Кинематическая вязкость масла


что означают цифры, таблица вязкости по температуре, кинематическая вязкость

Выбор моторного масла – серьезная задача для каждого автолюбителя. И главный параметр, по которому должен осуществляться подбор — это вязкость масла. Вязкость масла характеризует степень густоты моторной жидкости и ее способность сохранять свои свойства при температурных перепадах.

Попробуем разобраться, в каких единицах должна измеряться вязкость, какие функции она выполняет и почему она играет огромную роль в работе всей двигательной системы.

Для чего используется масло?

Работа двигателя внутреннего сгорания предполагает непрерывное взаимодействие его конструктивных элементов. Представим на секунду, что мотор работает «на сухую». Что с ним произойдет? Во-первых, сила трения повысит температуру внутри устройства. Во-вторых, произойдет деформация и износ деталей. И, наконец, все это приведет к полной остановке ДВС и невозможности его дальнейшего использования.  Правильно подобранное моторное масло выполняет следующие функции:

Работа моторного масла

  • защищает мотор от перегрева,
  • предотвращает быстрый износ механизмов,
  • препятствует образованию коррозии,
  • выводит нагар, сажу и продукты сгорания топлива за пределы двигательной системы,
  • способствует увеличению ресурса силового агрегата.

Таким образом, нормальное функционирование моторного отдела без смазывающей жидкости невозможно.

Важно! Заливать в мотор транспортного средства нужно только то масло, вязкость которого соответствует требованиям автопроизводителей. В этом случае коэффициент полезного действия будет максимальным, а износ рабочих узлов – минимальным. Доверять мнениям продавцов-консультантов, друзей и специалистов автосервисов, если они расходятся с инструкцией к автомобилю, не стоит. Ведь только производитель может знать наверняка, чем стоит заправлять мотор.

Индекс вязкости масла

Понятие вязкости масел подразумевает способность жидкости к тягучести. Определяется она с помощью индекса вязкости. Индекс вязкости масла – это величина, показывающая степень тягучести масляной жидкости при температурных изменениях. Смазки, имеющих высокую степень вязкости, обладают следующими свойствами:

Вязкость масла

  • при холодном запуске двигателя защитная пленка имеет сильную текучесть, что обеспечивает быстрое и равномерное распределение смазки по всей рабочей поверхности;
  • нагрев двигателя вызывает увеличение вязкости пленки. Такое свойство позволяет удерживать защитную пленку на поверхностях движущихся деталей.

Т.е. масла с высоким значением индекса вязкости легко адаптируются под температурные перегрузки, в то время как низкий индекс вязкости моторного масла свидетельствует о меньших способностях. Такие вещества имеют более жидкое состояние и образуют на деталях тонкую защитную пленку. В условиях отрицательных температур моторная жидкость с низким индексом вязкости затруднит пуск силового агрегата, а при высокотемпературных режимах не сможет предотвратить большую силу трения.

Расчет индекса вязкости осуществляется по ГОСТу 25371-82. Рассчитать его можно с помощью онлайн-сервисов сети Интернет.

Кинематическая и динамическая вязкости

Степень тягучести моторного материала определяется двумя показателями — кинематической и динамической вязкостями.

Моторное масло

Кинематическая вязкость масла — показатель, отображающий его текучесть при нормальных (+40 градусов Цельсия) и высоких (+100 градусов Цельсия) температурах. Методика измерения данной величины основывается на использовании капиллярного вискозиметра. При помощи прибора измеряется время, требуемое для истечения масляной жидкостипри заданных температурах. Измеряется кинематическая вязкость в мм2/с.

Динамическая вязкость масла также вычисляется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающий во время движения двух слоев масла, удаленных друг от друга на расстоянии 1 сантиметра и движущихся со скоростью 1 см/с. Единицы измерения данной величины — Паскаль-секунды.

Определение вязкости масла должно проходить в разных температурных условиях, т.к. жидкость не стабильна и изменяет свои свойства при низких и высоких температурах.

Таблица вязкости моторных масел по температуре представлена ниже.

Таблица вязкости моторных масел по температуре

Расшифровка обозначения моторного масла

Как отмечалось ранее, вязкость — это основной параметр защитной жидкости, характеризующий ее способность обеспечивать работоспособность автомобиля в различных климатических условиях.

Согласно международной системе классификации SAE, моторные смазки могут быть трех видов: зимние, летние и всесезонные.

Схема изучения этикетки автомасла

Масло, предназначенное для зимнего использования, маркируется цифрой и буквой W, например, 5W, 10W, 15W. Первый символ маркировки указывает на диапазон отрицательных рабочих температур. Буква W — от английского слова «Winter» — зима — информирует покупателя о возможности использования смазки в суровых низкотемпературных условиях. Она имеет большую текучесть, чем летний аналог, для того, чтобы обеспечить легкий запуск при низких температурах. Жидкая пленка мгновенно обволакивает холодные элементы и облегчает их прокрутку.

Предел отрицательных температур, при которых масло сохраняет работоспособность следующий: для 0W — (-40) градусов Цельсия, для 5W — (-35) градусов, для 10W — (-25) градусов, для 15W — (-35) градусов.

Летняя жидкость имеет высокую вязкость, позволяющую пленке крепче «держаться» на рабочих элементах. В условиях слишком высоких температур такое масло равномерно растекается по рабочей поверхности деталей и защищает их от сильного износа. Обозначается такое масло цифрами, например, 20,30,40 и т.д. Данная цифра характеризует высокотемпературный предел, в котором жидкость сохраняет свои свойства.

Важно! Что означают цифры? Цифры летнего параметра ни в коем случае не означают максимальную температуру, при которой возможна работа автомобиля. Они  — условные, и к градусной шкале отношения не имеют.

Масло с вязкостью 30 нормально функционирует при температуре окружающей среды до +30 градусов по Цельсию, 40 — до +45 градусов, 50 — до +50 градусов.

Распознать универсальное масло просто: его маркировка включает две цифры и букву W между ними, например, 5w30. Его использование подразумевает любые климатические условиях, будь то суровая зима или жаркое лето. В обоих случаях, масло будет подстраиваться под изменения и сохранять работоспособность всей двигательной системы.

Кстати, климатический диапазон универсального масла определяется просто. Например, для 5W30 он варьируются в пределах от минус 35 до +30 градусов Цельсия.

Всесезонные масла удобны в использовании, поэтому на прилавках автомагазинов они встречаются чаще летних и зимних вариантов.

Для того чтобы иметь более полное представление о том, какая вязкость моторного масла уместна в вашем регионе, ниже представлена таблица, показывающая диапазон рабочих температур для каждого типа смазывающей жидкости.

Усредненные диапазоны работоспособности масел

Стандарт API

Разобравшись, что означают цифры в вязкости масла перейдем к следующему стандарту. Классификация моторного масла по вязкости затрагивает также стандарт API. В зависимости от типа двигателя, обозначение API начинается с буквы S или C. S подразумевает бензиновые моторы, С — дизельные. Вторая буква классификации указывает на класс качества моторного масла. И чем дальше эта буква находится от начала алфавита, тем лучше качество защитной жидкости.

Для бензиновых двигательных систем существую следующие обозначения:

Стандарт API

  • SC –год выпуска до 1964 г.
  • SD –год выпуска с 1964 по 1968 гг.
  • SE –год выпуска с 1969 по 1972 гг.
  • SF –год выпуска с 1973 по 1988 гг.
  • SG –год выпуска с 1989 по 1994 гг.
  • SH –год выпуска с 1995 по 1996 гг.
  • SJ –год выпуска с 1997 по 2000 гг.
  • SL –год выпуска с 2001 по 2003 г.
  • SM –год выпуска после 2004 г.
  • SN –авто, оборудованные современной системой нейтрализации выхлопных газов.

Для дизельных:

  • CB –год выпуска до 1961 г.
  • CC –год выпускадо 1983 г.
  • CD –год выпускадо 1990 г.
  • CE –год выпускадо 1990 г., (турбированный мотор).
  • CF –год выпускас 1990 г., (турбированный мотор).
  • CG-4 –год выпускас 1994 г., (турбированный мотор).
  • CH-4 –год выпускас 1998 г.
  • CI-4 – современные авто (турбированный мотор).
  • CI-4 plus – значительно выше класс.

Что одному двигателю хорошо, то другому грозит ремонтом

Моторное масло

Многие автовладельцы уверены, что выбирать стоит более вязкие масла, ведь они — залог долговечной работы двигателя. Это серьезное заблуждение. Да, специалисты заливают под капоты гоночных болидов масло с большой степенью тягучести для достижения максимального ресурса силового агрегата. Но обычные легковые машины оборудованы другой системой, которая попросту захлебнется при чрезмерной густоте защитной пленки.

О том, какую вязкость масла допустимо использовать в двигателе той или иной машины, описано в любом руководстве по эксплуатации.

Ведь до запуска массовых продаж моделей, автопроизводители проводили большое количество тестов, учитывая возможные режимы езды и эксплуатацию технического средства в различных климатических условиях. Благодаря анализу поведения мотора и его способности поддерживать стабильную работу в тех или иных условиях, инженеры устанавливали допустимые параметры моторной смазки. Отклонение от них может спровоцировать снижение мощности двигательной системы, ее перегрев, увеличение расхода топлива и многое другое.

Моторное масло в двигателе

Почему класс вязкости так важен в работе механизмов? Представьте на минуту мотор изнутри: между цилиндрами и поршнем есть зазор, величина которого должна допускать возможное расширение деталей от высокотемпературных перепадов. Но для максимального коэффициента полезного действия этот зазор должен иметь минимальное значение, предотвращая попадание в двигательную систему выхлопных газов, образующихся во время горения топливной смеси. Для того, чтобы корпус поршня не нагревался от соприкосновения с цилиндрами, и используется моторная смазка.

Уровень вязкости масла должен обеспечивать работоспособность каждого элемента двигательной системы. Производители силовых агрегатов должны добиться оптимального соотношения минимального зазора между трущимися деталями и масляной пленой, предотвращая преждевременный износ элементов и повышая рабочий ресурс двигателя. Согласитесь, доверять официальным представителям автомобильной марки безопаснее, зная, каким путем эти знания были получены, чем верить «опытным» автомобилистам, полагающимся на интуицию.

Что происходит в момент запуска двигателя?

Если ваш «железный друг» простоял всю ночь на морозе, то наутро показатель вязкости залитого в него масла будет в несколько раз выше расчетной рабочей величины. Соответственно, толщина защитной пленки будет превышать зазоры между элементами. В момент запуска холодного мотора происходит падение его мощности и повышение температуры внутри него. Таким образом, возникает прогрев мотора.

Важно! Во время прогрева нельзя давать ему повышенную нагрузку. Слишком густой смазочный состав затруднит движение основных механизмов и приведет к сокращению срока эксплуатации автомобиля.

Вязкость моторного масла в рабочих температурах

После того, как двигатель прогрелся, активируется система охлаждения. Один цикл работы двигателя выглядит следующим образом:

  1. Нажим на педаль газа повышает обороты мотора и увеличивает нагрузку на него, в результате чего увеличивается сила трения деталей (т.к. слишком вяжущая жидкость еще не успела попасть в междетальные зазоры),
  2. температура масла повышается,
  3. степень его вязкости снижается (увеличивается текучесть),
  4. толщина масляного слоя уменьшается (просачивается в междетальные зазоры),
  5. сила трения снижается,
  6. температура масляной пленки снижается (частично с помощью охлаждающей системы).

По такому принципу работает любая двигательная система.

Вязкость моторных масел при температуре — 20 градусов

Зависимость вязкости масла от рабочей температуры очевидна. Так же, как очевидно то, что высокий уровень защиты мотора не должен снижаться в течение всего периода эксплуатации. Малейшее отклонение от нормы может привести к исчезновению моторной пленки, что в свою очередь негативно отразится на «беззащитной» детали.

Каждый двигатель внутреннего сгорания, хоть и имеет схожую конструкцию, но обладает уникальным набором потребительских свойств: мощностью, экономичностью, экологичностью и величиной крутящего момента. Объясняются эти различия разницей моторных зазоров и рабочих температур.

Для того, чтобы максимально точно подобрать масло для транспортного средства, были разработаны международные классификации моторных жидкостей.

Предусмотренная стандартом SAE классификация информирует автовладельцев об усредненном диапазоне рабочих температур. Более четкие представления о возможности использования смазочной жидкости в определенных автомобилях дают классификации API, ACEA и т.д.

Последствия заливки масла повышенной вязкости

Бывают случаи, когда автовладельцы, не знают, как определить требуемую вязкость моторного масла для своего автомобиля, и заливают то, которое советуют продавцы. Что случится, если тягучесть окажется выше требуемой?

Сравнение вязкости моторных масел

Если в хорошо прогретом двигателе «плещется» масло с завышенной тягучестью, то для мотора опасности не возникает (при нормальных оборотах). В этом случае, просто повысится температура внутри агрегата, что приведет к снижению вязкости смазки. Т.е. ситуация придет в норму. Но! Регулярное повторение данной схемы заметно снизит моторесурс.

Если резко «дать газу», вызвав увеличение оборотов, степень вязкости жидкости не будет соответствовать температуре. Это приведет к превышению максимально допустимой температуры в моторном отсеке. Перегрев вызовет повышение силы трения и снижение износостойкости деталей. Кстати, само масло также потеряет свои свойства за достаточно короткий промежуток времени.

О том, что вязкость масла не подошла транспортному средству, моментально узнать вы не сможете.

Первые «симптомы» появятся лишь через 100-150 тысяч км пробега. И главным показателем станет увеличение зазоров между деталями. Однако, определенно связать завышенную вязкость и быстрое снижение ресурса мотора не смогут даже опытные специалисты. Именно по этой причине официальные автомастерские зачастую пренебрегают требованиями производителей транспортных средств. К тому же им выгодно производить ремонт силовых агрегатов автомобилей, у которых уже закончился срок гарантийного обслуживания. Вот почему выбор степени вязкости масла — сложная задача для каждого автолюбителя.

Слишком низкая вязкость: опасна ли она?

Моторное масло

Погубить бензиновые и дизельные двигатели может низкая степень вязкости. Этот факт объясняется тем, что при повышенных рабочих температурах и нагрузках на мотор текучесть обволакивающей пленки повышается, в результате чего не без того жидкая защита попросту «обнажает» детали. Результат: повышение силы трения, увеличение расхода ГСМ, деформация механизмов. Долгая эксплуатация автомобиля с залитой низковязкостной жидкостью невозможна — его заклинит практически сразу.

Некоторые современные модели моторов предполагают использование так называемых «энергосберегающих» масел, имеющих пониженную вязкость. Но использовать их можно только если имеются специальные допуски автопроизводителей: ACEA A1, B1 и ACEA A5, B5.

Стабилизаторы густоты масла

Из-за постоянных температурных перегрузок вязкость масла постепенно начинает уменьшается. И помочь восстановить ее могут специальные стабилизаторы. Их допустимо использовать в двигателях любого типа, износ которых достиг среднего или высокого уровня.

Стабилизаторы позволяют:

Стабилизаторы

  • увеличивать вязкость защитной пленки,
  • снижать количество нагара и отложений на цилиндрах мотора,
  • сокращать выброс вредных веществ в атмосферу,
  • восстанавливать защитный масляный слой,
  • достигать «бесшумности» в работе двигателя,
  • предотвращать процессы окисления внутри корпуса мотора.

Использование стабилизаторов позволяет не только увеличить срок между «масляными» заменами, но и восстановить утраченные полезные свойства защитного слоя.

Разновидности специальных смазок, применяемых на производствах

Смазка веретенного машинного вида обладает низковязкостными свойствами. Использование такой защиты рационально на моторах, имеющих слабую нагрузку и работающих на больших скоростях. Чаще всего, применяется такая смазка в текстильном производстве.

Турбинная смазка. Ее главная особенность заключается защите всех работающих механизмов от окисления и преждевременного износа. Оптимальная вязкость турбинного масла позволяет использовать его в турбокомпрессорных приводах, газовых, паровых и гидравлических турбинах.

Гидравлический насос

ВМГЗ или всесезонное гидравлическое загущенное масло. Такая жидкость идеально подходит для техники, используемой в районах Сибири, Крайнего Севера и Дальнего Востока. Предназначено такое масло двигателям внутреннего сгорания, оборудованным гидравлическими приводами. ВМГЗ не подразделяется на летние и зимние масла, потому что его применение подразумевает только низкотемпературный климат.

В качестве сырья для гидромасла выступают маловязкие компоненты, содержащие минеральную основу. Для того, чтобы масло достигло нужной консистенции, в него добавляют специальные присадки.

Вязкость гидравлического масла представлена в таблице ниже.

Таблица вязкости гидравлических масел

ОйлРайт — еще одна смазка, применяемая для консервации и обработки механизмов. Она имеет водостойкую графитовую основу и сохраняет свои свойства в диапазоне температур от минус 20 градусов Цельсия до плюс 70 градусов Цельсия.

