Крутящий момент формула


Крутящий момент электродвигателя – расчет, формула, таблица

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.

Крутящий момент электродвигателя таблица

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Маркировка

кВт/об

Мном, Нм

Мпуск, Нм

Ммакс, Нм

Минн, Нм

АИР56А2

0,18/2730

0,630

1,385

1,385

1,133

АИР56В2

0,25/2700

0,884

1,945

1,945

1,592

АИР56А4

0,12/1350

0,849

1,868

1,868

1,528

АИР56В4

0,18/1350

1,273

2,801

2,801

2,292

АИР63А2

0,37/2730

1,294

2,848

2,848

2,330

АИР63В2

0,55/2730

1,924

4,233

4,233

3,463

АИР63А4

0,25/1320

1,809

3,979

3,979

3,256

АИР63В4

0,37/1320

2,677

5,889

5,889

4,818

АИР63А6

0,18/860

1,999

4,397

4,397

3,198

АИР63В6

0,25/860

2,776

6,108

6,108

4,442

АИР71А2

0,75/2820

2,540

6,604

6,858

4,064

АИР71В2

1,1/2800

3,752

8,254

9,004

6,003

АИР71А4

0,55/1360

3,862

8,883

9,269

6,952

АИР71В4

0,75/1350

5,306

13,264

13,794

12,733

АИР71А6

0,37/900

3,926

8,245

8,637

6,282

АИР71В6

0,55/920

5,709

10,848

12,560

9,135

АИР71В8

0,25/680

3,511

5,618

6,671

4,915

АИР80А2

1,5/2880

4,974

10,943

12,932

8,953

АИР80В2

2,2/2860

7,346

15,427

19,100

13,223

АИР80А4

1,1/1420

7,398

16,275

17,755

12,576

АИР80В4

1,5/1410

10,160

22,351

24,383

17,271

АИР80А6

0,75/920

7,785

16,349

17,128

12,457

АИР80В6

1,1/920

11,418

25,121

26,263

20,553

АИР80А8

0,37/680

5,196

10,393

11,952

7,275

АИР80В8

0,55/680

7,724

15,449

16,221

10,814

АИР90L2

3/2860

10,017

23,040

26,045

17,030

АИР90L4

2,2/1430

14,692

29,385

35,262

29,385

АИР90L6

1,5/940

15,239

30,479

35,051

28,955

АИР90LА8

0,75/700

10,232

15,348

20,464

15,348

АИР90LВ8

1,1/710

14,796

22,194

32,551

22,194

АИР100S2

4/2850

13,404

26,807

32,168

21,446

АИР100L2

5,5/2850

18,430

38,703

44,232

29,488

АИР100S4

3/1410

20,319

40,638

44,702

32,511

АИР100L4

4/1410

27,092

56,894

65,021

43,348

АИР100L6

2,2/940

22,351

42,467

49,172

35,762

АИР100L8

1,5/710

20,176

32,282

40,352

30,264

АИР112М2

7,5/2900

24,698

49,397

54,336

39,517

АИР112М4

5,5/1430

36,731

73,462

91,827

58,769

АИР112МА6

3/950

30,158

60,316

66,347

48,253

АИР112МВ6

4/950

40,211

80,421

88,463

64,337

АИР112МА8

2,2/700

30,014

54,026

66,031

42,020

АИР112МВ8

3/700

40,929

73,671

90,043

57,300

АИР132М2

11/2910

36,100

57,759

79,419

43,320

АИР132S4

7,5/1440

49,740

99,479

124,349

79,583

АИР132М4

11/1450

72,448

173,876

210,100

159,386

АИР132S6

5,5/960

54,714

109,427

120,370

87,542

АИР132М6

7,5/950

75,395

150,789

165,868

120,632

АИР132S8

4/700

54,571

98,229

120,057

76,400

АИР132М8

5,5/700

75,036

135,064

165,079

105,050

АИР160S2

15/2940

48,724

97,449

155,918

2,046

АИР160М2

18,5/2940

60,094

120,187

192,299

2,884

АИР180S2

22/2940

71,463

150,071

250,119

4,288

АИР180М2

30/2940

97,449

214,388

341,071

6,821

АИР200М2

37/2950

119,780

275,493

383,295

16,769

АИР200L2

45/2940

146,173

380,051

584,694

19,003

АИР225М2

55/2955

177,750

408,824

710,998

35,550

АИР250S2

75/2965

241,568

628,078

966,273

84,549

АИР250М2

90/2960

290,372

784,003

1161,486

116,149

АИР280S2

110/2960

354,899

887,247

1171,166

212,939

АИР280М2

132/2964

425,304

1233,381

1488,563

297,713

АИР315S2

