 00000 п. 0000058667 00000 п. 0000058699 00000 п. 0000058897 00000 п. 0000059197 00000 п. 0000105193 00000 п. 0000106011 00000 п. 0000106563 00000 н. 0000001385 00000 н. трейлер ] >> startxref 0 %% EOF 263 0 объект > endobj 302 0 объект > ручей xc``b``d`c`X Ȁ

.

Смотрите также