Выводы

Однозначного ответа на вопрос: «какая вязкость моторного масла самая хорошая?» нет и не может быть. Все дело в том, что нужная степень тягучести для каждого механизма — будь то ткацкий станок или мотор гоночного болида — своя, и определить ее «наобум» нельзя. Требуемые параметры смазывающих жидкостей вычисляются производителями опытным путем, поэтому при выборе жидкости для своего транспортного средства в первую очередь руководствуетесь указаниями разработчика. А уже после этого вы можете обратиться к таблице вязкости моторных масел по температуре.

существующие виды и способы их измерения

Начнем с азов. Любая жидкость в данном случае масло, применяемая в сложных механизмах, имеет свою вязкость. Оставим в покое химию, хотя она, безусловно, делает смазку именно тем продуктом, за который мы платим деньги.

Рассмотрим одно из важнейших физических свойств — вязкость масла. Несмотря на то, что параметр непосредственно зависит от химического состава, это чистая физика. Вязкость напрямую зависит от температуры масла и от давления.

Демонстрация текучести масла на компараторе вязкости

Оба этих фактора регулируются системами двигателя:

  • охлаждения;
  • вентиляции картера.

Абсолютное значение – динамическая вязкость. Более гибкая величина (зависит от нескольких факторов) – кинематическая. По традиционной системе СГС (сантиметр-грамм-секунда), измеряется вязкость в пуазах (динамика) и стоксах (кинематика). Существуют и другие единицы измерения.

Что такое вязкость масла?

Это достаточно сложное понятие. С теоретической точки зрения – это сопротивление течению жидкости (антипод текучести). С точки зрения практической физики – сопротивление формируется силой трения между частицами, из которых состоит масло.

Демонстрация зависимости вязкости масла от температуры

В первую очередь, от вязкости зависят смазывающие свойства моторного масла. Благодаря правильному балансу, смазка равномерно распределяется и удерживается на поверхности деталей. Снижается трение, механизмы меньше изнашиваются, на их движение тратится меньше энергии. Побочный эффект – экономия топлива.

Поскольку вязкость масла зависит от температуры и давления, необходимо придать химическому составу такие характеристики, которые позволят моторному маслу сохранять параметры при любых условиях эксплуатации.

Нельзя допускать, чтобы в пределах рабочей температуры двигателя, свойства технических жидкостей менялись. Для уточнения этого параметра, рядом с числовым значением вязкости так или иначе указывается условие, при котором производится измерение. Это информация для лаборантов. а не покупателей смазки.

Кстати

Автопроизводители выставляют совершенно конкретные требования изготовителям смазочных материалов, особенно в плане вязкости. Поэтому, при подборе моторного масла, следует обращать внимание именно на этот параметр.

При использовании моторного масла с нарушениями заводских рекомендаций, вязкость либо не будет соответствовать температурным условиям, либо ее значение будет непредсказуемо меняться.

Это может привести к следующим неприятностям:

  1. Смазка загустеет и затруднится её перемещение по масляным каналам;
  2. Толщина рабочей пленки не будет соответствовать требованиям мотористов-изготовителей;
  3. Масло не удержится в рабочей зоне, металл останется «голым».

В результате возникнет масляное голодание, и эффект сухого трения. Детали будут перегреваться и ускоренно изнашиваться, что неминуемо приведет к поломке двигателя.

Последствия масляного голодания двигателя

Кинематическая, динамическая и относительная вязкость моторного масла

Базовый (абсолютный) параметр – это динамическая вязкость масла. Если нанести на поверхность с тарированной гладкостью, масляное пятно площадью 1 см², то для движения его со скоростью 1 см/с потребуется определенное усилие. По отношению этой силы к площади пятня – определяется динамическая вязкость. Эту величину обычно рассчитывают под различные значения температуры. Измеряется в миллипаскалях, разделенных на время в секундах: мПа/с.

Кинематическая вязкость масла связана с его плотностью, и непосредственно зависит от температуры механизма, в котором применяется смазка. Поскольку сертификационные измерения производятся в диапазоне рабочих температур двигателя (от +40°С до + 100°С), это и есть главный эксплуатационный показатель моторного масла. Максимальное допустимое значение температуры: + 150°С.

Параметр непосредственно связан со значением динамической вязкости, и представляет собой её соотношение к плотности жидкости. Разумеется, измерение проводится в одинаковых температурных условиях для абсолютной вязкости и плотности. Единица измерения – квадратный метр за секунду: м²/с.

Демонстрация относительной вязкости

Относительная вязкость моторного масла – это число, определяющее разность превышения над вязкостью дистиллированной воды. Оба измерения также производятся при одинаковой температуре: +20°С. Единица измерения вязкости масла – градус Энглера (E°). Этот способ измерения вспомогательный, на его основе не определяется маркировка моторного масла. Но без этой процедуры (результаты обязательно отражаются в протоколах) невозможно получить заводской допуск для конкретной марки автомобилей.

Международный стандарт вязкости масел и виды смазок

Разумеется, маркировка на емкостях со смазочными материалами, не подразумевает наличие формул и единиц измерения из учебника физики. Обозначение упрощенное и формализованное.

Типовые значения степеней вязкости по SAE приняты давно, между всеми производителями смазочных материалов и автомобильными концернами достигнуты соглашения. Стандарт действует на всех континентах, его можно найти на упаковке любого бренда.

Способ определения вязкости нефтепродуктов — видео

Методика определения вязкости постоянно совершенствуется. Сегодня применяется редакция SAE J300, по которой все смазочные материалы (для моторов) подразделяются на 11 групп (классов). При этом, предыдущие редакции имеют обратную совместимость с новыми.

Классификация по сезонам применения:

  1. Для зимней эксплуатации применяется маркировка определения низкотемпературной вязкости W: (SAE 0W, 5W, 10W, 15W, 20W, 25W).
  2. Летние моторные масла обозначаются так: (SАЕ 20, 30, 40, 50, 60).

Поскольку нахождение автомобилей в строго определенных условиях встречается не часто, в основном применяются так называемые всесезонные моторные масла (могут быть минеральными, синтетическими, или полусинтетическими). В зависимости от условий эксплуатации, применяется комбинированная маркировка: SАЕ 0W-30, SAE 15W-40, SAE 20W-50 и пр.
Примерный перечень зависимости классификации от температуры показан в таблице:

Для нормальной работы двигателя, кинематическая вязкость моторного масла определяется двумя значениями. Первая цифра означает принадлежность к условиям зимней эксплуатации двигателя.

Правильно подобранная смазка должна обеспечить холодный запуск движка при заданной температуре. То есть, те самые показатели скорости течения масла, которые определяются в лабораториях при различных температурах, применяются на практике. Если залить жидкость с неправильным значением по SAE, коленчатый вал может просто не провернуться при вполне нормальной температуре -25°С.

Если же показатель вязкости для летней эксплуатации (вторая цифра) не будет соответствовать температуре окружающей среды, масляное пятно не удержится в зоне контакта движущихся деталей, и мы получим эффект «сухого трения».

А в самом критическом случае – смазка может дойти до точки кипения. Тогда характеристики быстро деградируют, и вместо технологичной технической жидкости в картере будет смесь отдельных фракций. Тут и до капитального ремонта недалеко.

Методики измерения кинетической вязкости масла

  1. Низкотемпературная вязкость – способность прокачиваться через систему маслопроводов после запуска двигателя. Определяется по универсальным (для всех участников SAE классификации) методике ASTM D 4684 и ASTM D 5293. В стендовых условиях имитируется холодный пуск мотора и прогон технической жидкости по тарированным трубкам. Можно использовать ротационный вискозиметр, но в нем не учитываются силы поверхностного натяжения. При этом определяется минимально возможная температура, при которой сохраняются заявленные показатели вязкости. Кроме того, проверяется способность жидкости уверенно проходить через масляный фильтр. Силы давления насоса вполне достаточно, чтобы порвать загустевшим маслом мембрану. Методика проверки принята стандартом GM 9099 P.
  2. Высокотемпературная вязкость оценивается на образцах из той-же партии. Кинематические характеристики проверяются с помощью капиллярного вискозиметра при типичной температуре прогретого двигателя: 100°С. Методика имеет название ASTM D 445. Затем жидкость прогревается до температуры 150°С. Это пиковые значения, когда масло касается раскаленной нижней части поршня. В этом диапазоне скорость сдвига (один из показателей кинематической вязкости) не должен выходить за установленный стандарт. Верхний предел оценивается по методике ASTM D 4683 или ASTM D 4741.

Существует еще оценка стабильности к сдвигу при одновременном воздействии температуры и механики. Проверка производится на специальной тарированной форсунке, в течение 10 симулированных рабочих часа.

Кроме того, для полного соответствия допуску, любой автопроизводитель может предложить собственный тест, который моделирует температурные и нагрузочные ситуации, характерные для конкретного двигателя.

И если производитель смазки хочет получить дополнительный сертификат, он вынужден проходить все испытания. Это влечет за собой определенные затраты, зато открывает дорогу к новым рынкам и потребителям.

Наиболее успешные тесты учитываются при выборе ОЕМ поставщика расходных материалов.

Заключение

При выборе смазки не обязательно помнить (или иметь под рукой) все перечисленные в материале формулы или методики. Достаточно прочитать на этикетке заводские данные вязкости по стандарту SAE, и найти в перечне допусков ваш автомобиль. Под этими комбинациями символов и цифр, скрываются многостраничные отчеты о проведенных испытаниях.

Как выбрать масло ориентируясь на его вязкость — видео

Идеальный вариант подбора масла – выяснить, с какой торговой маркой заключено ОЕМ соглашение на поставку расходных материалов у вашего автопроизводителя. В этом случае вы точно будете уверены, что кинематическая вязкость моторного масла соответствует вашему мотору.

Вязкость масла какая, индекс вязкости, кинематическая вязкость

Содержание статьи


Вполне обосновано желание каждого автовладельца иметь надёжного и безотказного «железного коня». Реализовать комфортное пользование транспортным средством помогает качественное и своевременное сервисное обслуживание силовых агрегатов.

Одним из важнейших элементов обеспечения отличной работы основного движущего узла – мотора, является правильно подобранный смазочный материал (это понимает даже школьник).

Как безошибочно выбрать моторную смазку? Почему вязкость влияет на эксплуатационные свойства масел и работу двигателя? Какая бывает классификация моторных масел по вязкости, измеряется в каких единицах, её обозначение и как расшифровывается маркировка? Что означает аббревиатура? Ответы на эти вопросы в полном объёме получат читатели данной статьи.

Для чего нужно масло

Изначально смазочные жидкости использовались для вывода тепла из рабочей зоны и перетягивания его в картер, снижения трения деталей в узле, отвода продуктов износа и защиты шеек коленчатого вала.

В дальнейшем на масло была возложена роль смазки всех элементов газораспределительного механизма и цилиндров двигателя. На современном этапе автомасла – это неотъемлемая составляющая работы всех механизмов машины.

Обозначим конкретные защитные функции, выполняемые моторным маслом:

  • Образование предохраняющей от трения и износа плёнки на деталях;
  • Предупреждение окислительных процессов и коррозии узлов;
  • Очистка важных рабочих зон от загрязнений – сажи, грязи, нагара и др. продуктов сгорания топлива;
  • Выведение загрязняющих частиц, остающихся в процессе износа комплектующих деталей;
  • Сохранение узлов от перегрева;
  • Обеспечение надёжного пуска;
  • Снижение «травмирования» деталей при холодном пуске.

Поэтому сегодняшнему автолюбителю далеко не всё равно, что заливать в рабочие узлы. Важнейшим критерием подбора смазочного состава является вязкость масла.

Основное понятие вязкости и её виды.

Если говорить доступным языком, не вдаваясь в научную терминологию, то вязкость моторного масла – это способность сохранять текучесть, одновременно с тем, чтобы на деталях, внутри силового узла, оставалась достаточная плёнка смазки, правильно распределённая между трущимися частями.

Чем ниже вязкость, тем текучее вещество. При этом масло должно обладать стойкими характеристиками при использовании в достаточно широком диапазоне «гуляющей» температуры, которая при интенсивной езде достигает 150ºС. Если движок холодный – масло, естественно, сгущается: в этом варианте важно, чтобы оно осталось жидким даже при отрицательных температурах, для обеспечения пуска двигателя.

Основной задачей расходного материала является недопущение сухого трения движущихся комплектующих внутри двигателя и поддержания минимальной силы трения при наибольшей герметичности рабочих цилиндров.

Кинематическая и динамическая вязкость масла.

В свою очередь существует два вида понятия вязкости масел – кинематическая и динамическая.

Обусловленная кинематическая вязкость масла (КВМ) отвечает за густоту смазочного материала и высчитывается при стандартной и max температуре использования. Чаще всего для испытаний принимают режим работы при температуре сорока и ста градусов по Цельсию.

Дальше КВМ помогает рассчитать калькулятор. По параметрам КВМ определяется индекс вязкости моторного масла, который отражает степень изменения КВМ относительно изменения температуры.

Чем выше индекс, тем качественнее смазочный состав и тем меньше зависимость вязкости масла от температуры. Для высококачественной смазочной субстанции индекс вязкости масла составляет более двухсот единиц измерения, как правило, это всесезонные расходные материалы.

Характеристика, отвечающая за сопротивляемость вещества при смещении одного его слоя относительно другого его же слоя, называется – динамическая вязкость масла (измеряется в сантипуазах).

От неё зависит потеря энергии двигателя при работе – чем больше степень вязкости, тем толще плёнка на внутренних деталях и надёжнее смазывание, но при этом увеличиваются потери мощности на преодоление жидкостного трения.

Для оптимального определения вязкости масла во всем мире признана международная классификация моторных масел по вязкости по SAE (общество авто-инженеров США).

Рассмотрим, как определить вязкость моторного масла по SAE.

По международным стандартам SAE существует для определения вязкости моторного масла таблица, в которой показаны параметры для безопасной работы движка для всех классов вязкости. К вниманию читателей ниже предложена таблица вязкости моторных масел по температуре.

Классификация масел предполагает деление на три категории:

  • Зимние (находятся слева вверху таблицы)– имеют невысокую вязкость для лёгкого холодного пуска при минусовых температурах, но не подходят для качественного смазывания внутренних частей мотора в летний сезон. Их вязкость должна соответствовать прокачиваемости (не более 6000 сантипуаз) и отвечать требуемой КВМ и проворачиваемости.
  • Летние (находятся справа вверху таблицы) – имеют высокую вязкость, что гарантируют надёжную смазку деталей, но не позволит производить безопасный холодный пуск при морозе;
  • Всесезонные (находятся в нижней части по середине) – не трудно догадаться что эти масла в большем объёме занимают потребительский спрос, поскольку имеют смешанную сертификацию, применяются при большом диапазоне тепловых режимов, отвечают и зимним и летним параметрам эксплуатации. Эта продукция способна меняться в зависимости от сезона и обеспечивать необходимую в данный момент смазку, её не приходится менять со сменой сезона, она носит наиболее энергосберегающий характер и, следовательно, является более удобной.

Маркировка, пробуем расшифровать

В первую очередь на упаковке ищем аббревиатуру SAE, рядом можно увидеть литеру «w» и ещё одно или два числа. Так вот, литерой «w» (от английского «winter») обозначаются зимние, если впереди стоит только одно число, например, 10w или 25w. Что означают цифры?

Цифры помогают рассчитать отрицательную температуру безопасного пуска ДВС. Чтобы рассчитать её нужно от 40 отнять указанную на маркировке цифру. Следовательно, чем меньше цифровое значение, тем при более низкой температуре производится лёгкий пуск двигателя.

Для маркировки масел летнего класса используется только цифровое обозначение, например, SAE30,40,50. Здесь цифра указывает возможность использования в определённом температурном режиме (но отнюдь не указывает температуру окружающего воздуха).

Также литера «w» используется в обозначении смешанной спецификации всесезонных масел, т.е. сочетающих вместе летние и зимние показатели. В данном случае определяющей маркировкой будет одно число до «w», указывающее зимний класс, затем дефис и второе число, определяющее летние эксплуатационные параметры.

Например, 5w-40 или 20w -50. Первая цифра, как и в зимнем масле обозначает температуру холодного пуска, а вторая возможности летнего режима. По степени вязкости стоит добавить, что чем шире разрыв между цифрами, характеризующими летний и зимний параметры, тем чаще придётся производить замену.

При выборе расходных материалов лучше всего, конечно, придерживаться рекомендаций производителя. При производстве авто в лабораторных условиях происходит расчёт индекса вязкости, оптимально соответствующий параметрам работы конкретного силового агрегата.

Согласитесь, вряд ли вязкость турбинного масла подойдёт вместо вязкости обусловленной для легкового авто. Если пробег авто превысил половину от планового ресурса, то следует заливать с повышенным индексом вязкости.

В любом случае для правильного распределения смазки между соприкасающимися деталями, антикоррозийной защиты, а также охлаждения производить подбор придётся, ориентируясь на:

  • Погодные температуры конкретного региона;
  • Параметры работы двигателя;
  • Подходящий класс вязкости;
  • Степень износа внутренних узлов и деталей;
  • Особенности строения силовых агрегатов.

В заключении хочется сказать, что смазочные жидкости для авто, тоже самое, что кровь в жилах человека: как от густоты крови в теле людей, так и от вязкости масла в авто зависит здоровье и работа всего «организма».