160/2977

513,268

1231,844

1693,786

590,259

АИР315М2

200/2978

641,370

1603,425

2116,521

962,055

АИР355SMA2

250/2980

801,174

1281,879

2403,523

2163,171

АИР160S4

15/1460

98,116

186,421

284,538

7,457

АИР160М4

18,5/1460

121,010

229,920

350,930

11,375

АИР180S4

22/1460

143,904

302,199

402,932

15,110

АИР180М2

30/1460

196,233

470,959

588,699

27,276

АИР200М4

37/1460

242,021

532,445

847,072

46,952

АИР200L4

45/1460

294,349

647,568

941,918

66,229

АИР225М4

55/1475

356,102

997,085

1317,576

145,289

АИР250S4

75/1470

487,245

1218,112

1559,184

301,605

АИР250М4

90/1470

584,694

1461,735

1871,020

467,755

АИР280S4

110/1470

714,626

2072,415

2429,728

578,847

АИР280М4

132/1485

848,889

1697,778

2886,222

1612,889

АИР315S4

160/1487

1027,572

2568,931

3802,017

2363,416

АИР315М4

200/1484

1287,062

3217,655

4247,305

3603,774

АИР355SMA4

250/1488

1604,503

3690,356

4492,608

8985,215

АИР355SMВ4

315/1488

2021,673

5054,183

5862,853

12534,375

АИР355SMС4

355/1488

2278,394

5012,466

6151,663

15493,078

АИР160S6

11/970

108,299

205,768

314,067

12,021

АИР160М6

15/970

147,680

339,665

443,041

20,675

АИР180М6

18,5/970

182,139

400,706

546,418

29,324

АИР200М6

22/975

215,487

517,169

711,108

50,209

АИР200L6

30/975

293,846

617,077

881,538

102,846

АИР225М6

37/980

360,561

721,122

1081,684

186,050

АИР250S6

45/986

435,852

784,533

1307,556

440,210

АИР250М6

55/986

532,708

1012,145

1811,207

633,922

АИР280S6

75/985

727,157

1454,315

2326,904

1090,736

АИР280М6

90/985

872,589

1745,178

2792,284

1657,919

АИР315S6

110/987

1064,336

1809,372

2873,708

4044,478

АИР315М6

132/989

1274,621

2166,855

3696,400

5735,794

АИР355МА6

160/993

1538,771

2923,666

3539,174

11848,540

АИР355МВ6

200/993

1923,464

3654,582

4423,968

17118,832

АИР355MLA6

250/993

2404,330

4568,228

5529,960

25485,901

AИР355MLB6

315/992

3032,510

6065,020

7278,024

40029,133

АИР160S8

7,5/730

98,116

156,986

235,479

13,246

АИР160М8

11/730

1007,329

1712,459

2417,589

181,319

АИР180М8

15/730

196,233

333,596

529,829

41,994

АИР200М8

18,5/728

242,685

509,639

606,714

67,952

АИР200L8

22/725

289,793

579,586

724,483

88,966

АИР225М8

30/735

389,796

701,633

1052,449

214,388

АИР250S8

37/738

478,794

861,829

1196,985

481,188

АИР250М8

45/735

584,694

1052,449

1520,204

695,786

АИР280S8

55/735

714,626

1357,789

2143,878

1071,939

АИР280М8

75/735

974,490

1754,082

2728,571

1851,531

АИР315S8

90/740

1161,486

1509,932

2671,419

4413,649

АИР315М8

110/742

1415,768

2265,229

3964,151

6370,957

АИР355SMA8

132/743

1696,635

2714,616

3902,261

12215,774

AИР355SMB8

160/743

2056,528

3496,097

4935,666

18097,443

AИР355MLA8

200/743

2570,659

4627,187

6940,781

26991,925

AИР355MLB8

250/743

4498,654

7647,712

10796,770

58032,638

Номинальный

Номинальный - значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.

Пусковой

Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске.

При подборе эл двигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования - насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.

Максимальный

Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.

Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Расчет онлайн

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

тут будет калькулятор

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Что надо знать про мощность и крутящий момент в автомобиле

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

8 Расчет крутящих моментов на валах

8.1 Расчет крутящего момента на валу электродвигателя

Для определения крутящего момента на валу электродвигателя привода главного движения используется номинальная мощность и номинальная частота вращения:

где – мощность электродвигателя, кВт:

–номинальная частота вращения электродвигателя, мин-1:

.

.

8.2 Расчет крутящего момента на валах привода

Крутящий момент на валах привода рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до соответствующего вала;

–расчетная частота вращения соответствующего вала, принимается по графику частот, мин-1.

8.3 Расчет крутящего момента на первом валу привода

Крутящий момент на первом валу привода рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до 1-го вала;

–расчетная частота вращения на 1-ом валу, принимаем по графику частот, мин-1: = 2850 мин-1.

КПД участка привода до первого вала рассчитывается по формуле:

где – КПД зубчатой муфты;

–КПД пары подшипников;

8.4 Расчет крутящего момента на втором валу привода

Крутящий момент на втором валу привода рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до 2-го вала;

–расчетная частота вращения на 1-ом валу, принимаем по графику частот, мин-1: = 630 мин-1.

КПД участка привода до второго вала рассчитывается по формуле:

где – КПД зубчатой муфты;

–КПД пары подшипников;

- КПД зацепления зубчатых колес; .

8.5 Расчет крутящего момента на третьем валу привода

Крутящий момент на третьем валу привода рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до 3-го вала;

–расчетная частота вращения на 1-ом валу, принимаем по графику частот, мин-1: = 160 мин-1.

КПД участка привода до третьего вала рассчитывается по формуле:

где – КПД зубчатой муфты;

–КПД пары подшипников;

- КПД зацепления зубчатых колес; .

8.6 Расчет крутящего момента на четвертом валу привода

Крутящий момент на четвертом валу привода рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до 4-го вала;

–расчетная частота вращения на 4-ом валу, определяется по формуле:

где – минимальная частота вращения четвертого вала, мин-1:

мин-1;

–максимальная частота вращения четвертого вала, мин-1:

мин-1.

КПД участка привода до четвертого вала рассчитывается по формуле:

где – КПД зубчатой муфты;

–КПД пары подшипников;

–КПД зацепления зубчатых колес; .

8.7 Расчет крутящего момента на шпинделе

Крутящий момент на шпинделе рассчитывается по формуле:

где – мощность электродвигателя, кВт:

–КПД участка привода от электродвигателя до шпинделя;

–расчетная частота вращения шпинделя, определяется по формуле:

где – минимальная частота вращения четвертого вала, мин-1:

мин-1;

–диапазон регулирования частот вращения шпинделя:

КПД участка привода до шпинделя рассчитывается по формуле:

где – КПД зубчатой муфты;

–КПД пары подшипников;

–КПД зацепления зубчатых колес; .

9 Проектный расчет передач

9.1 Расчет цилиндрической прямозубой постоянной передачиz1–z2

9.1.1 Исходные данные

1. Расчетный крутящий момент на первом валу привода, H·м:

Т1 = 13 Н·м;

2. Число зубьев шестерни: z1 = 18;

3. Число зубьев колеса: z2 = 83;

4. Передаточное число передачи: u1 = 4,76.