Вязкость моторного масла - что это такое, расшифровка по SAE

Большинство автолюбителей знает, что при выборе смазочных материалов наиболее важным параметром является вязкость масла.

Однако, не все понимают значение цифр, которые имеются на канистрах.

Моторная смазка подвергается воздействию довольно высокой температуре как внутри самого двигателя, так и извне.

Вязкость как один из важнейших параметров моторного масла

Всю необходимую информацию производители указывают на этикетке, поэтому необходимо уметь ее читать и анализировать.

Кроме всего прочего, следует различать саму вязкость, которая бывает как кинематической, так и динамической. Типы вязкости имеют определенные различия. Они заключаются в плотности, отличающихся методах измерения и предназначены для определения показателей различных классов смазки.

Кинематическая вязкость моторного масла определяет его текучесть при нормальной (стандартной) рабочей температуре, а также максимальной. За основу проведения испытаний берут 40 и 100 градусов по Цельсию, а измерения проводятся в сантистоксах.

По полученным результатам осуществляются расчеты индекса вязкости, поэтому, если вы хотите приобрести действительно хорошее масло — выбирайте, чтобы индекс превышал значение 200. Чаще всего наиболее подходящий индекс имеют всесезонные масла.

Что касается динамической вязкости — то она отображает силу сопротивления в ходе перемещения жидкостей, которая от плотности никак не зависит. Единицей измерения динамической вязкости является сантипуаз.

Ниже приведена таблица вязкости моторного масла для работы двигателя в холодных условиях.

Основные параметры вязкости

Одним из основных параметров являются низкотемпературные показатели.

К данным показателям относятся следующие:

  • проворачиваемость;
  • прокачиваемость.

Первый определяет диапазон текучести при низких температурах и указывает на то, какой должна быть максимально допустимая динамическая вязкость. Последняя позволяет коленчатому валу вращаться с такой скоростью, которая обеспечивает хороший запуск двигателя.

Прокачиваемость всегда имеет значение, которое на 5˚С ниже необходимой. Это нужно для того, чтобы масляный насос не начал закачивать воздух вследствие чрезмерного загустевания смазочной жидкости. Параметры прокачиваемости не должны превышать значения в 60000 мПа*с.

Если вы хотите разобраться в том, как определить вязкость моторного масла — следует познакомиться с таким понятием, как спецификация SAE. Это принятый в большинстве стран стандарт, определяющий необходимый уровень вязкости смазки при том или ином температурном режиме.

Вот таблица, где показано, какая классификация соответствует определенной температуре воздуха.

Международный стандарт вязкости масел

О важности такого свойства, как вязкость масла, стало известно еще с тех времен, как был выпущен первый автомобиль. С тех самых времен инженеры пытались произвести классификацию смазочных материалов. Основываясь на определенных качествах, все имевшиеся масла были разделены на следующие типы:

  • маловязкие смазки
  • средневязкие
  • тяжелые

После того, как были изобретены подходящие для определения вязкости приборы — американским обществом автомобильных инженеров (SAE) была разработана наиболее точная классификация — SAE J300.

Данная классификация моторных масел в процессе своего развития претерпевала определенные изменения и сегодня представляет 11 классов вязкости.

Их полный список выглядит следующим образом:

  1. SAE 0W;
  2. SAE 5W;
  3. SAE 10W;
  4. SAE 15W;
  5. SAE 20W;
  6. SAE 25W;
  7. SAE 20;
  8. SAE 30;
  9. SAE 40;
  10. SAE 50;
  11. SAE 60.

В связи с этим, классы вязкости моторных масел стали в спецификации SAE по степени вязкости, которая определяется условиями, близкими к реально существующим. Вследствие этого и произошло разделение масел на летние и зимние виды.

Летние смазки не имеют буквенного обозначения и обладают более высокой вязкостью, вследствие чего обеспечивают качественную смазку всех деталей двигателя при высокой температуре окружающей среды.

Однако, при низких температурах такие масла становятся чересчур плотными и создают серьезную проблему при запуске холодного двигателя.

Зимнее масло является менее вязким, благодаря чему проблем при холодном пуске двигателя не возникает. Зато в жаркое время года оно становится слишком текучим, поэтому не в состоянии обеспечить детали силового агрегата должной защитой.

Благодаря изобретению всевозможных присадок, появилась новая категория масел, объединивших в себе хорошее соотношение зимних и летних характеристик. Такие смазывающие материалы получили название всесезонных.

Виды масел в зависимости от температурного режима

Вязкость определяется по международному стандарту SAE J300 и подразделяет все смазочные материалы на три основных вида — летние, зимние и всесезонные.

К летним относятся масла, имеющие следующий показатель SAE:

Зимние смазки имеют свои преимущества:

  • невысокая стоимость;
  • невысокая вязкость, благодаря которой запуск холодного двигателя при минусовой температуре происходит лучше, чем с применением всесезонных жидкостей;
  • высокая стойкость к деструкции.
  • К ним относятся следующие виды:
  • SAE 0W;
  • SAE 5W;
  • SAE 10W;
  • SAE 15W;
  • SAE 20W.

Самыми распространенными являются всесезонные жидкости. Они также имеет свои достоинства, а наиболее главным следует считать его использование в любое время года. Благодаря имеющимся в составе полимерным присадкам, оно способно изменять степень вязкости относительно окружающей температуры. Кроме того, оно имеет хорошие энергосберегающие свойства, благодаря которым силовой агрегат работает в жаркую погоду более экономичней, чем при использовании летнего типа масел.

Всесезонные:

  • SAE 0W-30;
  • SAE 0W-40;
  • SAE 5W-30;
  • SAE 5W-40;
  • SAE 10W-30;
  • SAE 10W-40;
  • SAE 15W-40;
  • SAE 20W-40.

Благодаря прекрасно сбалансированным показателям, всесезонки показывают хорошие результаты в работе с критическими температурами.

Для того, чтобы подобрать для двигателя своего автомобиля наиболее подходящее по вязкости масло — следует опираться на два основных показателя:

  • в каких климатических условиях эксплуатируется автомобиль;
  • сколько лет эксплуатируется двигатель.

Опираясь на первый показатель, для регионов с высокой температурой воздуха следует выбирать жидкости с более высоким показателем вязкости. Данный параметр представлен цифрой, находящейся перед буквой «W».

Так, к примеру, при эксплуатации транспортного средства при температуре воздуха от -10 и до +45 следует выбирать SAE 20W-40.

Второй параметр: в этом случае следует выбирать смазку согласно выработанному ресурсу двигателя. Так для нового двигателя следует подбирать меньшую вязкость, а для мотора постаршеболее вязкое масло. Это необходимо для того, чтобы более выработанные детали, имеющие между собой значительно увеличенные зазоры, могли более или менее нормально функционировать.

Помните, что любая смазка содержит показатели вязкости как при низких, так и при высоких температурах, поэтому при выборе это следует обязательно учитывать. Чем выше первая цифра (стоящая перед буквой W), тем рабочий диапазон на низких температурах будет меньше. Чтобы произвести расчеты — необходимо от цифры 40 отнять первый показатель смазки.

К примеру, жидкость со значением 5W20 имеет температурный диапазон -35˚ С и -30˚ С.

Второе число, расположенное после буквы «W», дает понятие высокотемпературной вязкости. Если не вдаваться в технические тонкости, то можно сказать так — чем больше второе значение — тем выше будет вязкость масла при высоких температурах.

Диапазоны рабочих температур для разных масел по SAE

Основываясь на спецификацию SAE, все смазывающие жидкости можно расшифровать по температурному режиму и определить для себя диапазон их использования.

По классу вязкости и температурному режиму жидкости имеют следующий диапазон:

  • 5 W-30 — предназначена для работы при температуре от -25˚ С и до +20˚ С;
  • 5 W-40 — предназначена для работы от -25˚ С и до +35˚ С;
  • 10 W-30 — предназначена для работы от -20˚ С и до +30˚ С;
  • 10 W-40 — предназначена для работы от -20˚ С и до +35˚ С;
  • 15 W-30 — подходит для работы при температуре воздуха от -15˚ С и до +35˚ С;
  • 15 W-40 — подходит для работы при температуре воздуха от -15˚ С и до +45˚ С;
  • 20 W-40 — подходит для работы при температуре воздуха от -10˚ С и до +45˚ С;
  • 20 W-50 — подходит для работы при температуре воздуха от -10˚ С до +45˚ С и более.

Однако, в подборе наиболее подходящего масла для своего транспортного средства, в первую очередь необходимо руководствоваться информацией, которую предоставляет завод изготовитель.

Выбор моторного масла по его вязкости

Подбор необходимого масла строго индивидуален и направлен на определенный двигатель. Поэтому в первую очередь следует ориентироваться на те указания и рекомендации, которые сделал производитель в технической документации к тому или иному автомобилю.

Помните, что только оригинальное масло либо его качественный аналог способны обеспечить двигатель хорошей работой и максимальным износом деталей.

В том случае, если данного рода документация отсутствует — ориентироваться следует на указанные допуски масла в отношении определенных двигателей, которые, чаще всего, имеются на этикетке производителя.

Видео по теме:

Вязкость автомобильного масла SAE - что такое, таблица характеристик

В этой статье поговорим подробно о вязкости масла по SAE – как расшифровывается, какие характеристики должны иметь масла с разным классом SAE, где используются маловязкие масла и почему нельзя самостоятельно устанавливать вязкость масла, а основывать свой выбор на рекомендациях для двигателя.

Содержание статьи:

Что такое вязкость масла по SAE

Обозначение SAE принято расшифровывать, как применимость масла к температуре за бортом, которая присуща конкретному региону. Это утверждение верно, но лишь отчасти, и применимо только к низкотемпературному индексу SAE.

Что означают эти цифры в масле. К примеру, вязкость 5W-40 обозначает всесезонное масло, о чем говорит его сдвоенный индекс и буква W. Большинство представленных на рынке масел относятся именно к всесезонным видам, времена масел с одинарным индексом давно канули в Лету,за исключением масел для различных механизмов, бензопил, культиваторов и т.п.

5W здесь указывает на низкотемпературные качества масла: при какой температуре оно не утратит свою текучесть, обеспечит безопасную прокрутку коленвала и пуск мотора в мороз, и полностью замерзнет, сделав прокачку по каналам невозможной. Отчасти можно ориентироваться на этот индекс, выбирая масло для зимы, но все же нужно смотреть на показатели конкретной выбранной марки, так как они могут сильно варьировать.

Индекс 40 в нашем примере показывает высокотемпературные свойства масла. Большинство водителей принимают его, как температуру воздуха вне двигателя, при которой масло можно использовать летом, но это не верно. Масло в моторе прогревается до 100 градусов, и температура воздуха не влияет на его качества. Этот индекс указывает на высокотемпературную вязкость масла при температуре 100 градусов. Это не менее важный показатель, чем зимний индекс, так как указывает на толщину масляной пленки и способность масла прокачиваться по каналам разной толщины. Каждый двигатель имеет свои особенности, и вязкость масла важно подбирать именно из рекомендованных производителем.

Для расшифровки вязкости SAE приняты такие таблицы:

Но, как я уже сказал выше, эти цифры верны лишь отчасти и только в отношении низкотемпературного индекса. Для высокотемпературного вернее рассматривать таблицу кинематической вязкости при 100 градусах, а для низкотемпературной динамической вязкости, их мы рассмотрим далее.

Индекс вязкости масла

Эти загадочные цифры на канистре – индекс вязкости, принимает во внимание далеко не каждый владелец авто. Это эмпирический, безразмерный показатель, по нему оценивают зависимость вязкости масла от изменений температуры. Чем больше индекс вязкости, тем меньше будет реакция масла на температурный перепад.

Если у масла высокий индекс вязкости, оно будет меньше густеть в мороз, то есть во время холодного пуска, и тем более густым будет оставаться при прогреве до рабочих температурных показателей. Индекс вязкости зависит от молекулярной структуры соединений, которые составляют базу масла. Чем чище минеральная база, тем выше будет его индекс. Самые высокие индексы у синтетики и гидрокрекинга.

Для расчета индекса вязкости масла используют его фактическую кинематическую вязкости при 40 и 100 градусах. Эти данные вбивают в простую формулу, созданную на основе эмпирических расчетов, выведенных из двух эталонных смазок.

Большинство современных масел имеет индекс от 140 до 180 единиц. Есть категории японских масел с низкой вязкостью, где индекс пересекает черту в 200 единиц. Эти масла создаются на основе технологических баз – полиальфаолефинов, сложных эфиров с добавлением особых присадок.

Какой индекс вязкости лучше – сказать сложно. Всегда лучше тот, который выше, так как показывает, что масло может хорошо адаптироваться под температурные перегрузки, но при этом для каждой категории масел SAE свой предел индекса, зависит он и от состава, у синтетических масел всегда будет выше.

К примеру, для традиционных синтетических и полусинтетических масел SAE 10W-40 нормальный индекс 150-160 единиц. Для масел с меньшей вязкостью 5W-30 он выше – 160-180. Маловязкие материалы будут иметь индекс до 240 единиц. А новейшие ультрамаловязкие масла класса 0W-16 или 0W-10 могут иметь индекс еще больше, но в продаже такие масла не найти, так как сфера их применения очень узкая и не относится к обычным автомобилям.

Кинематическая и динамическая вязкость масла

Именно те показатели, о которых я говорил в начале статьи. От них и зависит установленная вязкость SAE, те самые цифры, которые производитель указывает на канистре.

Кинематическая вязкость показывает текучесть масла при температуре в 40 градусов и 100. Измеряется капиллярным вискозиметром – определяется время истечения жидкости при определенной температуре. Обозначается мм2/с.

Динамическая вязкость тоже измеряется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающую во время движения двух слоев масла, удаленных друг от друга на расстояние 1 см и движущихся со скоростью 1 см/с. Измеряется эта величина в Паскаль-секундах. Как видно из таблицы выше, для разных вязкостей масел температура определения динамической вязкости разная.

Что означает динамическая и кинематическая вязкость

Кинематическая вязкость – два показателя, в пределах которых должно находиться масло, чтобы относиться к той или иной категории SAE. Динамическая вязкость показывает, при какой температуре масло обеспечит безопасный пуск мотора. Чем ниже фактический показатель от принятого верхнего барьера, тем ниже будет температура, при которой можно безопасно запускать мотор с указанным маслом.

К примеру, масло 10W при -25 градусах должно иметь динамическую вязкость не более 7000. То есть, если фактический показатель масла почти равен 7000, при -25 мотор заводить уже не рекомендуется, лучше делать это не ниже -20. А вот есть масло показывает динамическую вязкость 6500, то уже применимо при -25, 6000 – ниже -25 и так далее.

Какая вязкость лучше подходит для двигателя

Чтобы понимать, почему нельзя использовать ту вязкость масла, которая нам больше нравится или кажется более подходящей, нужно понимать, как вязкость влияет на работу двигателя. К примеру, есть ряд маловязких спортивных масел, но, если мы зальем одно из них в обычный двигатель, он не станет от этого спортивным и более быстрым, а, напротив, быстро потеряет мощность и просто «сдохнет».

Вязкость масла подбирается, исходя из его конструкции, рекомендуется производителем и выходить за рекомендованные рамки нельзя. Детали двигателей имеют разные зазоры, новые модели двигателей рассчитаны на экономию топлива и масла, зазоры между деталями минимальные, такие моторы требуют маловязких масел, если же залить более густое, движущиеся элементы будут работать под нагрузкой, постоянно перегреваться, что со временем приведет к ряду неприятных проблем.

Более старые конструкции двигатели имеют большие зазоры между деталями, это предусмотрено и самой конструкцией, и выработкой, которая появляется со временем. Такие двигатели требуют более густых масел, если залить менее густые, образуемая пленка будет недостаточно толстой, в местах контакта разорвется, что приведет к быстрому износу деталей.

Вязкость масла не может быть лучше или хуже, для каждого конкретного двигателя она может быть просто подходящей. В сервисной книжке вы найдете рекомендации как минимум двух подходящих вязкостей для вашего двигателя, и именно между ними нужно выбирать. И не забываем про классы API и ACEA, а также допуски от производителей.

Можно ли смешивать масла разной вязкости

Смешивать разные вязкости нежелательно, как нежелательно доливать масло другой марки или типа – синтетику в минералку и так далее. Но если другого выбора нет, то можно долить, но учитывать, что полученная смесь будет чем-то средним между той вязкостью, которая уже была в картере, и той, которую вы туда добавите. Рекомендую после этого как можно быстрей заменить все масло на новое и не испытывать свой мотор.

Заключение

Подводим итог. Вязкость масла по SAE – это не указание на климат и температурные условия окружающей среды, при которых масло может использоваться, а показатель его вязкости при холодном пуске, прогреве и достижении рабочей температуры.

Выбирать масло в тех рамках, которые установил производитель двигателя, очень важно. Если использоваться более жидкие или густые масла, двигатель будет работать в условиях постоянного перегрева или масляного голодания, и в том, и в другом случае это приведет к его поломке. Не сразу, но со временем.

При выборе масла на зиму опираемся не столько на SAE, сколько на фактический показатель динамической вязкости для конкретного масла, чем он ниже, тем проще будет холодный пуск при определенной температуре.

таблица температур, что означает, как измеряется

Неопытные автолюбители сталкиваются с определением – вязкость масла. Она указывает на текучесть лубриканта в эксплуатационной среде. К примеру, как поведет себя формула при критических перепадах температур. В 2020 году существует более 10 классов жидкостей, относящихся к определенным условиям работы.



Чтобы пользователь мог понять, к какому типу относится продукт, изготовители наносят на этикетки индекс SAE. Аббревиатура означает – американский институт нефти, и актуальна на пяти континентах.


Для автомобилей применимы две категории:

Принципиальная разница в том, что первая относится к моторным, а вторая к трансмиссионным смазкам.

От чего зависит вязкость масла

Степень густоты продукта напрямую зависит от внедренных технологий и присадок во время компоновки формулы. Однако ключевыми принято считать такие факторы.

Основа.

Существует три разновидности базовых групп масел. Все отличаются по изначальной густоте.

  1. Минеральная – изготавливается путем перегонки сернистых пород нефти и преимущественно используется летом. В холодное время года быстро кристаллизуется, что делает ее эксплуатацию невозможной.
  2. Полусинтетика – более современная технология. Популярными представителями являются гидрокрекинговые масла. Степень вязкости здесь допускает применение зимой, однако защита от перепадов температуры недостаточна.
  3. Синтетика – передовая технология, показывающая новый технологический уровень, где внедрена процедура расщепления молекул природного газа или рапсовых соков, для получения сложных углеводородов. Эти автомасла выделяются повышенной текучестью и стойкостью к суровым климатическим условиям.

Присадки.



Дополнительные включения в современных смазках в 80% имеют ключевое значение. Депрессорные компоненты стабилизируют поведение смеси во время перепадов температур, однако зависимость индекса вязкости от них мала.

Густота лубриканта зависит от комплекса технологических решений и подбора компонентов формулы.

Маркировка вязкости масла

На канистре любого автомасла всегда находится маркировка спецификации SAE. Отличить к какой категории относится продукт, можно по самому индексу.

Моторные смазки имеют повышенную текучесть относительно трансмиссионных и делятся на три категории:

  • зимние;
  • летние;
  • всесезонные.

Для каждой группы характерна своя аббревиатура.

  1. Жидкость для холодного времени года имеет две части кода – цифра от 0 до 25, вторая часть, буква «W» — говорит о принадлежности смеси к зимней группе.
  2. Летние смеси также имеют аналогичный индекс, однако значения здесь перевернуты задом на перед – сначала «W», затем цифры от 20 до 60.
  3. Всесезонная группа представлена составным кодом из трех частей. Для примера самая популярная в России вязкость – 5W40.

Аналогичное разделение присутствует и для трансмиссионных масел. Однако здесь, ввиду увеличенной густоты актуальны показатели типа 75W80, 80W90.



Далее разберемся в чем отличие маркировок, и на что они влияют.

На что влияет вязкость масла

В современном автомобиле эксплуатационные свойства масла влияют на два ключевых фактора.

  1. Возможность холодного пуска силовой установки при критическом морозе.
  2. Достаточна прочность защитной пленки во время перегрева, для создания необходимого смазочного слоя.

Инженеры в угоду пользователям и автоконцернам, создают смазки с минимальной низкотемпературной и предельной высокотемпературной вязкостью.

Косвенно, правильно подобранная густота сказывается на расходе топлива, продолжительности эксплуатации двигателя без необходимости ремонта, а также его стабильную работу при перегрузках.

Наглядно понять принцип действия можно на примере нового кроссовера Лада Веста. С завода здесь заливают лубрикант типа 5W30, исправно функционирующий в диапазоне от -25 до +30 °С. Если t° за бортом опускается ниже предела, запустить ДВС после простоя будет сложно или невозможно. Также и при эксплуатации в гоночных режимах, диапазоне свыше +35°С защитная пленка разрушится (масло стекает с деталей как вода) и возникнет эффект сухого трения поверхностей, что чревато негативными последствиями.

Что такое динамическая вязкость моторного масла

Это показатель, измеренный при помощи ротационного вискозиметра. Прибор имитирует реальные условия работы моторного масла в двигателе с учетом давления внутри магистралей и температуре +150 градусов Цельсия. Конструкций агрегатов в 2020 году существует более 50, но суть процедуры одинакова:

  • имеется сосуд, заполненный маслом;
  • внутри колбы присутствует дополнительный цилиндр, зазор между их стенками составляет от 1 до 3 мм;
  • внутренняя часть прибора начинает вращаться и лубрикант создает сопротивление;
  • компьютер измеряет усилие, необходимое для проворачивания и передает данные на индикационную панель.

Манипуляции позволяют понять, каким образом отреагирует лубрикант на динамические колебания температур и нагрузки. При этом, рекомендуемая величина для каждого двигателя своя.
На фото стандартный ротационный вискозиметр лабораторного типа.


Лучше больше или меньше

В современной промышленности бывает множество различных формул и модификаций автомасел. Для динамической вязкости лучший вариант – минимальный показатель. Это аргументировано снижением сопротивления внутри силового агрегата. Так при запуске двигателя зимой, лубрикант создает минимальное препятствие для прокручивания коленчатого вала, что способствует облегчению старта. При увеличении индекса происходит обратное, и масло мешает валам вращаться.

Кинематическая вязкость моторного масла

Показатель измеряется при помощи капиллярного вискозиметра в нормальных условиях при температуре +40/100 градусов Цельсия.

Суть процедуры такая:

  • колба с калибровочным отверстием заполняется жидкостью и разогревается до установленного предела;
  • затем измеряется время, за которое смесь вытекает из емкости самотеком.

Кинематическая вязкость не дает определения хорошее масло или плохое.

Коэффициент кинематической вязкости масла

Это сменный показатель, зависящий от фактической температуры самого масла. Точное определение звучит так. Коэффициент КВМ – это индекс, отражающий фактическую текучесть лубриканта при строго заданной температуре.

Какая лучше — выше или ниже

Сборный показатель измеряется при 40 и 100 градусах Цельсия и измеряется в сантистоксах (сСт), при этом густота жидкости существенно отличается. Кинематическая вязкость указывает на то, какой густоты будет лубрикант в указанных условиях и нормальном атмосферном давлении.



Определить какой показатель лучше, поможет сам автомобиль – конструкции ДВС отличаются и требуют использования разных смазок.

Самой высокой густотой обладает минеральное масло. При этом, оно имеет наибольшую кривую изменения плотности. Обратные показатели у синтетики, с понижением температуры, смесь минимально увеличивает вязкость, что положительно сказывается на прокачиваемости и возможности запуска холодной машины.

Однако существуют жесткие ограничения, стабильная густота не говорит о том, что искусственная продукция – это панацея. В некоторых случаях применение «минералки» более оправдано с технической стороны – существующие зазоры внутри силовой установки слишком большие и толщина защитной пленки будет недостаточна, что вызовет увеличенный расход на угар и износ системы. Эффект можно наблюдать на классических авто, где синтетика отказывается нормально работать.

В чем измеряется вязкость масла

Существуют общепринятые обозначения густоты моторного лубриканта. В Российской системе СИ принято две единицы измерения:

  • Па*с – для динамической;
  • м²/с – для кинематической вязкости.

Однако в некоторых инструкциях можно встретить другое обозначение, в сантистоксах (сСт). Индекс относится к стандартной шкале как:1 сСт = 0,000001 м²/с.


Как определяется вязкость моторного масла

Определение густоты автомасла – сложный процесс, требующий использования специальных приборов и наличия знаний. Отбросив все сложности, определить густоту лубриканта можно по типу базового компонента. Если масло применяется синтетическое, априори вязкость будет минимальна. В случае эксплуатации минералки, густота повышена.

При этом возможен и другой исход – к примеру, добавляя депрессоры в «природную» жидкость можно принудительно снизить ее плотность.

Принцип работает для подбора формул дизельного, бензинового и универсального типа.

График вязкости масла от температуры

Основополагающим фактором зависимости густоты лубриканта от температуры окружающей среды является индекс вязкости. Параметр указывает, как работает субстанция на холодную или горячую.

Показатели кинематической вязкости при 100 градусах Цельсия у каждого лубриканта индивидуальны. Также и при порогах +20, +40 °С. Наиболее точно можно увидеть изменения на графике.


Как видно из графика каждая основа по своему реагирует на морозы и жару. При этом на синтетике холодный пуск пройдет легче.

Присадка для повышения вязкости масла

В 2020 году на рынке присутствуют специальные стабилизаторы и сгустители автомасел. Продукты способны повысить густоту смазки без негативных последствий, либо нормализовать ее поведение при перепадах температур. Обычно к формулам прибегают автолюбители при чрезмерном износе ДВС, когда повышается угар лубриканта и идет усиленное выделение дыма. В этом случае чтобы не менять полностью всю порцию смазки, имеет смысл купить средство, повышающее ее естественные параметры.

Прозондировав отзывы покупателей можно выделить три популярные жидкости:

  • XADO Oil Treatment Complex;
  • HIGEAR Motor Medik;
  • Carbonfox VI 80.

Однако, согласно рекомендациям специалистов не стоит излишне увлекаться подобной продукцией.

Как выбрать вязкость моторного масла

Для каждой конструкции мотора выбор смазки выполняется индивидуально. К примеру, для четырех и двухтактных ДВС, разница вязкости будет огромна. В системах смазки, требующих предварительного перемешивания лубриканта с бензином, добавленная жидкость должна быть предельно текучей, чтобы не нарушать физические свойства топлива. Там где применяется разновидность мокрого картера, наоборот необходима оптимальная густота, для покрытия подвижных частей прочной пленкой.


Подбор масла для двигателя осуществляется исходя из требований производителя автомобиля. Внутри руководства пользователя указывается, какая необходима основа, вязкость. Примерное сравнение можно привести на машинах Рено Логан с мотором Н4М, и Деу Лаос с ВАЗовским ДВС.
Когда в первом случае актуально заливать 5W30, во вторую машину можно подобрать 10W40.

На зиму

Если порцию лубриканта планируется эксплуатировать исключительно зимой, допускается лить жидкости, предназначенные только для холодного времени года.

Примечание! Точный выбор густоты выполняется согласно климатическим условиям. К примеру, для Лада Гранта, используемой в умеренных широтах можно брать лубриканты типа 5W, 10W, 15W.

Какой вязкости масло лучше заливать в двигатель летом

Аналогично осуществляется подбор для теплого времени года. Здесь нет разницы, какая машина обслуживается Киа Рио 3 или Шевроле Нива – выбор основывается исключительно на допусках завода и температуре окружающей среды.

Какую вязкость масла выбрать после 100 тысяч пробега

Когда пробег авто переваливает за 100000 км пробега, имеет смысл залить масло гуще, чем советует завод. Решение обосновано увеличением рабочих зазоров и необходимостью использования более плотных смесей.

Однако здесь учитываются индивидуальные особенности и ресурс ДВС. Для примера в Приору 16 клапанную, при таком пробеге уже можно повысить вязкость лубриканта на порядок (было 5W30 стало 10W40), а для силовых установок Митсубиси и Хонды изменения не требуются.

После 200 тысяч пробега

На старых машинах с большим пробегом типа ВАЗ 2107, а также иномарках, износ поршневой группы наблюдается более выражено. Здесь требуется лить смеси гуще на порядок или два. К примеру, в Ладу 2114 после 200000 км, отмотанных спидометром можно заливать лубриканты типа 15W40, когда для новой версии будет актуален индекс 5W30.


Что будет если долить масло другой вязкости в двигатель

Распространенный миф – при смешивании автомасел различной вязкости происходит обязательное пенообразование и выпадение осадка, это в корне не так. Если сделать все правильно, никаких негативных последствий не произойдет.

К примеру, во время передвижения по трассе произошла утечка лубриканта, требуется срочная доливка, а необходимой жидкости под рукой нет. Допускается частичное смешивание формул одного завода с соответствием допусков. Это обосновано использованием одинаковых базовых компонентов и присадок на предприятии. Таким образом, при доливке в картер смеси типа 5W30, где уже залито 10W40 того же бренда и основы, ничего страшного не произойдет.

Можно ли смешивать масла одинаковой вязкости

Здесь еще проще, при использовании одной основы и соблюдении допусков API, ACEA мешать жидкости можно вообще без чувствительных последствий.

Главным аргументом здесь является то, что при полной замене масла, в картере остается в среднем 10-12% отработки.

Как определить вязкость моторного масла по формуле

Определение вязкости лубриканта по стандартной формуле SAE не вызывает затруднений даже у начинающих автомобилистов. Для этого организация создала специальную таблицу, где уже все просчитано.

Расчет вязкости смеси масел

Процедура выполняется по стандартной схеме, где учитывается вязкость обоих компонентов и пропорция смеси. Для примера можно взять типичную ситуацию, в моторе залита смесь 0W30, при доливке было использовано 25% лубриканта 5W40, в картере образуется смесь 2W34. При обратном соотношении (3:1) получится примерно 4W38.

Как проверить вязкость масла в двигателе

Точно измерить вязкость лубриканта, уже залитого в силовую установку, в домашних условиях невозможно. Это аргументировано тем, что для выполнения работы потребуется лабораторное оборудование и специальные приспособления.

Однако имеется способ измерения с помощью эталонной пробы – методика подойдет, если после заливки в канистре осталось немного неиспользованной жидкости. Последовательность действий такова:

  • слить с ДВС шприц смазки и взять аналогичное количество свежего продукта;
  • подвесить вертикально воронку с отверстием 1-2 мм на конце и влить в нее эталонный образец;
  • измерить количество упавших капель за определенный промежуток времени с помощью секундомера;
  • повторить процедуру с отработкой;
  • установить разницу показателей двух проб.

Измерение поможет установить, насколько выработалось масло, обычно при разнице более 25% — жидкость уже требуется менять.

Изменение вязкости масла от наработки



При выработке ресурса номинальная вязкость автомасла изменяется. Метаморфозы происходят в двух направлениях.
  1. Уплотнение субстанции при нормальной температуре. Вызывается появлением посторонних примесей, сажи в составе, что провоцирует сгущение лубриканта. Это особенно чувствуется во время заморозков – усложняется холодный пуск ДВС.
  2. Разжижение при нагреве. Включения серной кислоты и воды минимизируют высокотемпературную вязкость продукта, вызывая стекание защитной пленки и износ нагруженных частей.

Этим объясняется густота жидкости при сливе из картера и отсутствие необходимой защиты во время активной эксплуатации ДВС.

Нужно ли промывать двигатель при смене вязкости масла

Рекомендации заводов говорят о необходимости промывки при каждом переходе с одного типа лубриканта на другой. Это аргументируется тем, что для смесей, каждый изготовитель применяет уникальные формулы, способные вызвать непредвиденную реакцию при контакте. Однако факт нивелируется спецификациями ACEA и API. При получении сертификата жидкости проходят обязательное тестирование на совместимость. Иными словами, если синтетика одного бренда 0W30 меняется на аналог 5W30, промывку можно не делать, но и лишней она не будет.

Жидкости - кинематическая вязкость

Вязкость - это сопротивление сдвигу или течению в жидкости, а также мера адгезионных / когезионных или фрикционных свойств. Вязкость, возникающая из-за внутреннего молекулярного трения, создает эффект сопротивления трению.

Существует два связанных показателя вязкости жидкости: динамическая (или абсолютная ) и кинематическая вязкость.