9.1.2 Выбор материала и термической обработки зубчатых колес

В качестве материала для зубчатых колес передачи выбираем сталь 40Х, которая отвечает необходимым техническим и эксплуатационным требованиям. В качестве термической обработки выбираем объемную закалку, позволяющую получить твердость зубьев 40..50HRCэ.

9.1.3 Проектный расчет постоянной прямозубой зубчатой передачи на контактную выносливость

Диаметр начальной окружности шестерни рассчитывается по формуле:

где вспомогательный коэффициент: для прямозубых передач

- расчётный крутящий момент на первом валу, Н·м: Т1=13 Н·м;

коэффициент нагрузки для шестерни, равный 1,3..1,5: принимаем

- передаточное число:

отношение рабочей ширины венца передачи к начальному диаметру шестерни:

допускаемое контактное напряжение, МПа.

Допускаемое контактное напряжение для прямозубых передач рассчитывается по формуле:

где базовый предел контактной выносливости поверхностей зубьев, соответствующий базовому числу циклов перемены напряжений, МПа;

МПа;

SH – коэффициент безопасности: SH = 1,1.

Коэффициент отношения рабочей ширины венца передачи к начальному диаметру шестерни может приниматься в пределах

или определяется по формуле:

отношение рабочей ширины венца передачи к модулю: принимаем

число зубьев шестерни: z1 = 18.

что находится в допустимых пределах .

Таким образом, диаметр начальной окружности шестерни равен:

Модуль постоянной прямозубой передачи определяется из условия расчета на контактную выносливость зубьев по рассчитанному значению диаметра начальной окружности шестерни по формуле:

где диаметр начальной окружности шестерни, мм:dw1 = 38,75 мм;

число зубьев шестерни: z1 = 18.

Крутящий момент автомобиля: формула расчета, от чего зависит

Парадокс, но лишь немногие автолюбители ясно представляют принципиальную разницу между «лошадиными силами» и «ньютон-метрами», в которых измеряется крутящий момент. В обиходе определение крутящего момента двигателя напрямую связывают с динамикой разгона, а лошадиные силы с максимальной скорость. Если говорить уж совсем грубо, то формулировка вполне удовлетворительна, хоть и не объясняет всей сути физических процессов. Восполнить теоретические пробелы, а также получить наглядное представление о том, что такое крутящий момент двигателя, — вам поможет предоставленный ниже материал.

Момент вращения

Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.

От чего зависит полка крутящего момента

Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).

Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.

Мощность

Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).

Формула для расчета мощности в киловаттах:

P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.

Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.

Соотношение крутящего момента к мощности

Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.

График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.

В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.

Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:

  • стабильный прирост мощности;
  • достаточно широкая «полка» с плавным приростом и затуханием.

Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).

Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.

Что такое лошадиные силы

Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» — это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.

Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.

Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.

Итоги

  • Мощность мотора зависит от крутящего момента;
  • «л.с» рассчитаны на достижение максимальной скорости. Автомобиль с большим количеством «скакунов» под капотом сможет развить внушительную скорость, но это займет очень много времени;
  • от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность;
  • большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя. Такие моторы легче переносят нагрузки;
  • чем шире «полка» момента, тем эластичней двигатель и приятней в управлении автомобиль;
  • ввиду особенностей дизельных ДВС (большая степень сжатия, медленное горение смеси), а также применения современных систем дополнительного нагнетания воздуха, дизельные двигатели имеют больший крутящий момент с самих низких оборотов.

Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.

Крутящий момент: что такое, формула и в чем измеряется

Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.

Что такое крутящий момент

Крутящим моментом называют единицу силы, которая необходима для поворота коленчатого вала ДВС. Эта не «лошадиная сила», которой должна обозначаться мощность.

ДВС вырабатывает кинетическую энергию, вращая таким образом коленвал. Показатель мощности двигателя (сила давления) зависит от скорости сгорания топлива. Крутящий момент – результат от действия силы на рычаг. Эта сила в физике считается в ньютонах. Длина плеча коленвала считается в метрах. Поэтому обозначение крутящего момента – ньютон-метр.