Кинематическая вязкость некоторых распространенных жидкостей:

900
104

05 Вода6

05

Жидкость Температура Кинематическая вязкость
( o F) ( o C) сантистокс (сСт) ) Секунды Saybolt Universal (SSU)
Ацетальдегид CH 3 CHO 61
68
16.1
20
0,305
0,295
36
Уксусная кислота - уксус - 10% CH 3 COOH 59 15 1,35 31,7
Уксусная кислота - 50% 59 15 2,27 33
Уксусная кислота - 80% 59 15 2,85 35
Уксусная кислота - концентрированная ледяная 59 15 1.34 31,7
Ангидрид уксусной кислоты (CH 3 COO) 2 O 59 15 0,88
Ацетон CH 3 COCH 3 68 20 0,41
Спирт - аллил 68
104
20
40
1,60
0,90 cp
31,8
Спирт - бутил-н 68 20 3.64 38
Спирт - этил (зерно) C 2 H 5 OH 68
100
20
37,8
1,52
1,2
31,7
31,5
Спирт - метил (дерево) CH 3 OH 59
32
15
0
0,74
1,04
Спирт - пропил 68
122
20
50
2,8
1.4
35
31,7
Сульфат алюминия - 36% раствор 68 20 1,41 31,7
Аммиак 0 -17,8 0,30
Анилин 68
50
20
10
4,37
6,4
40
46,4
Асфальт RC-0, MC-0, SC-0 77
100
25
37.8
159-324
60-108
737-1.5M
280-500
Автоматическое масло для картера SAE 10W 0 -17.8 1295-max 6M-max
Масло в картер автоматов SAE 10W 0 -17,8 1295-2590 6M-12M
Масло в картер автоматов SAE 20W 0 -17,8 2590-10350 12M-48M
Масло картера АКПП SAE 20 210 98.9 5,7-9,6 45-58
Масло для автоматических картерных двигателей SAE 30 210 98,9 9,6-12,9 58-70
Масло для автоматических картеров SAE 40 210 98,9 12,9-16,8 70-85
Масло для автоматических картерных двигателей SAE 50 210 98,9 16,8-22,7 85-110
Автомобильное трансмиссионное масло SAE 75W 210 98.9 4,2 мин 40 мин
Автомобильное трансмиссионное масло SAE 80W 210 98,9 7,0 мин 49 мин
Автомобильное трансмиссионное масло SAE 85W 210 98,9 11,0 мин 63 мин
Автомобильное трансмиссионное масло SAE 90W 210 98,9 14-25 74-120
Автомобильное трансмиссионное масло SAE 140 210 98.9 25-43 120-200
Автомобильное трансмиссионное масло SAE150 210 98,9 43 - мин 200 мин
Пиво 68 20 1,8 32
Бензол (бензол) C 6 H 6 32
68
0
20
1,0
0,74
31
Костное масло 130
212
54.4
100
47,5
11,6
220
65
Бром 68 20 0,34
Бутан-н -50
30
-1,1 0,52
0,35
Масляная кислота n 68
32
20
0
1,61
2,3 cp
31,6
Хлорид кальция 5% 65 18.3 1,156
Хлорид кальция 25% 60 15,6 4,0 39
Карболовая кислота (фенол) 65
194
18,3
90
11,83
1,26 сП
65
Тетрахлорметан CCl 4 68
100
20
37,8
0,612
0,53
Дисульфид углерода CS 2 32
68
0
20
0.33
0,298
Касторовое масло 100
130
37,8
54,4
259-325
98-130
1200-1500
450-600
Китайское древесное масло 69
100
20,6
37,8
308,5
125,5
1425
580
Хлороформ 68
140
20
60
0,38
0,35
Кокосовое масло 100
13052
.8
54,4
29,8-31,6
14,7-15,7
140-148
76-80
Жир трески (рыбий жир) 100
130
37,8
54,4
32,1
19,4
150
95
Кукурузное масло 130
212
54,4
100
28,7
8,6
135
54
Раствор кукурузного крахмала, 22 Baumé 70
100
21.1
37,8
32,1
27,5
150
130
Раствор кукурузного крахмала, 24 Бауме 70
100
21,1
37,8
129,8
95,2
600
440
Раствор кукурузного крахмала , 25 Baumé 70
100
21,1
37,8
303
173,2
1400
800
Масло из семян хлопка 100
130
37.8
54,4
37,9
20,6
176
100
Сырая нефть 48 o API 60
130
15,6
54,4
3,8
1,6
39
31,8
Сырая нефть 40 o API 60
130
15,6
54,4
9,7
3,5
55,7
38
Сырая нефть 35,6 o API 60
130
15.6
54,4
17,8
4,9
88,4
42,3
Сырая нефть 32,6 o API 60
130
15,6
54,4
23,2
7,1
110
46,8
Декан- n 0
100
17,8
37,8
2,36
1,001
34
31
Диэтилгликоль 70 21,1 32 149.7
Диэтиловый эфир 68 20 0,32
Дизельное топливо 2D 100
130
37,8
54,4
2-6
1.-3.97
32.6-45.5
-39
Дизельное топливо 3D 100
130
37,8
54,4
6-11,75
3,97-6,78
45,5-65
39-48
Дизельное топливо 4D 100
130
37.8
54,4
29,8 макс
13,1 макс
140 макс
70 макс
Дизельное топливо 5D 122
160
50
71,1
86,6 макс
35,2 макс
400 макс
165 макс
Этилацетат CH 3 COOC 2 H 3 59
68
15
20
0,4
0,49
Бромистый этил C 2 H 5 Br 68 20 0.27
Этиленбромид 68 20 0,787
Хлорид этилена 68 20 0,668
Этиленгликоль 70 21,1 17,8 88,4
Муравьиная кислота 10% 68 20 1,04 31
Муравьиная кислота 50% 68 20 1.2 31,5
Муравьиная кислота 80% 68 20 1,4 31,7
Концентрированная муравьиная кислота 68
77
20
25
1,48
1,57cp
31,7
Трихлорфторметан, R-11 70 21,1 0,21
Дихлордифторметан, R-12 70 21.1 0,27
F Дихлорфторметан, R-21 70 21,1 1,45
Фурфурол 68
77
20
25
1,45
1,49 cp
Мазут 1 70
100
21,1
37,8
2,39-4,28
-2,69
34-40
32-35
Мазут 2 70
100
21.1
37,8
3,0-7,4
2,11-4,28
36-50
33-40
Мазут 3 70
100
21,1
37,8
2,69-5,84
2,06-3,97
35 -45
32,8-39
Мазут 5A 70
100
21,1
37,8
7,4-26,4
4,91-13,7
50-125
42-72
Мазут 5B 70
100
21.1
37,8
26,4-
13,6-67,1
125-
72-310
Мазут 6 122
160
50
71,1
97,4-660
37,5-172
450-3M
175-780
Газойли 70
100
21,1
37,8
13,9
7,4
73
50
Бензин а 60
100
15,6
37,8
0.88
0,71
Бензин b 60
100
15,6
37,8
0,64
Бензин c 60
100
15,6
37,8
0,46
0,40
Глицерин 100% 68,6
100
20,3
37,8
648
176
2950
813
Глицерин 50% вода 68
140
20
60
5.29
1,85 сП
43
Гликоль 68 52
Глюкоза 100
150
37,8
65,6
7,7M-22M
880-2420
35M-100M
4М-11М
Гептаны-н 0
100
-17,8
37,8
0,928
0,511
Гексан-н 0
100
-17.8
37,8
0,683
0,401
Мед 100 37,8 73,6 349
Соляная кислота 68 1,9
Чернила, принтеры
130
37,8
54,4
550-2200
238-660
2500-10M
1100-3M
Изоляционное масло 70
100
21.1
37,8
24,1 макс
11,75 макс
115 макс
65 макс
Керосин 68 20 2,71 35
Jet Fuel -30. -34,4 7,9 52
Лард 100
130
37,8
54,4
62,1
34,3
287
160
Лард масло 100
130
37.8
54,4
41-47,5
23,4-27,1
190-220
112-128
Льняное масло 100
130
37,8
54,4
30,5
18,94
143
93
Меркурий 70
100
21,1
37,8
0,118
0,11
Метилацетат 68
104
20
40
0,44
0,32 cp
Метилиодид 20
40
0.213
0,42 сП
Масло Менхадена 100
130
37,8
54,4
29,8
18,2
140
90
Молоко 68 20 1,13 31,5
Меласса A, первая 100
130
37,8
54,4
281-5070
151-1760
1300-23500
700-8160
Меласса B, вторая 100
130
37 .8
54,4
1410-13200
660-3300
6535-61180
3058-15294
Меласса C, черная полоса 100
130
37,8
54,4
2630-5500
1320-16500
12190-25500
6120-76500
Нафталин 176
212
80
100
0,9
0,78 cp
Neatstool oil 100
130
37.8
54,4
49,7
27,5
230
130
Нитробензол 68 20 1,67 31,8
Нонан 0
100
-17,8
37,8
1,728
0,807
32
Октан-н 0
100
-17,8
37,8
1,266
0,645
31,7
Оливковое масло 100
130
37.8
54,4
43,2
24,1
200
Пальмовое масло 100
130
37,8
54,4
47,8
26,4
Арахисовое масло 100
130
37,8
54,4
42
23,4
200
Пентан-н 0
80
17,8
26,7
0,508
0,342
Петролатум 130
160
54.4
71,1
20,5
15
100
77
Петролейный эфир 60 15,6 31 (эст) 1,1
Фенол, карболовая кислота 11,7
Пропионовая кислота 32
68
0
20
1,52 сП
1,13
31,5
Пропиленгликоль 70 21.1 52 241
Закалочное масло
(типовое)
100-120 20,5-25
Рапсовое масло 100
130
37,8
54,4
54,1
31
250
145
Канифольное масло 100
130
37,8
54,4
324,7
129,9
1500
600
Канифоль (дерево) 100
200
37.8
93,3
216-11M
108-4400
1M-50M
500-20M
Кунжутное масло 100
130
37,8
54,4
39,6
23
184
110
Силикат натрия 79
Хлорид натрия 5% 68 20 1,097 31,1
Хлорид натрия 25% 60 15.6 2,4 34
Гидроксид натрия (каустическая сода) 20% 65 18,3 4,0 39,4
Гидроксид натрия (каустическая сода) 30% 65 18,3 10,0 58,1
Гидроксид натрия (каустическая сода) 40% 65 18,3
Соевое масло 100
130
37.8
54,4
35,4
19,64
165
96
Масло спермы 100
130
37,5
54,4
21-23
15,2
110
78
Серная кислота 100% 68
140
20
60
14,56
7,2 cp
76
Серная кислота 95% 68 20 14,5 75
Серная кислота 60% 68 20 4.4 41
Серная кислота 20% 3М-8М
650-1400
Деготь, коксовая печь 70
100
21,1
37,8
600-1760
141- 308
15М-300М
2М-20М
Гудрон, газовый газ 70
100
21,1
37,8
3300-66М
440-4400
2500
500
Гудрон, сосна 100
132
37.8
55,6
559
108,2
200-300
55-60
Толуол 68
140
20
60
0,68
0,38 сП
185,7
Триэтиленгликоль 70 21,1 40 400-440
185-205
Скипидар 100
130
37,8
54,4
86,5-95,2
39,9-44,3
1425
650
Лак, лонжерон 68
100
20
37.8
313
143
Вода, дистиллированная 68 20 1.0038 31

130
15,6
54,4
1,13
0,55
31,5
Вода, море 1.15 31,5
Китовое масло 100
130
37,8
54,4
35-39,6
19,9-23,4
163-184
97-112
Xylene-o 68
104
20
40
0,93
0,623 cp
.

Абсолютная, динамическая и кинематическая вязкость

Вязкость - важное свойство жидкости при анализе поведения жидкости и ее движения вблизи твердых границ. Вязкость жидкости - это мера ее сопротивления постепенной деформации под действием напряжения сдвига или напряжения растяжения. Сопротивление сдвигу в жидкости вызвано межмолекулярным трением, возникающим, когда слои жидкости пытаются скользить друг относительно друга.

  • вязкость - это мера сопротивления жидкости течению
  • меласса высоковязкая
  • вода средней вязкости
  • газ низкая вязкость

Есть два связанных показателя вязкости жидкости

  • 20004 9000 динамическая ( или абсолютная )
  • кинематическая
  • Динамическая (абсолютная) вязкость

    Абсолютная вязкость - коэффициент абсолютной вязкости - это мера внутреннего сопротивления.Динамическая (абсолютная) вязкость - это тангенциальная сила на единицу площади, необходимая для перемещения одной горизонтальной плоскости по отношению к другой плоскости - с единичной скоростью - при сохранении единичного расстояния в жидкости.

    Напряжение сдвига между слоями нетурбулентной жидкости, движущихся по прямым параллельным линиям, может быть определено для ньютоновской жидкости как

    Напряжение сдвига можно выразить

    τ = μ dc / dy

    = μ γ (1)

    где

    τ = напряжение сдвига в жидкости (Н / м 2 )

    μ = динамическая вязкость жидкости (Н · с / м 2 )

    dc = единичная скорость (м / с)

    dy = единичное расстояние между слоями (м)

    γ = dc / dy = скорость сдвига (с - 1 )

    Уравнение (1) известно как закон трения Ньютона.

    (1) можно преобразовать для выражения Динамическая вязкость как

    μ = τ dy / dc

    = τ / γ (1b)

    В системе СИ единицами динамической вязкости являются Н с / м 2 , Па с или кг / (мс) - где

    • 1 Па с = 1 Н с / м 2 = 1 кг / (мс) = 0.67197 фунтов м / (фут с) = 0,67197 оторочка / (фут с) = 0,02089 фунта f с / фут 2

    Динамическая вязкость также может быть выражена в метрической системе CGS (сантиметр) -грамм-секунда) система как г / (см с) , дин с / см 2 или пуаз (p) где

    • 1 пуаз = 1 дин с / см 2 = 1 г / (см · с) = 1/10 Па · с = 1/10 Н · с / м 2

    Для практического использования Poise обычно слишком велик, а единица измерения поэтому часто делится на 100 - на меньшую единицу сантипуаз (сП) - где

    • 1 P = 100 сП
    • 1 сП = 0.01 пуаз = 0,01 грамм на см секунду = 0,001 Паскаль секунды = 1 миллиПаскаль секунда = 0,001 Н · с / м 2

    Вода при 20,2 o C (68,4 o F) имеет абсолютную вязкость единиц - 1 сантипуаз .

    Жидкость Абсолютная вязкость *)
    ( Н с / м 2 , Па с)
    Воздух 1.983 10 -5
    Вода 10 -3
    Оливковое масло 10 -1
    Глицерин 10 0 Мед Жидкость 10 1
    Golden Syrup 10 2
    Стекло 10 40

    *) при комнатной температуре

    Кинематическая вязкость

    соответствует кинематическому соотношению - абсолютная (или динамическая) вязкость до плотности - величина, при которой никакая сила не задействована.Кинематическая вязкость может быть получена делением абсолютной вязкости жидкости на ее массовую плотность, например

    ν = μ / ρ (2)

    , где

    ν = кинематическая вязкость (м 2 / с)

    μ = абсолютная или динамическая вязкость (Н · с / м 2 )

    ρ = плотность (кг / м 3 )

    В системе SI теоретическая единица кинематической вязкости - м 2 / с - или обычно используемый Сток (St) , где

    • 1 St (Стокса) = 10 -4 м 2 / s = 1 см 2 / с

    Сток происходит от системы единиц CGS (сантиметр грамм-секунда).

    Поскольку Stoke является большим блоком, его часто делят на 100 на меньший блок сантисток (сСт) - где

    • 1 St = 100 сСт
    • 1 сСт (сантисток) ) = 10 -6 м 2 / с = 1 мм 2 / с
    • 1 м 2 / с = 10 6 сантистокс

    Удельный вес воды при 20,2 o C (68.4 o F) - это почти единица, и кинематическая вязкость воды при 20,2 o C (68,4 o F) для практических целей 1,0 мм 2 / с ( cStokes). Более точная кинематическая вязкость воды при 20,2 o C (68,4 o F) составляет 1,0038 мм 2 / с (сСт).

    Преобразование абсолютной вязкости в кинематическую в британских единицах измерения может быть выражено как

    ν = 6.7197 10 -4 μ / γ (2a)

    где

    ν = кинематическая вязкость (футы 2 / с)

    μ = абсолютная или динамическая вязкость (сП)

    γ = удельный вес (фунт / фут 3 )

    Вязкость и эталонная температура

    Вязкость жидкости сильно зависит от температуры - и для динамической или кинематической вязкости значение эталонной температуры Необходимо указать .В ISO 8217 эталонная температура остаточной жидкости составляет 100 o C . Для дистиллятной жидкости эталонная температура составляет 40 o C .

    • для жидкости - кинематическая вязкость уменьшается при более высокой температуре
    • для газа - кинематическая вязкость увеличивается при более высокой температуре

    Связанные мобильные приложения из Engineering ToolBox

    Это бесплатное приложение, которое может использоваться в автономном режиме на мобильных устройствах.

    Другие единицы измерения вязкости

    Универсальные секунды Сейболта (или SUS, SSU )

    Универсальные секунды Сейболта (или SUS ) являются альтернативной единицей измерения вязкости. Время истечения составляет универсальные секунды Сейболта ( SUS ), необходимое для протекания 60 миллилитров нефтепродукта через калиброванное отверстие вискозиметра Saybolt Universal - при тщательно контролируемой температуре и в соответствии с методом испытаний ASTM D 88. Этот метод имеет в значительной степени заменен методом кинематической вязкости.Saybolt Universal Seconds также называют номером SSU (Seconds Saybolt Universal) или номером SSF (Saybolt Seconds Furol) .

    Кинематическая вязкость в SSU в зависимости от динамической или абсолютной вязкости может быть выражена как

    ν SSU = B μ / SG

    = B ν сантистокс (3)

    7 где

    7

    ν SSU = кинематическая вязкость (SSU)

    B = 4.632 для температуры 100 o F (37,8 o C)

    B = 4,664 для температуры 210 o F (98,9 o C)

    μ = динамический или абсолютный вязкость (сП)
    SG = удельный вес
    ν сантистокс = кинематическая вязкость (сантистокс)
    градус Энглера

    градус Энглера используется в Великобритании в качестве шкалы Энглера . измерить кинематическую вязкость.В отличие от весов Saybolt и Redwood , шкала Engler основана на сравнении потока тестируемого вещества с потоком другого вещества - воды. Вязкость по Энглеру градусов - это отношение времени истечения 200 кубических сантиметров жидкости, вязкость которой измеряется, к времени истечения 200 кубических сантиметров воды при той же температуре (обычно 20 o C , но иногда 50 o C или 100 o C ) в стандартизированном измерителе вязкости Engler .