Технически, крутящий момент – это усилие, которое должно осуществляться двигателем для разгона и движения машины. При этом сила, оказывающая действие на поршень, пропорциональна объему двигателя.

Маховик – одна из важнейших деталей, которая должна через редуктор передавать вращательный момент от мотора к коробке передач, от стартера на коленвал, от коленвала на нажимной диск. Собственно, крутящий момент – итог давления на шатун.

Формула расчета крутящего момента

Показатель КМ рассчитывается так: мощность (в л. с.) равно крутящий момент (в Нм) умножить на обороты в минуту и разделить на 5,252. При меньших чем 5,252 значениях крутящий момент будет выше мощности, при больших – ниже.

В пересчете на принятую в России систему (кгм – килограмм на метр) – 1кг = 10Н, 1 см = 0,01м. Таким образом 1 кг х см = 0,1 Н х м. Посчитать вращательный момент в разных системах измерений ньютоны/килограммы и т.д. поможет конвертер – в практически неизменном виде он доступен на множестве сайтов, с его помощью можно определять данные по практически любому мотору.

График:

На графике изображена зависимость крутящего момента двигателя от его оборотов

От чего зависит крутящий момент

На КМ будут влиять:

  • Объем двигателя.
  • Давление в цилиндрах.
  • Площадь поршней.
  • Радиус кривошипа коленвала.

Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.

Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.

Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.

На что влияет крутящий момент

Главная цель КМ – набор мощности. Часто мощные моторы обладают низким показателем КМ, поэтому не способны разогнать машину достаточно быстро. Особенно это касается бензиновых двигателей.

ВАЖНО! При выборе авто стоит рассчитать оптимальное соотношение вращательного момента с количеством оборотов, на которых чаще всего мотор будет работать. Если держать вращательный момент на соответствующем уровне, это позволит оптимально реализовать потенциал двигателя.

Высокий КМ также может влиять на управляемость машины, поэтому при резком увеличении скорости не лишним будет использование системы TSC. Она позволяет точнее направлять авто при резком разгоне.

Широко распространенный 8-клапанный двигатель ВАЗ выдает вращательный момент 120 (при 2500-2700 оборотах). Ручная коробка или АКПП стоит на машине – не принципиально. При использовании КПП немаловажен опыт водителя, на автоматической коробке плавный старт обеспечивает преобразователь.

Как увеличить крутящий момент

Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.

Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.

Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.

ВАЖНО! Простой способ повысить КМ – использовать масляный фильтр. Он снизит засорение двигателя и продлит срок эксплуатации всех деталей.

Определение крутящего момента на валу

Для измерения крутящего момента на валу автомобильного двигателя применяется множество методик. Это может быть показатель подачи топлива, температуры выхлопных газов и т.д. Такие методы не гарантируют высокой точности.

Распространенный метод повышенной точности – применение тензометрического моста. На вал крепятся тензометры, электрически соединенные по мостовой схеме. Сигнал передается на считывающее устройство.

Измеритель крутящего момента

Главная сложность в измерителе крутящего момента, использующего тензометры, является точность передачи данных. Применявшиеся ранее контактные, индукционные и светотехнические устройства не гарантировали необходимой эффективности. Сейчас данные передаются по цифровым радиоканалам. Измеритель представляет собой компактный радиопередатчик, который крепится на вал и передает данные на приемник.

Сейчас такие устройства доступны по стоимости и просты в эксплуатации. Применяются в основном в СТО.

Датчик крутящего момента

Аналогичные устройства, измеряющие КМ, в автомобиле могут быть установлены не только на коленвал, но и на рулевое колесо. Он ставится на модели машин с электроусилителем руля и позволяет отслеживать работу системы управление автомобилей. При выходе датчика из строя, усилитель, как правило, отключается.