    Ньютоновские жидкости

    Жидкость, в которой напряжение сдвига линейно связано со скоростью деформации сдвига, обозначается как ньютоновская жидкость .

    Ньютоновский материал называется истинной жидкостью, поскольку на вязкость или консистенцию не влияет сдвиг, такой как перемешивание или перекачивание при постоянной температуре. Наиболее распространенные жидкости - как жидкости, так и газы - представляют собой ньютоновские жидкости. Вода и масла - примеры ньютоновских жидкостей.

    Разжижающие при сдвиге или Псевдопластические жидкости

    Разжижающие при сдвиге или псевдопластические жидкости - это жидкости, вязкость которых уменьшается с увеличением скорости сдвига.Структура не зависит от времени.

    Тиксотропные жидкости

    Тиксотропные жидкости имеют временную структуру. Вязкость тиксотропной жидкости уменьшается с увеличением времени - при постоянной скорости сдвига.

    Кетчуп и майонез являются примерами тиксотропных материалов. Они кажутся густыми или вязкими, но их можно довольно легко перекачивать.

    Дилатантные жидкости

    Сгущающая жидкость при сдвиге - или дилатантная жидкость - увеличивает вязкость при перемешивании или деформации сдвига.Дилатантные жидкости известны как неньютоновские жидкости.

    Некоторые дилатантные жидкости могут почти затвердеть в насосе или трубопроводе. При взбалтывании сливки превращаются в смеси масла и конфет. Глиняная суспензия и подобные сильно наполненные жидкости делают то же самое.

    Bingham Plastic Fluids

    Пластиковая жидкость Bingham имеет предел текучести, который необходимо превысить, прежде чем она начнет течь как жидкость. С этого момента вязкость уменьшается с увеличением перемешивания. Зубная паста, майонез и томатный кетчуп - примеры таких продуктов.

    Пример - Воздух, преобразование кинематической и абсолютной вязкости

    Кинематическая вязкость воздуха при 1 бар (1 10 5 Па, Н / м 2 ) и 40 o C составляет 16,97 сСт (16,97 10 -6 м 2 / с) .

    Плотность воздуха можно оценить с помощью закона идеального газа

    ρ = p / (RT)

    = (1 10 5 Н / м 2 ) / ((287 Дж / (кг · К)) ((273 o C) + (33 o C)))

    = 1.113 (кг / м 3 )

    где

    ρ = плотность (кг / м 3 )

    p = абсолютное давление (Па, Н / м 2 )

    R = индивидуальная газовая постоянная (Дж / (кг K))

    T = абсолютная температура (K)

    Абсолютная вязкость может быть рассчитана как

    μ = 1,113 (кг / м ) 3 ) 16,97 10 -6 2 / с)

    = 1.88 10 -5 (кг / (мс), Н с / м 2 )

    Вязкость некоторых обычных жидкостей

    9024 9024 Масло картера 9024 440 902 98
    сантистокс
    (сСт, 10 -6 м 2 / с, мм 2 / с )
    Секунда Сейболта
    Универсальная
    (SSU, SUS)
    Типичная жидкость
    0,1 Меркурий 1
    31 Вода (20 o C)
    4.3 40 Молоко
    SAE 20 Масло картера
    SAE 75 Трансмиссионное масло
    15,7 80 Мазут № 4
    20,6 100 Сливки 200 Растительное масло
    110 500 Масло картера SAE 30
    SAE 85 Трансмиссионное масло
    220 1000 Томатный сок
    SAE 50 Масло картера
    2000 SAE 140 Gear Oil
    1100 5000 Глицерин (20 o C)
    SAE 250 Gear Oil
    2200 10000 Мед Мед 28000 Майонез
    19000 86000 Сметана

    Кинематическая вязкость может быть преобразована из SSU в сантистоксов с

    ν сантистоксов = 0.226 ν SSU - 195/ ν SSU (4)

    где

    ν 100143 SSU < ν Сантистокс = 0,220 ν SSU - 135/ ν SSU

    где

    ν 900 Вязкость > и температура

    Кинематическая вязкость жидкостей, таких как вода, ртуть, масла SAE 10 и масла №.3 - и такие газы, как воздух, водород и гелий, показаны на схеме ниже. Обратите внимание, что

    • для жидкостей - вязкость уменьшается с температурой
    • для газов - вязкость увеличивается с температурой

    Измерение вязкости

    Для измерения вязкости используются три типа устройств

    • капиллярный вискозиметр
    • Вискозиметр Сейболта
    • Вискозиметр вращающийся
    .

    Вязкость масла - PetroWiki

    Абсолютная вязкость является мерой внутреннего сопротивления жидкости потоку. Для жидкостей вязкость соответствует неформальному понятию «толщина». Например, мед имеет более высокую вязкость, чем вода.

    Любой расчет, связанный с движением жидкостей, требует значения вязкости. Этот параметр необходим для условий, начиная от наземных систем сбора и заканчивая резервуаром. Можно ожидать, что корреляции для расчета вязкости позволят оценить вязкость в диапазоне температур от 35 до 300 ° F.

    Ньютоновские жидкости

    Жидкости, вязкость которых не зависит от скорости сдвига, описываются как ньютоновские жидкости. Корреляции вязкости, обсуждаемые на этой странице, применимы к ньютоновским жидкостям.

    Факторы, влияющие на вязкость

    Основными факторами, влияющими на вязкость, являются:

    • Состав масла
    • Температура
    • Растворенный газ
    • Давление

    Состав масла

    Обычно состав нефти описывается только плотностью API.Использование плотности в градусах API и характеристического фактора Ватсона обеспечивает более полное описание нефти. Таблица 1 показывает пример масла с плотностью 35 ° API, который указывает на взаимосвязь вязкости и химического состава, напоминая, что характеристический фактор 12,5 отражает высокопарафиновые масла, а значение 11,0 указывает на нафтеновое масло. Очевидно, что химический состав, помимо плотности в градусах API, играет роль в поведении вязкости сырой нефти. На рис. 1 показано влияние характеристического фактора сырой нефти на вязкость мертвой нефти. В целом характеристики вязкости предсказуемы. Вязкость увеличивается с уменьшением удельного веса по API сырой нефти (при условии, что коэффициент характеристики Ватсона постоянен) и с понижением температуры. Воздействие растворенного газа заключается в снижении вязкости. Выше давления насыщения вязкость увеличивается почти линейно с давлением. На рис. 2 представлена ​​типичная форма вязкости пластовой нефти при постоянной температуре.

    • Рис. 1 - Вязкость мертвого масла в зависимости от плотности в градусах API и характеристического коэффициента Ватсона.

    • Рис. 2 - Типовая кривая вязкости масла.

    Расчет вязкости

    Для расчета вязкости живых пластовых масел требуется многоступенчатый процесс, включающий отдельные корреляции для каждого этапа процесса. Вязкость мертвой или безгазовой нефти определяется как функция плотности и температуры сырой нефти по API.Вязкость насыщенной газом нефти определяется как функция вязкости мертвой нефти и газового фактора раствора (ГФ). Вязкость ненасыщенной нефти определяется как функция вязкости газонасыщенной нефти и давления выше давления насыщения.

    Фиг. 3 и 4 суммируют все корреляции вязкости мертвого масла, описанные в таблицах 2 и 3 . [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] ) [21] [22] [23] [24] [25] Результаты, предоставленные Рис.4 показывают, что метод, предложенный в Стандарте [23] , не подходит для сырой нефти с плотностью менее 28 ° API. Аль-Кафаджи и др. Метод [10] не подходит для сырой нефти с плотностью менее 15 ° API, в то время как метод Беннисона [21] , разработанный в основном для нефти Северного моря с низкой плотностью API, не подходит для нефти с плотностью выше 30 ° API. .

    • Рис. 3 - Зависимость вязкости мертвого масла от температуры.

    • Фиг.4 - Вязкость мертвого масла в зависимости от плотности в градусах API.

    Сравнение различных методов

    На рис. 5 представлен аннотированный список наиболее часто используемых методов корреляции для расчета вязкости. Результаты иллюстрируют тенденцию изменения вязкости и температуры мертвого масла. При понижении температуры вязкость увеличивается. При температурах ниже 75 ° F метод Беггса и Робинсона [5] значительно переоценивает вязкость, тогда как метод Стэндинга фактически показывает снижение вязкости.Эти тенденции делают эти методы непригодными для использования в диапазоне температур, связанном с трубопроводами. Метод Била [3] [4] был разработан на основе наблюдений за вязкостью мертвого масла при 100 и 200 ° F и имеет тенденцию недооценивать вязкость при высокой температуре. Корреляции вязкости мертвой нефти несколько неточны, потому что они не учитывают химическую природу сырой нефти. Только методы, разработанные Стэндингом [23] и Фитцджеральдом [18] [19] [20] , учитывают химическую природу сырой нефти за счет использования характеристического фактора Ватсона.Метод Фитцджеральда был разработан для широкого диапазона условий, как подробно описано в таблицах 2, и 3 , и является наиболее универсальным методом, подходящим для общего использования корреляций, перечисленных в этой таблице. Глава 11 Справочника технических данных API - Переработка нефти [19] включает график, показывающий область применимости метода Фитцджеральда.

    • Рис. 5 - Аннотированный список обычно используемых корреляций вязкости мертвого масла.

    Метод Андраде [1] [2] основан на наблюдении, что логарифм вязкости, нанесенный на график в зависимости от обратной абсолютной температуры, образует линейную зависимость от точки несколько выше нормальной точки кипения до точки, близкой к точке замерзания масла, как показано на рис. 6 . Метод Андраде применяется посредством использования измеренных точек данных вязкости мертвого масла, полученных при низком давлении и двух или более температурах. Данные следует получать при температурах в интересующем диапазоне.Этот метод рекомендуется при наличии данных о вязкости мертвого масла.

    • Рис. 6 - Вязкость мертвого масла в зависимости от обратной абсолютной температуры.

    Методы определения вязкости масла до точки пузыря

    Таблицы 4 и 5 [5] [7] [8] [10] [11] [12] [13] [14] [15] [16] [17] [22] [23] [24] [25] [26] [27] [28] ) [29] предоставляют полный обзор методов определения вязкости нефти до точки кипения.

    Корреляции для вязкости масла при температуре кипения обычно принимают форму, предложенную Чу и Конналли. [26] Этот метод формирует корреляцию с вязкостью мертвого масла и газовым фактором раствора, где A и B определяются как функции газового фактора раствора.

    .................... (1)

    Фиг. 7 и 8 показаны корреляции для параметров A и B, разработанные разными авторами. Фиг.9 показано влияние параметров корреляции A и B на прогноз вязкости. Этот график был разработан для вязкости мертвого масла 1,0 сП, чтобы можно было изучить влияние газового фактора раствора. Корреляции, предложенные Labedi, [7] [8] Khan et al. , [28] и Almehaideb [29] специально не используют вязкость мертвого масла и газовый фактор раствора и не были включены в этот график.

    • Фиг.7– Параметр корреляции вязкости при температуре пузыря A.

    • Рис. 8 - Параметр корреляции вязкости при температуре пузыря B.

    • Рис. 9 - Вязкость масла до точки пузыря в зависимости от газового фактора раствора.

    Корреляция для недонасыщенного масла

    Когда давление повышается выше точки кипения, масло становится недонасыщенным. В этой области вязкость масла увеличивается почти линейно с увеличением давления. Таблицы 6 и 7 [3] [4] [7] [8] [11] [12] [13] [14] [ 15] [16] [17] [19] [22] [25] [29] [30] [31] [32] [ 33] предоставляют корреляции для моделирования вязкости ненасыщенной нефти. Рис. 10 представляет собой визуальное сравнение методов.

    • Рис. 10 - Вязкость ненасыщенного масла в зависимости от давления.

    Номенклатура

    μ ob = Вязкость масла при температуре кипения, м / л, сП
    мкм од = Вязкость мертвого масла, м / л, сП

    Список литературы

    1. 1.0 1,1 Andrade, E.N. да C. 1930. Вязкость жидкостей. Природа 125: 309–310. http://dx.doi.org/10.1038/125309b0
    2. 2,0 2,1 Reid, R.C., Prausnitz, J.M., и Sherwood, T.K. 1977. Свойства газов и жидкостей, третье издание, 435–439. Нью-Йорк: Высшее образование Макгроу-Хилла.
    3. 3,0 3,1 3,2 Бил, К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и ее попутных газов при температурах и давлениях нефтяного месторождения, No.3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE. Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием
    4. 4,0 4,1 4,2 Стоя, М. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание. Ричардсон, Техас: Общество инженеров-нефтяников AIME
    5. 5.0 5,1 5,2 Beggs, H.D. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
    6. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
    7. 7,0 7,1 7,2 7,3 Лабеди Р. 1982. PVT-корреляция африканской сырой нефти.Кандидатская диссертация. 1982 г. Докторская диссертация, Колорадская горная школа, Ледвилл, Колорадо (май 1982 г.).
    8. 8,0 8,1 8,2 8,3 Лабеди, Р. 1992. Улучшенные корреляции для прогнозирования вязкости легкой нефти. J. Pet. Sci. Англ. 8 (3): 221-234. http://dx.doi.org/10.1016/0920-4105(92)
    9. -Y
    10. ↑ Нг, J.T.H. и Эгбогах, Э. 1983. Улучшенная корреляция вязкости и температуры для сырой нефти. Представлено на ежегодном техническом совещании, Банф, Канада, 10–13 мая.PETSOC-83-34-32. http://dx.doi.org/10.2118/83-34-32
    11. 10,0 10,1 10,2 Аль-Хафаджи, А.Х., Абдул-Маджид, Г.Х. и Хассун, С.Ф. 1987. Корреляция вязкости для мертвой, живой и ненасыщенной сырой нефти. J. Pet. Res. (Декабрь): 1–16.
    12. 11,0 11,1 11,2 Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Докторская диссертация, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
    13. 12,0 12,1 12,2 Петроски Г. Младший и Фаршад, Ф.Ф. 1995. Корреляции вязкости для сырой нефти Мексиканского залива. Представлено на симпозиуме SPE по производственным операциям, Оклахома-Сити, Оклахома, США, 2-4 апреля. SPE-29468-MS. http://dx.doi.org/10.2118/29468-MS
    14. 13,0 13,1 13,2 Kartoatmodjo, R.S.T. 1990. Новые корреляции для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
    15. 14,0 14,1 14,2 Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
    16. 15,0 15,1 15,2 Картоатмоджо, Т. и З., С. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Oil Gas J. 92 (27): 51–55.
    17. 16,0 16,1 16,2 Де Гетто, Г.и Вилла, М. 1994. Анализ надежности на корреляции PVT. Представлено на Европейской нефтяной конференции, Лондон, Великобритания, 25-27 октября. SPE-28904-MS. http://dx.doi.org/10.2118/28904-MS
    18. 17,0 17,1 17,2 Де Гетто, Г., Паоне, Ф. и Вилла, М., 1995. Корреляция давления-объема-температуры для тяжелых и сверхтяжелых масел. Представлено на Международном симпозиуме по тяжелой нефти SPE, Калгари, 19-21 июня. SPE-30316-MS. http://dx.doi.org/10.2118/30316-MS
    19. 18,0 18,1 Фитцджеральд, Д.Дж. 1994. Метод прогнозирования для оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
    20. 19,0 19,1 19,2 19,3 Daubert, T.E. и Даннер, Р. П. 1997. Книга технических данных API - Переработка нефти, 6-е издание, гл. 11. Вашингтон, округ Колумбия: Американский институт нефти (API).
    21. 20.0 20,1 Саттон, Р.П. и Фаршад, Ф. 1990. Оценка полученных эмпирическим путем PVT свойств для сырой нефти Мексиканского залива. SPE Res Eng 5 (1): 79-86. SPE-13172-PA. http://dx.doi.org/10.2118/13172-PA
    22. 21,0 21,1 Беннисон Т. 1998. Прогноз вязкости тяжелой нефти. Представлено на конференции IBC по разработке месторождений тяжелой нефти, Лондон, 2–4 декабря.
    23. 22,0 22,1 22,2 Эльшаркави, А. и Алихан А.A. 1999. Модели для прогнозирования вязкости ближневосточной сырой нефти. Топливо 78 (8): 891–903. http://dx.doi.org/10.1016/S0016-2361(99)00019-8
    24. 23,0 23,1 23,2 23,3 Whitson, C.H. и Брюле, М.Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
    25. 24,0 24,1 Бергман Д.Ф. 2004. Не забывайте вязкость. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
    26. 25,0 25,1 25,2 Диндорук Б. и Кристман П.Г. 2001. PVT-свойства и корреляции вязкости нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября - 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
    27. 26,0 26,1 Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol.216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
    28. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
    29. 28,0 28,1 Хан, С.А., Аль-Мархун, М.А., Даффуа, С.О. и другие. 1987. Корреляции вязкости для сырой нефти Саудовской Аравии. Представлен на выставке Middle East Oil Show, Бахрейн, 7-10 марта. SPE-15720-MS. http://dx.doi.org/10.2118/15720-МС
    30. 29,0 29,1 29,2 Almehaideb, R.A. 1997. Улучшенная корреляция PVT для сырой нефти ОАЭ. Представлено на выставке и конференции Middle East Oil Show, Бахрейн, 15-18 марта. SPE-37691-MS. http://dx.doi.org/10.2118/37691-MS Ошибка цитирования: недопустимый тег ; имя "r29" определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя "r29" определено несколько раз с разным содержанием
    31. ↑ Кузель, Б.1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
    32. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
    33. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
    34. ↑ Абдул-Маджид, Г.Х., Кларк, К.К. и Салман, Н.Х. 1990. Новая корреляция для оценки вязкости ненасыщенной сырой нефти.J Can Pet Technol 29 (3): 80. PETSOC-90-03-10. http://dx.doi.org/10.2118/90-03-10

    Интересные статьи в OnePetro

    Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

    Внешние ссылки

    Используйте этот раздел для предоставления ссылок на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

    См. Также

    Вязкость газа

    Трение жидкости

    Плотность масла

    Свойства нефтяной жидкости

    PEH: Масло_Система_Взаимосвязи

    .