Максимальный крутящий момент

Максимальным называется крутящий момент, представляющий пик, после которого момент не растет, несмотря на количество оборотов. На малых оборотах в цилиндре скапливается большой объем остаточных газов, в результате чего показатель КМ значительно ниже пикового. На средних оборотах в цилиндры поступает больше воздуха, процент газов снижается, крутящий момент продолжает расти.

При высоких оборотах растут потери эффективности: от трения поршней, инерционных потерь в ГРМ, разогрева масла и т.д. будет зависеть работа мотора. Поэтому рост качества работы двигателя прекращается или само качество начинает снижаться. Максимальный крутящий момент достигнут и начинает снижаться.

В электродвигателях максимальный вращательный момент называется «критический».

Таблица марок автомобилей с указанием крутящего момента:

Модели автомобиля ВАЗКрутящий момент (Нм, разные марки двигателей)
210793 – 176
210879-186
210978-118
2110104-196
2112104-162
2114115-145
2121 (Нива)116-129
2115103-132
210692-116
210185-92
210585-186
Двигатели ЗМЗ
406181,5-230
409230
Других популярные в России марки автомобилей
Ауди А6500-750
БМВ 5290-760
Бугатти Вейрон1250-1500
Дэу Нексия123-150
КАМАЗ~650-2000+
Киа Рио132-151
Лада Калина127-148
Мазда 6165-420
Мицубиси Лансер143-343
УАЗ Патриот217-235
Рено Логан112-152
Рено Дастер156-240
Тойота Королла128-173
Хендай Акцент106-235
Хендай Солярис132-151
Шевроле Каптив220-400
Шевроле Круз118-200

Какому двигателю отдать предпочтение

Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.

Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

Улучшение разгона авто за счет изменения момента вращения

Чем выше показатель крутящего момента – тем быстрее двигатель набирает мощность. Таким образом, вырастет скорость движения. На практике это означает, что, например, во время разгона крутящий момент позволит быстрее обогнать едущий впереди автомобиль.

Чтобы улучшить разгон автомобиля за счет изменения момента вращения, достаточно повысить показатели последнего. Как это сделать – описано выше.

Зависимость мощности от крутящего момента

Крутящий момент, как говорилось выше, это показатель того, с какой скоростью двигатель может набирать обороты. По сути, мощность мотора – прямая производная от КМ на коленвале. Чем больше оборотов – тем выше показатель мощности.

Зависимость мощности от вращательного момента выражается формулой: Р = М*n (Р – мощность, М – крутящий момент, n – количество оборотов коленвала/мин).

Мощность и крутящий момент. — DRIVE2

Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.

Тяговые возможности моторов еще с момента рождения самоходных колясок принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906/1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.

С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.

На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.

Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?

Вся эта неразбериха вызвана тем, что в каждом случае такая величина как сила тяги (FT, Н), приложенная к ведущим колесам, будет разной. Объяснение этому легко найти из формулы: FT=Мкр•i•h/r, где Мкр-крутящий момент vk.com/autobap двигателя, i-передаточное число трансмиссии, h – КПД трансмиссии (при продольном расположении двигателя h=0,88-0,92, при поперечном – h=0,91-0,95), r – радиус качения колеса. Из формулы видно, что vk.com/autobap чем больше крутящий момент двигателя и передаточное число, и чем меньше потери в трансмиссии (т.е. чем выше ее КПД) и радиус ведущих колес, тем больше сила тяги. Радиус колес, передаточное число и КПД трансмиссии у автомобилей-одноклассников очень схожи, поэтому на силу тяги они влияют не в такой степени как крутящий момент двигателя.

Если в формулу подставить реальные цифры, то сила тяги на каждом ведущем колесе, например, автомобиля Volkswagen Golf IV с 75-сильным мотором, развивающим крутящий момент 128 Н•м, будет равна 441 Н или 45 кГ•с. Правда, эти значения действительны, когда частота вращения коленчатого вала двигателя (3300 об/мин) соответствует максимальному крутящему моменту.