    Классификация вязкости

    Классификация вязкости
    Динамическая вязкость
    Кинематическая вязкость
    Индекс вязкости (VI)
    ISO 3448 Классификация вязкости
    AGMA 9005-D94 Классификация вязкости трансмиссионных масел
    SAE J300 Автомобильная классификация вязкости, моторные масла
    SAE J306 Автомобильная классификация вязкости, трансмиссионные масла
    Сравнительная классификация вязкости

    Калькуляторы:
    (Абсолютно) Динамическая вязкость / температура
    Кинематическая вязкость / температура ASTM D341
    Индекс вязкости (VI)
    Кинематическая вязкость с использованием T @ 40C и индекс вязкости (VI)
    Кинематическая вязкость смесь двух базовых масел
    Вискозиметр с коаксиальным цилиндром
    Вискозиметр конус на пластине
    Динамическая вязкость / чувствительность к давлению

    Динамическая вязкость [мПас = cP]
    Динамическая вязкость - это вязкость, которая связывает напряжение сдвига τ и скорость сдвига du / dz в жидкости, т.е.е. τ = η du / dz. В вязкое напряжение сдвига τ пропорционально скорости сдвига, динамическое вязкость η - коэффициент пропорциональности. Итак, более густые масла имеют более высокое значение вязкости, вызывающее относительно более высокие напряжения сдвига при том же скорость сдвига.

    Динамическая вязкость обычно измеренные в условиях высокого сдвига, например, конус на тарелке или цилиндрический вискозиметр в котором крутящий момент вязкого сдвига измеряется между двумя цилиндрами.

    с вязкость, известная при двух эталонных температурах, вязкость может быть рассчитано для промежуточных температур со специальной интерполяцией функции от Reynolds или Vogel & Cameron.

    Кинематическая вязкость [мм 2 / с = сСт]
    Кинематическая вязкость - это частное от динамической вязкость η и плотность жидкости ρ, ν = η / ρ.Физический принцип измерение основано на скорости, с которой жидкость течет под действием силы тяжести через капиллярная трубка.

    С вязкостью, известной при двух стандартных температурах вязкость можно рассчитать для промежуточных температур с помощью интерполяционная функция Уббелоде-Вальтера, который принят ASTM D341.

    Индекс вязкости ISO 2909 / ASTM D2270-226
    Во многих случаях температурная зависимость выражается в Вязкость Индекс стандартизирован ISO 2909 / ASTM D2270-226.
    ISO 3448 Классификация вязкости
    Классификация вязкости ISO рекомендуется для промышленных Приложения. Эталонная температура 40 C представляет собой рабочая температура в машинах. Каждый последующий класс вязкости (VG) согласно классификации имеет примерно на 50% более высокую вязкость, тогда как минимум en Максимальные значения каждой оценки составляют 10% от средней точки.За Например, ISO VG 22 относится к классу вязкости 22 сСт 10% при 40C. Вязкость при разной температуры можно рассчитать, используя вязкость при 40 ° C и индекс вязкости (VI), который представляет собой температурную зависимость смазка.
    ISO 3448
    Класс вязкости
    Кинематическая вязкость при 40 ° C
    [мм 2 / с = сСт]
    Средняя точка Минимум Максимум
    ISO VG 2 2.2 1,98 2,42
    ISO VG 3 3,2 2,88 3,52
    ISO VG 5 4,6 4,14 5,06
    ISO VG 7 6,8 6,12 7,48
    ISO VG 10 10 9.0 11,0
    ISO VG 15 15 13,5 16,5
    ISO VG 22 22 19,8 24,2
    ISO VG 32 32 28,8 35,2
    ISO VG 46 46 41.4 50,6
    ISO VG 68 68 61,2 74,8
    ISO VG 100 100 * 90 110
    ISO VG 150 150 135 165
    ISO VG 220 220 198 242
    ISO VG 320 320 288 352
    ISO VG 460 460 414 506
    ISO VG 680 680 612 748
    ISO VG 1000 1000 900 1100
    ISO VG 1500 1500 1350 1650
    Любая вязкость может быть получена смесь двух базовых масел ISO VG
    AGMA 9005-D94 Классификация вязкости для шестерен масла

    Смазка AGMA No.

    вязкость
    мПа.с при 40C

    Эквивалентный класс вязкости ISO
    (ISO 2448)

    Трансмиссионные масла EP
    AGMA

    мин.

    макс

    смаз. нет.

    0

    28.8

    35,2

    32

    1

    41,4

    50,6

    46

    2

    61,2

    74.8

    68

    2 ОР

    3

    90

    110

    100

    3 EP

    4

    135

    165

    150

    4 ОП

    5

    198

    242

    220

    5 EP

    6

    288

    352

    320

    6 ОР

    7C 1)

    414

    506

    460

    7 EP

    8C 1)

    612

    748

    680

    8 EP

    8AC 1)

    900

    1100

    1000

    8 A EP

    Классы вязкости моторных масел по SAE 1 SAE J300 декабрь 99
    Фактическая вязкость смазочного материала определяется Обществом Автомобильные инженеры, например SAE-15W40 для всесезонного масла и SAE-40 для всесезонного масла.Первое число (15W) относится к вязкости сорт при низких температурах (W от зимы), тогда как второй номер (40) относится к классу вязкости при высокой температуре.

    Классы вязкости автомобильных смазок 1
    Моторные масла SAE J 300, декабрь 1999 г.

    SAE

    Вязкость при низких температурах

    Вязкость при высоких температурах

    Вязкость
    Оценка

    Коленчатый вал 2 (МПа.с)
    макс при температуре C

    Насос 3 (мПа.с)
    макс при температуре C

    Кинематика 4
    (мм 2 / с)
    при 100C

    Высокий сдвиг 5 Скорость (мПа.с)
    при 150 ° C, 10 / с

    мин.

    макс

    мин

    0 Вт

    6200 при -35

    60 000 при -40

    3.8

    5 Вт

    6600 при -30

    60 000 при -35

    3,8

    10 Вт

    7000 при -25

    60 000 при -30

    4.1

    15 Вт

    7000 при -20

    60 000 при -25

    5,6

    20 Вт

    9500 при -15

    60 000 при -20

    5.6

    25 Вт

    13 000 при -10

    60 000 при -15

    9,3

    20

    5.6

    <9,3

    2,6

    30

    9,3

    <12,5

    2,9

    40

    12.5

    <16,3

    2,9 6

    40

    12,5

    <16,3

    3.7 7

    50

    16,3

    <21,9

    3,7

    60

    21.9

    <26,1

    3,7

    1 Все значения критичны спецификации согласно определению ASTM D3244
    2 ASTM D5293
    3 ASTM D4684. Учтите, что наличие какой-либо доходности напряжение, обнаруживаемое этим методом, представляет собой отказ независимо от вязкости.
    4 ASTM D445
    5 ASTM D4683, CEC L-36-A-90 (ASTM D 4741) или ASTM DS481
    6 Марки 0W-40, 5W-40 и 10W-40
    7 Марки 15W-40, 20W-40, 25W-40 и 40
    Вязкость автомобильных трансмиссионных масел по SAE a SAE J306, январь 2005 г.

    Автомобильная промышленность Смазка Вязкость Классы
    Трансмиссионные масла За исключением SAE J 306, 1998 г.

    SAE
    Класс вязкости

    Максимальная температура
    для вязкости
    150 000 сП (C)

    Минимальная вязкость
    при (сСт) при 100 ° C

    Максимальная вязкость
    при (сСт) при 100 ° C

    ASTM D 2983

    ASTM D 445

    ASTM D 445

    70 Вт

    -55

    4.1

    75 Вт

    -40

    4.1

    80 Вт

    -26

    7.0

    85 Вт

    -12

    11.0

    80

    7.0

    <11,0

    85

    11.0

    <13,5

    90

    13.5

    <18,5

    110

    18.5

    <24,0

    140

    24.0

    <32,5

    190

    32.5

    <41,0

    250

    41.0

    1 Используя ASTM D 2983, дополнительный низкий требования к температуре и вязкости могут применяться для жидкостей предназначен для использования в синхронизированной механической коробке передач малой мощности.
    2 Предел также должен быть соблюден после тестирования в CEC l-45-T-93, метод C (20 часов)
    3 Точность ASTM D 2983 имеет не установлено для определений, сделанных при температурах ниже 40 С. Этот факт следует учитывать при любые отношения производитель-потребитель.
    Сравнительная классификация вязкости
    ISO 3348
    Масла индустриальные
    AGMA 9005-D94
    Масла трансмиссионные
    SAE J300
    Масла моторные
    SAE J306
    Масла трансмиссионные
    1500 250
    1000 8A
    680 8 140
    460 7
    320 6 60 90
    220 5 50
    150 4 40
    85 Вт
    100 3 30 80 Вт
    68 2 20
    75 Вт
    46 1
    32 0 15 Вт
    22 10 Вт
    15 5 Вт, 10 Вт
    10
    7
    3
    2
    ISO и AGMA указаны при температуре 40C.SAE 75 Вт, 80 Вт, 85, 5 Вт и 10 Вт
    указаны для низких температур. SAE От 90 до 250 и от 20 до 50 указаны при 100 ° C. Вязкость может быть связаны по горизонтали, принимая 96 масел VI класса.

    Практическое правило: SUS @ 100F / 5 = сСт @ 40C.

    www.tribology-abc.com
    .

    Вязкость сырой нефти как функция силы тяжести

    Поиск в Engineering ToolBox

    - поиск - самый эффективный способ навигации по Engineering ToolBox!

    Перевести эту страницу на

    О Engineering ToolBox!

    Мы не собираем информацию от наших пользователей. В нашем архиве хранятся только письма и ответы. Файлы cookie используются в браузере только для улучшения взаимодействия с пользователем.

    Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложений на локальном компьютере.Эти приложения - из-за ограничений браузера - будут отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.

    Google использует файлы cookie для показа нашей рекламы и обработки статистики посетителей. Пожалуйста, прочтите Условия использования Google для получения дополнительной информации о том, как вы можете контролировать показ рекламы и собираемую информацию.

    AddThis использует файлы cookie для обработки ссылок на социальные сети. Пожалуйста, прочтите AddThis Privacy для получения дополнительной информации.

    Цитирование

    Эту страницу можно цитировать как

    • Engineering ToolBox, (2017). Вязкость сырой нефти как функция силы тяжести . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/crude-oil-petroleum-visacity-gravity-de density-d_1959.html [день доступа, понедельник, год].

    Изменить дату доступа.

    . .

    закрыть

    .

    Полное руководство по вязкости моторного масла

    На упаковке автомобильного моторного масла есть комбинации букв и цифр, и вы думаете, что, черт возьми, такое SAE 5W-20 или 5W-30? Вы хотите узнать, что это значит. Некоторые люди сочли это слишком техническим или сложным для понимания. Эта статья поможет вам понять, насколько легко вы можете понять вязкость моторного масла.

    Что такое вязкость?

    Вязкость - это показатель сопротивления потоку жидкости. Все мы знаем, что вода, бензин и керосин текут очень легко.Эти жидкости имеют низкую вязкость и называются «жидкими» или «легкими»; с другой стороны, мед, патока и асфальт текут очень медленно и, как говорят, имеют высокую вязкость, «густые» или «тяжелые».

    Единица вязкости

    Чтобы измерить вязкость, мы должны иметь единицы измерения. Представьте себе жидкость, состоящую из нескольких слоев, и один слой движется относительно другого с определенной скоростью.

    Сопротивление движению является мерой абсолютной вязкости: и если слои находятся на расстоянии одного метра друг от друга и скорость движения один метр в секунду, вязкость равна одному паскаль-секунде, что является единицей абсолютной вязкости.

    Это довольно большая единица измерения, и обычно мы используем одну тысячную или миллипаскаль секунды. Это численно эквивалентно старой единице, известной как сантипуаз, которая все еще очень часто используется.

    Абсолютную вязкость неудобно измерять с высокой точностью, поэтому были разработаны более простые методы измерения вязкости в зависимости от потока через отверстия или капиллярные трубки.

    Время протекания здесь зависит не только от абсолютной вязкости, но и от напора, при котором жидкость проходит через диафрагму.

    Для данной высоты жидкости это пропорционально плотности жидкости. Итак, у нас есть еще одно измерение вязкости, которое зависит как от плотности, так и от абсолютной вязкости, и мы называем это кинематической вязкостью.

    Нормальной единицей для этого является сантисток или квадратный миллиметр в секунду, единственное утвержденное сокращение - сантисток (сСт).

    Он определяется в специально разработанных вискозиметрах на основе колб и капиллярных трубок с приспособлениями для воспроизводимого напора жидкости во время измерения.

    Время, необходимое для прохождения под этим верхом жидкости от одной временной метки к другой, пропорционально кинематической вязкости. Ее преобразуют в абсолютную, иногда называемую динамической, вязкость путем умножения на плотность при той же температуре.

    Существуют и другие способы измерения вязкости в зависимости от времени прохождения через отверстие. Они выражаются в секундах, которые представляют время прохождения потока через отверстие. Они выражаются в секундах, которые представляют время прохождения известного объема в конкретном устройстве.

    В промышленности США использовались универсальные секунды Saybolt (S.U.S.), в то время как в Великобритании использовался прибор Redwood, измеряющий значение Redwood No 1 с. Эти устройства прочны, но обычно используются сантистоксы, за исключением некоторых приложений.

    Поскольку масла всегда становятся тоньше при нагревании и повышают вязкость при охлаждении, измеренная вязкость зависит от температуры. Поэтому при указании вязкости всегда следует указывать температуру.

    Для кинематической вязкости нормальные температуры смазочных материалов составляют 40 ° C (104 ° F) и 100 ° C (212 ° F), но часто встречаются температуры 20, 50, 60, 70 и 80 ° C (68, 122, 140, 158 и 176 ° F) или ниже -нулевые температуры для топлива.Секунды Сейболта обычно выражались при 100F и 210F, Redwood - при 70F и 140F.

    Значение вязкости

    Почему важно обеспечить правильную вязкость нефтепродуктов. Что касается смазочных материалов, основная функция заключается в устранении контакта металла с металлом путем размещения пленки смазки между движущимися поверхностями.

    Оптимальная вязкость

    Если масло слишком жидкое, оно будет стекать с поверхности и оставлять их сухими или протечет через уплотнения или поршневые кольца, если масло слишком густое, оно будет вязкое «сопротивление» между поверхностями и эффективность машины будут снижены.

    Каждый смазочный материал имеет оптимальную вязкость; и масло указанной вязкости. Как правило, лучше всего использовать как можно более жидкое масло, которое останется на поверхностях без утечек и не будет чрезмерно расходоваться.

    Вязкость зависит от оптимального значения для области применения, спецификации коммерческого органа, если таковая существует, юридических требований, связанных с соответствием заявленной или рекламируемой вязкости, а также соответствия спецификации однородной вязкости.

    Основные органы

    Есть два основных органа, которые классифицируют вязкость смазочных материалов во всем мире; Общество автомобильных инженеров (SAE), базирующееся в США, и Международная организация по стандартизации (ISO).

    SAE традиционно классифицирует вязкость моторных и трансмиссионных смазочных материалов, тогда как промышленные смазочные материалы подпадают под действие системы ISO-VG (класс вязкости).

    Примечание

    Следует пояснить, что эти органы не устанавливают вязкость, которая должна использоваться в двигателе или машине - это зависит от производителя оборудования или пользователя.

    Следует пояснить, что эти органы не устанавливают вязкость, которая должна использоваться в двигателе или машине - это зависит от изготовителя оборудования или пользователя.

    Однако они определяют числовые пределы, которые определяют степень вязкости, указанную производителем оборудования. Более того, они определяют продукт только по вязкости и соответствию, которое не имеет никакого отношения к качеству в соответствии с ограничениями SAE или ISO VG.

    Индекс вязкости

    На вязкость масел влияет их температура, и поскольку вязкость является важным свойством любого смазочного материала, нам необходимо изучить эти изменения более подробно.