Что такое крутящий момент

Разобраться, что такое крутящий момент, можно на простом примере. Возьмем палку и один ее конец зажмем в тисках. Если надавить на другой конец палки, на нее начнет воздействовать крутящий момент (Мкр). Он равен силе, приложенной к рычагу, умноженной на длину плеча силы. В цифрах это выглядит так: если на рычаг длиной один метр подвесить 10-килограммовый груз, появится крутящий момент величиной 10 кг•м. В общепринятой системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м. Из этого следует, что получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.

В двигателе внутреннего сгорания нет палок и грузов, а вместо них имеется кривошипно-шатунный механизм с поршнями. Крутящий момент здесь получают благодаря сгоранию горючей смеси, которая при этом расширяется и толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (удвоенное значение радиуса кривошипа).

Примерный расчет крутящего момента двигателя выглядит так. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Чтобы этот показатель стал больше, радиус кривошипа следует увеличить или сделать так, чтобы поршень давил на шатунную шейку с большей силой. Увеличивать радиус кривошипа до бесконечности нельзя, так как размер двигателя тоже придется увеличивать в ширину и в высоту. Возрастают и силы инерции, требующие упрочения конструкции или уменьшения максимальных оборотов. vk.com/autobap Появляются при этом и другие негативные факторы.vk.com/autobap В такой ситуации у конструкторов двигателей остался только один выход – увеличить силу, с которой поршень приводит в движение коленчатый вал. Для этого топливно-воздушную смесь в камере сгорания необходимо сжечь более качественно и большее количество. Достигают этого путем увеличения рабочего объема, диаметра цилиндров и их количества, а также улучшения степени наполнения цилиндров топливно-воздушной смесью, оптимизации процесса сгорания, повышения степени сжатия. Подтверждает это и расчетная формула крутящего момента: Мкр=VH •pe / 0,12566 (для четырехтактного двигателя), где VH – рабочий объем двигателя (л), pe – среднее эффективное давление в камере сгорания (бар).

Получить на коленчатом валу двигателя максимальный крутящий момент удается не на всех оборотах. У разных двигателей пик максимального крутящего момента достигается на различных режимах – у одних он больше на малых оборотах (в диапазоне 1800-3000 об/мин), у других – на более высоких (в диапазоне 3000-4500 об/мин). Объясняется это тем, что в зависимости от конструкции впускного тракта и фаз газораспределения эффективное наполнение цилиндров топливно-воздушной смесью происходит только при определенных оборотах.

Кто сильнейший?

Большим крутящим моментом обладают многоцилиндровые двигатели, моторы с турбо- и механическим наддувом. А чемпионами по величине крутящего момента являются «дизели». Многие из них обеспечивают автомобилю высокую динамику уже при 800-1000 об/мин. Если же стать обладателем «дизеля», нет возможности, то подбирать машину лучше с двигателем, у которого максимальный крутящий момент развивается при более низких оборотах. Такой автомобиль легче разгонять. В противном случае двигатель придется «насиловать» высокими оборотами, при которых и расход топлива выше и детали изнашиваются более интенсивно.

Те, кто следит за тенденциями развития автомобилестроения, могли заметить, что создатели двигателей стремятся «выровнять» кривую крутящего момента, т.е. сделать его практически одинаковым во всем диапазоне оборотов. Делается это для того, чтобы исключить провалы на режимах, когда величина крутящего момента еще или уже не позволяет передать на колеса большую силу тяги.

Один из таких моторов – 2,7-литровый V-образный шестицилиндровый турбированный двигатель Audi. Этот 250-сильный двигатель развивает огромный крутящий момент 350 Н•м в широком диапазоне оборотов – от 1800 до 4500. Другой подобный, хотя и менее мощный двигатель предлагает концерн Volkswagen. Его 1,8-литровый 180-сильный турбированный мотор развивает крутящий момент 228 Н•м в диапазоне оборотов от 2000 до 5000. Ездить на машинах с такими двигателями сплошное удовольствие – независимо от оборотов при нажатии на педаль «газа» автомобиль одинаково динамичен (приемист) и не только позволяет любителям спортивной езды полностью реализовать свои желания, но и при спокойной езде способствует уверенным обгонам, перестроениям и движению при полной загрузке.