    Влияние изменения температуры неоднородно.

    Например, вязкость любого масла в диапазоне от 10 ° C (50 ° F) до 15 ° C (59 ° F) будет меняться гораздо сильнее, чем при изменении вязкости между 80 ° C (176 ° F) и 85 ° C (185 ° F).

    При практическом проектировании систем смазки они часто сталкиваются с необходимостью выяснить, какой будет вязкость масла, например, при 60 ° C (140 ° F), если известны его вязкости при 40 ° C (104 ° F) и 100 ° C (212 ° F). .

    Это проблема, потому что вязкость изменяется неравномерно.Конечно, одним из способов решения этой проблемы является отправка образца масла в лабораторию и определение его вязкости при 60 ° C (140 ° F) (или любой другой желаемой температуре) прямым измерением.

    Это редко возможно, но, к счастью, есть альтернатива.

    Он включает использование специальной миллиметровой бумаги с нелинейными шкалами, построенными таким образом, что зависимости вязкости от температуры для большинства углеводородов будут отображаться в виде прямых линий.

    Этот документ опубликован ASTM.Используя его, вы можете определить вязкость углеводорода при любой температуре, если известны вязкости при двух других температурах.

    Не все масла ведут себя одинаково.

    Было обнаружено, что все масла не ведут себя одинаково в зависимости от соотношения температуры и вязкости.

    Например, предположим, что у нас есть два масла, которые мы назовем A и B. Когда их вязкость измеряется при 100 ° C (212F), оказывается, что оба масла равны 20 сСт. Пока нет проблем.

    Теперь мы определяем их вязкость при 40 ° C (104 ° F) и находим, что при этой температуре вязкость A составляет 240 сСт, а B - 450 сСт. Очевидно, между ними есть какое-то фундаментальное различие: B гораздо сильнее зависит от температуры, чем A.

    Отличие - это свойство, называемое индексом вязкости, обычно сокращенно VI.

    VI не является фундаментальным свойством материи. Это совершенно произвольная шкала, разработанная специально для нужд нефтяной отрасли.

    Первоначальная концепция была создана в 1929 году двумя американскими исследователями по имени Дин и Дэвис. Смазочные материалы с наименьшим изменением вязкости получили индекс вязкости 100. С другой стороны, наибольшему изменению был присвоен индекс вязкости 0.

    Высокое значение вязкости означает небольшое изменение вязкости, а низкое. Цифра VI означает большое изменение.

    У них не было возможности знать, что в будущем будут производиться масла со значениями VI, намного превышающими 100, их система в том виде, в котором они были созданы, не могла приспособиться к этому типу продукта, и ее пришлось модифицировать.

    Индекс вязкости более 100

    Многие продукты, представленные сегодня на рынке, имеют значения индекса вязкости значительно выше 100. Это можно производить в прямом масле с помощью улучшенных методов рафинирования.

    Другой источник - синтезированные углеводороды, индекс вязкости которых составляет 140 и более. Но, безусловно, самый распространенный путь к высокому ИВ - это использование добавки, называемой «улучшитель ИВ».

    Расчеты VI по методу Дина и Дэвиса приводят к аномальным и противоречивым результатам для продуктов с высоким индексом вязкости, поэтому используется другой метод.Вы можете узнать больше в ASTM D-2270 для более полной информации.

    Значение индекса вязкости

    Вспомните

    «В отрасли широко распространено мнение, что масло с более высоким индексом вязкости« лучше ». Хотя в некоторых случаях это верно, это ни в коем случае нельзя считать общей истиной».

    Давайте сначала рассмотрим точность, с которой можно определить VI. Поскольку он рассчитывается непосредственно из значений вязкости, любая ошибка будет отражена в VI.

    Кроме того, очень небольшая погрешность в определении вязкости может привести к значительному изменению ИВ, особенно для продуктов с низкой вязкостью.

    Рассмотрим пример использования масла с вязкостью SAE 20: -

    Здесь у нас есть два набора определений вязкости, которые согласуются в рамках отраслевых стандартов воспроизводимости, но при этом дают числа VI, отличающиеся на четыре. Любое большее отклонение в определении вязкости, очевидно, приведет к еще большим расхождениям.

    При использовании материалов с более высокой вязкостью точность улучшается, но даже в этом случае разница менее пяти чисел вряд ли будет значительной.

    Что ВИ говорят нам о масле

    Получив представление о точности, с которой может быть определен ВИ, мы должны рассмотреть его значение. Ниже перечислены некоторые вещи, которые ВИ говорит нам о масле.

    VI & OIL

    Нажмите, чтобы узнать больше ...

    Масло с более высоким индексом вязкости меньше меняет вязкость с температурой.

    Иногда думают, что это имеет значение, например, в случае станков с гидравлическим приводом, время цикла которых изменяется по мере прогрева станка.

    В целом такое мышление будет признано ошибочным, потому что даже все продукты с высоким индексом вязкости все равно имеют большое изменение вязкости и, следовательно, не будут иметь большого влияния на этот тип проблемы.

    VI даст некоторое представление о типе углеводородов в нефти.

    Цифра 95-105 указывает на парафиновый материал, тогда как нижние цифры указывают на запасы нафтенов.

    В течение многих лет Electron-Motive Division корпорации General Motors указывал максимальный индекс вязкости 70 для смазочного масла для дизельных локомотивов. Это потому, что они предпочли нафтеновый продукт.

    VI как проверка условия обработки

    При рафинировании смазочных материалов VI используется как проверка условия обработки, не столько потому, что важен сам VI.

    Это потому, что это легко определяемое свойство, и было обнаружено, что оно хорошо коррелирует с другими свойствами, такими как стойкость к окислению, , когда все остальное равно .

    Это привело к широко распространенному мнению, упомянутому выше, что чем выше индекс вязкости, тем «лучше» масло.

    Чем выше индекс вязкости, тем «лучше» масло?

    Это имеет некоторую значимость, если две сравниваемые нефти произведены из одной и той же сырой нефти и с помощью одного и того же процесса очистки с аналогичными условиями процесса, и разница в индексе вязкости является значительной.

    Однако, когда сравнение проводится между двумя фирменными продуктами, у нас, по всей вероятности, будут разные виды сырья и методы обработки, и любое сравнение становится бессмысленным, если разница действительно очень велика.

    Система SAE

    Origins

    Всем следует знать, что на упаковке автомобильного моторного масла есть комбинации букв и цифр, такие как «SAE 30» или «SAE 20W-50» и т. Д. Они кое-что говорят нам о содержимом упаковки и, в частности, они передают некоторую информацию о том, когда и где их следует использовать.

    «SAE» - это Общество инженеров автомобильной промышленности - организация, которая, помимо своей деятельности, публикует стандарты на автомобильные компоненты и материалы по решению своих членов.

    Один из этих стандартов определяет вязкость моторных и трансмиссионных масел. Следовательно, первое, что необходимо понять, это то, что номера SAE относятся только к и к вязкости и не подразумевают никаких других свойств.

    Первые классификации смазочных материалов SAE были опубликованы в 1911 году, их цель заключалась в том, чтобы предоставить производителям автомобилей и пользователям общий язык, который обеспечил бы использование смазки, которая была бы, по крайней мере, подходящей по вязкости.

    Смазочные материалы были классифицированы по вязкости по Сейболту при 210F.Эта температура была выбрана, во-первых, потому, что она приближалась к фактическим температурам картера двигателя, которые можно было ожидать летом, а во-вторых, потому что это была стандартная эталонная температура в отрасли.

    Это были хорошо известные классы 20, 30, 40, 50 и 60, которые используются до сих пор. Масло SAE 20 определялось как масло, вязкость которого составляла от 45 до 58 SUS при 210 ° F, SAE 30 - от 58 до 70 и так далее.

    Интересно отметить, что в 1981 году эти классификации по существу остались прежними, хотя теперь они выражаются в сантистроках и при 100 ° C (212F).Большинство изменений в системе коснулось метода описания низкотемпературных эксплуатационных свойств.

    Низкотемпературные свойства

    В 1911 году большинство автомобилистов поставили свои автомобили на хранение на зимние месяцы, и поэтому свойства низкотемпературных смазочных материалов не считались важными. Но все изменилось. Все чаще стали ездить на автомобиле круглый год, как и электростартеры.

    Эти разработки сосредоточили внимание на низкотемпературном поведении смазочного масла, и в 1923 году SAE добавили требования к температуре застывания, которые, по крайней мере, гарантировали, что смазочный материал будет жидким при указанных температурах.

    Десять лет спустя, в 1933 году, была добавлена ​​спецификация, устанавливающая фактические пределы вязкости. Вязкости были указаны, все еще в секундах Сейболта, при 0 ° F, поэтому цифры были получены путем экстраполяции на диаграмме ASTM из измеренных вязкостей ar 100 ° F и 210 ° F.

    Теперь непросто измерить вязкость при 100F и 210F. Сначала были представлены две классификации: 10 Вт и 20 Вт. Классификация 20W была выбрана таким образом, чтобы смазочный материал с вязкостью 90-100 VI также соответствовал ограничениям SAE 20, и поэтому он был обозначен как SAE 20W-20.

    В 1950 году была добавлена ​​классификация 5W. Суффикс «W» означал «зимний» сорт.

    В пятидесятые годы всесезонные масла, содержащие присадки, улучшающие ИВ, начали проникать на рынок, а в США также произошел значительный переход на восьмицилиндровые двигатели легковых автомобилей.

    Эта комбинация начала вызывать проблемы с запуском в холодную погоду, во-первых, потому что более крупные двигатели было труднее проверять, а, во-вторых, потому что масла с улучшенным VI более или менее неньютоновские, особенно при низких температурах, и, следовательно, экстраполированные вязкости не надежный справочник по низкотемпературным характеристикам.

    Таким образом, в 1967 году экстраполированные вязкости были заменены фактическими вязкостями (в пуазах), измеренными в устройстве, известном как имитатор холодного пуска, первоначально при 0 ° F, а в последнее время при -18 ° C.

    Имитатор холодного пуска - относительно простое устройство, состоящее из двухплоскостного двухплоскостного двигателя, вращающегося в цилиндрическом корпусе, через который может циркулировать охлажденная жидкость. Приведенная выше диаграмма проясняет детали. Измеряется ток приводного двигателя, и прибор необходимо калибровать с использованием масел известной вязкости.

    SAE 15W

    В середине семидесятых годов европейские производители настаивали на введении классификации 15W. Чтобы понять необходимость этого, следует немного отвлечься и изучить природу всесезонных масел.

    Всесезонное средство состоит из базового масла и добавки, улучшающей ИВ. Как мы видели, требуется соблюдение определенных пределов вязкости при -18 ° C / 0F (при измерении CCS) и при 100 ° C / 212F (при измерении кинематическим вискозиметром).

    В целом можно сказать, что низкотемпературные свойства всесезонного масла определяются базовым маслом, используемым в смеси, тогда как высокотемпературные свойства зависят от природы и количества присадки, улучшающей ИВ.

    Следовательно, смесь 10W-X будет содержать базовое масло более низкой вязкости, чем 20W-X.

    Теперь измерение вязкости при 100 ° C в лаборатории даст определенные и повторяемые результаты, но эти измерения проводятся при очень низких скоростях сдвига, тогда как при реальной эксплуатации в двигателе смазочный материал подвергается очень высоким скоростям сдвига.

    Учитывая неньютоновскую природу масел с улучшенными характеристиками VI, некоторые наблюдатели полагают, что лабораторные измерения вязкости не обязательно коррелируют с эффективной вязкостью, предотвращающей износ, которую видит двигатель.

    Короче говоря, европейские производители считают, что смесь 10W-X, проще говоря, слишком тонкая, чтобы обеспечить адекватную защиту их небольших мощных двигателей, работающих на высоких скоростях на автомагистралях.

    За Атлантикой у большого V-8 американского автомобилиста, работающего на законодательно установленных умеренных скоростях, такой проблемы не было.

    Таким образом, очевидным решением для Европы была смесь 20W-X, но это привело к проблемам при запуске, потому что, проще говоря, она слишком густая при низких температурах.

    Компромиссным решением является классификация 15W, введенная в 1977 году. Это не отдельная классификация. Он просто указывает на то, что это масло SAE 20W, но в нижней части диапазона.

    Как правило, смесители смазочного масла сохраняют вязкость при низких температурах, близкую к верхнему пределу диапазона, потому что для понижения этого показателя потребуется больше присадки, улучшающей вязкость, в смеси, а улучшители вязкости являются дорогостоящими добавками.

    Подводя итог, можно сказать, что масло SAE 20W - это масло, вязкость которого по CCS при -18 ° C (0F) составляет от 25 до 100 пуаз.Процитируем собственные слова SAE: «SAE 15W может использоваться для обозначения масел SAE 20W, которые имеют максимальную вязкость при -18C (0F) 50 пуаз.

    Дальнейшие разработки

    Несмотря на то, что вязкость CCS определяет один из аспектов низкотемпературных характеристик, производители обнаружили, что у них время от времени возникали отказы двигателей, приводящие к претензиям по гарантии из-за нехватки масла в двигателях при холодном пуске. Следовательно, возникла необходимость измерения «прокачиваемости», а также вязкости.

    Теперь разработан еще один тест с использованием прибора, известного как «мини-роторный вискозиметр» (MRV).Не вдаваясь в подробности, этот прибор чем-то напоминает Брукфилд, в котором используется вращающийся цилиндр.

    В то же время SAE предложила некоторую дополнительную классификацию, и теперь диапазон приведен ниже.

    Классификация вязкости моторного масла SAE: SAE J300

    Источник

    Для моторных масел «W» (0W, 5W, 10W, 15W, 20W, 25W) относится к вязкости при 0F (-18C), определяемой на холоде. симулятор проворачивания.

    Прямая цифра (16, 20,30, 40, 50,60) относится к вязкости при 100 ° C (212F)

    Что означает 5W-30?

    W означает зима и относится к низкотемпературным характеристикам, связанным с частотой вращения коленчатого вала двигателя и прокачиваемостью масла.

    Grade 5W, из верхней половины таблицы, это масло будет иметь максимальную вязкость при запуске 6600 мПа.с даже холодной зимней ночью, если его температура упадет до -30C (-22F) и максимальная вязкость при перекачке 61000 мПа.с при температуре -35 ° C (-31 ° F).

    Grade 30, из нижней половины таблицы, это масло будет иметь кинематическую вязкость при низкой скорости сдвига в диапазоне 9,3-12,5 сСт при 100 ° C (212F) и вязкость при высокой скорости сдвига не менее 2,9. мПа.с в части двигателя с высокой температурой (150 ° C / 302F) и высоким давлением.

    В чем разница между 5W30 и 5W20?

    5W30 или 5W20? В основном, чем выше число, тем выше вязкость и гуще масло.

    Моторное масло SAE 5W-XX можно использовать при температуре до -35C (-31F). SAE 0W-XX может использоваться при более низкой температуре как более тонкий, а SAE 10W-XX при более высокой температуре как более толстый.

    Для SAE 5W-20 и SAE 5W-30 разница заключается в вязкости при высоких температурах (100 ° C / 212F) и HTHS (высокотемпературная вязкость при высоком сдвиге 150 ° C / 302F.5W-30 имеет более высокую вязкость, чем 5W-20. Чем выше вязкость, тем гуще масло.

    SAE XW-20 обеспечивает лучшую экономию топлива или большую мощность, чем масло SAE XW-30, поскольку оно менее вязкое и более тонкое, обеспечивая меньшее трение.

    Однако менее вязкие и более жидкие масла могут не обеспечивать долговечность оборудования, что приводит к повышенному износу двигателя.

    Почему 5W30 и 5W20 так распространены?

    SAE 5W30 и SAE 5W20 настолько распространены, потому что это очень жидкие масла, обеспечивающие максимальную экономию топлива, которую сегодня хотят производители двигателей и правительства США, Японии и Европы.Сэкономьте расход топлива с меньшим количеством выхлопных газов.

    Какое моторное масло мне следует использовать?

    Класс вязкости SAE, который следует использовать для нового автомобиля, соответствует заявлению производителя, поскольку он представляет собой сочетание заявлений об экономии топлива и долговечности двигателя. Двигатель должен быть специально разработан для моторных масел с низкой вязкостью.

    Масла становятся все тоньше, но для обеспечения необходимой защиты от износа, как и в случае более старых более густых масел, требуется усовершенствованная химия.

    Будущее за двигателями со сверхнизким коэффициентом трения, так что SAE ввела классификацию SAE XW-16, возможно также SAE XW-4, 8 и 12.

    Для получения дополнительной информации см. Классы вязкости SAE, SAE J300 .

    Поздравляем! Вы дошли до конца полного руководства по вязкости! Мы надеемся, что эта статья будет полезной и поможет объяснить вещи так, чтобы их было легко понять.

    Если у вас есть какие-либо комментарии или вопросы, пожалуйста, оставьте их в разделе комментариев под этим сообщением. Если вы хотите, чтобы наше новое содержимое доставлялось на ваш почтовый ящик, подпишитесь на наш список рассылки ниже.Спасибо за прочтение.

    .

    Смотрите также