Повышение и «выравнивание» крутящего момента в современных двигателях обеспечивают различными путями: устанавливают по три, четыре и даже пять клапанов на цилиндр, механизмы изменений фаз газораспределения, впускные тракты делают с изменяемой длиной, крыльчатки турбин делают керамическими и регулируемыми с изменяемым углом наклона лопаток и т.д. Вся эта модернизация направлена на совершенствование процессов наполнения цилиндров свежим зарядом. Наибольшего результата в этом деле добились инженеры SAAB. В свой пока еще экспериментальный двигатель SAAB Variable Compression объемом всего 1,6 л они умудрились заложить мощность, равную 225 л.с. и крутящий момент 305 Н•м. Добиться столь высоких показателей шведским моторостроителям удалось благодаря возможности изменения объема камеры сгорания и соответственно степени сжатия (от 14:1 до 8:1) в зависимости от режимов работы двигателя. Получению этих характеристик способствует и система наддува воздуха под высоким давлением – 2,8 атм., четыре клапана на цилиндр и система промежуточного охлаждения воздуха (Intercooler) (см. «Автоцентр» №14 ‘2000).

Мощность

А как же обстоит дело с таким популярным показателем как мощность? Здесь ситуация складывается следующим образом. Наверное, многие замечали, что рядом с указываемой в характеристике мощностью всегда стоит значение оборотов коленчатого вала, при которых двигатель развивает эту мощность. Как правило, эти обороты приближены к максимальным. Во всех других режимах двигатель выдает только некоторую часть указанной мощности.

Почему так происходит, хорошо видно из формулы для вычисления мощности двигателя (кВт) – N=Mкрn/9549, где Mкр – средний крутящий момент двигателя (Н.м), n – обороты коленчатого вала двигателя (об/мин). Из формулы следует, что на значение мощности влияют величины крутящего момента и обороты двигателя. Но так как численные значения оборотов двигателя в десятки раз превышают величину крутящего момента (например, 3000 об/мин и 120 Н.м), то и на изменение мощности они будут влиять в большей степени. Это еще одно доказательство того, что силу мотора мощность отражает косвенно.

Вышесказанное подтверждается следующим примером. Когда мы едем по трассе с постоянной скоростью, приложенная к ведущим колесам автомобиля сила тяги расходуется на преодоление всевозможных сил сопротивления движению (аэродинамическую, качению колес и т.д.) и трение в различных механизмах. Но когда возникает потребность резко ускориться для обгона, сделать это удается не всегда, так как появляется необходимость преодолевать появившиеся силы инерции. В этом случае говорят, что у двигателя не хватает мощности. Но мощность здесь ни при чем, так как со всеми силами сопротивления движению борется сила тяги, зависящая от величины крутящего момента двигателя. Чтобы увеличить силу тяги, необходим запас крутящего момента. Величина этого запаса и влияет на то, как быстро сможет ускориться автомобиль.

Для получения более резкого ускорения можно, конечно, и переключиться на пониженную передачу, когда передаточное число трансмиссии станет большим и сила тяги на колесах увеличится. Однако при этом есть опасность «перекрутить» двигатель, да и дальнейшего ускорения мы можем не получить, так как режим работы двигателя может быть приближен к экстремальному. Аналогичная ситуация складывается и на подъемах, когда запас крутящего момента одних двигателей позволяет продолжить движение, а у других его отсутствие требует перехода на пониженную передачу.

Вывод отсюда напрашивается следующий: какой бы мощностью ни обладал двигатель, а способность разгонять автомобиль и «вытаскивать» его на подъем полностью возложена на крутящий момент. Возникает вполне справедливый вопрос: что же означает мощность? Это универсальный показатель, в который заложили целый ряд характеристик автомобильного двигателя – энергоемкость, потребление топлива, тяговая способность


Смотрите также