Лямбда зонд и расход топлива


Влияет ли лямбда зонд на расход топлива?

Всем привет! Слышали ли Вы, что за деталь в автомобиле называется диковинным термином лямбда зонд? А если и слышали, то можете назвать ее функциональное назначение? Поспешим устроить небольшой ликбез на эту тему, а также выясним, влияет ли лямбда зонд на расход топлива в разных марках транспортных средств. Итак, обо всем по порядку.

   Устройство лямбда зонда и составляющие

На самом деле, от работы этого небольшого датчика во многом будет зависеть исправность всей
системы питания автомобиля. Если отсоединить датчик и проверить правильность его настройки, то можно получить обширную информацию о функционировании двигателя. Как правило, выход его из строя приводит не только к увеличению потребления горючего, но и одновременно уменьшает мощность самого агрегата. Можно ли быть уверенным, что при неисправном лямбда зонде блок управления выдаст четкую ошибку? К сожалению, так происходит не всегда. Однако, если это все-таки будет зафиксировано, то компьютер назначит усредненные параметры впрыска топлива.

Итак, рассмотрим основные элементы, из которых состоит лямбда. Это:

  1. электрический нагреватель с токопроводящим контактом;
  2. электрический нагреватель;
  3. керамический наконечник;
  4. защитный щиток с отверстием для выпуска отработанных газов;
  5. металлический корпус;
  6. керамический изолятор.

При изготовлении этого датчика применяются материалы, которые способны выдерживать высокий температурный режим. Связано это с тем, что лямбда устанавливается перед катализатором в выхлопном коллекторе. Вследствие этого он постоянно контактирует с горячими выхлопными газами.

   Принципы функционирования устройства

Основным предназначением датчика является получение и преобразование информации о содержании кислорода в отработанных газах. В дальнейшем эта информация поступает в блок управления, а потому любая неисправность лямбды лишает контроллер таких сведений. На самом деле, показатель содержания кислорода постоянно изменяется, и это находит свое отражение в изменении электрического сигнала. Как только лямбда зонд зафиксировал подобные изменения, он подает соответствующую информацию. Конечно, если это изделие не оригинал, то гарантировать его полноценную и безотказную передачу данных он попросту не сможет.

После того, как данные о содержании кислорода переданы на контроллер, последний сравнивает полученные значения с теми, которые были в него заложены при настройке. Если обнаруживается несоответствие, то контроллеру приходится изменять длительность стадии впрыска. Это необходимо для того, чтобы максимизировать эффективную работу мотора, снизить вредные выбросы и, заодно, сэкономить на расходе горючего.

   Влияние на расход горючего в автомобиле

Каким образом происходит большой расход топлива? При так называемой «правильной пропорции» подготовки рабочей смеси в ней должно содержаться 1 часть воздуха на 14–15 частей топлива. При нехватке воздуха получается излишне обогащенная смесь, которая полностью не прогорает. В результате потребление горючего только возрастает. При излишке получается обедненная смесь, а это, в свою очередь, вызывает падение мощности силового агрегата.

Как только мы убедились в том, что лямбда зонд оказывает непосредственное влияние на уменьшение расхода топлива или, напротив, способен увеличить прожорливость автомобиля, разберем возможные действия. Чтобы не платить лишние деньги за бензин, опытные автолюбители рекомендуют своевременно проводить диагностирование работы датчика. Желательно оценивать его работоспособность через каждые 30 000 пройденных километров, а полную замену проводить после пробега в 100 000 км. Однако, как показывает опыт, об этом автолюбители задумываются лишь после того, как начинаются реальные проблемы.

   Последствия неисправностей

Какие бывают датчики, и чем отличается обманка от оригинального варианта исполнения? Конечно, есть смысл приобретать такое оборудование в проверенных интернет-магазинах или торговых точках. Некачественное изделие (как уже говорилось выше) вряд ли способно передавать достоверную информацию блоку управления. На сегодняшний день в продаже можно встретить лямбды зонды с подогревом или без этой функции. Оснащенные подогревом изделия отличаются более длительным сроком эксплуатации.

Одним словом, любая серьезная неисправность этого датчика приводит к следующим последствиям:

  1. повышение расхода топлива;
  2. снижение мощностных характеристик мотора;
  3. появление нагара из-за неполного прогорания топливной смеси;
  4. ускоренный износ цилиндров;
  5. перебои в работе на холостых оборотах;
  6. повышение выброса в атмосферу вредных веществ.

   Назначение второго датчика

Существуют автомобили, в которых установлен дополнительно второй лямбда зонд. В таких случаях первый из них размещен ближе к мотору, и его участие заключается в непосредственном приготовлении рабочей смеси для цилиндров. Для правильного расчета времени открытия форсунок блок управления анализирует его данные и сведения, которые дает датчик расхода воздуха.

В таких автомобилях другой датчик лямбда установлен за катализатором, и его задача состоит в том, чтобы определить чистоту полученного выхлопа. На самом деле, он не только заботится о сохранности атмосферы. Предназначение его заключается в том, чтобы распознать, не попали ли в топливо посторонние примеси, которые могут навредить двигателю. Если такое происходит, то он подает сигнал об ошибке, и на приборной панели загорается знакомый многим Check Engine. К слову обе лямбды одинаковы, но отличаются длиной провода.

Вот так, уважаемые подписчики, мы и выяснили влияние лямбды на показатели потребления горючего современного автомобиля. Не забудьте подписаться на обновления, чтобы получать самую свежую и полезную информацию. Продолжим общение в следующих публикациях!

С уважением, автор блога Андрей Кульпанов

Место для контестной рекламы


Автор:Admin

Влияет ли вторая лямбда на расход бензина

Слышали ли Вы, что за деталь в автомобиле называется диковинным термином лямбда зонд? А если и слышали, то можете назвать ее функциональное назначение? Поспешим устроить небольшой ликбез на эту тему, а также выясним, влияет ли лямбда зонд на расход топлива в разных марках транспортных средств. Итак, обо всем по порядку.

Устройство лямбда зонда и составляющие

На самом деле, от работы этого небольшого датчика во многом будет зависеть исправность всей системы питания автомобиля. Если отсоединить датчик и проверить правильность его настройки, то можно получить обширную информацию о функционировании двигателя. Как правило, выход его из строя приводит не только к увеличению потребления горючего, но и одновременно уменьшает мощность самого агрегата. Можно ли быть уверенным, что при неисправном лямбда зонде блок управления выдаст четкую ошибку? К сожалению, так происходит не всегда. Однако, если это все-таки будет зафиксировано, то компьютер назначит усредненные параметры впрыска топлива.

Итак, рассмотрим основные элементы, из которых состоит лямбда. Это:

  1. электрический нагреватель с токопроводящим контактом;
  2. электрический нагреватель;
  3. керамический наконечник;
  4. защитный щиток с отверстием для выпуска отработанных газов;
  5. металлический корпус;
  6. керамический изолятор.

При изготовлении этого датчика применяются материалы, которые способны выдерживать высокий температурный режим. Связано это с тем, что лямбда устанавливается перед катализатором в выхлопном коллекторе. Вследствие этого он постоянно контактирует с горячими выхлопными газами.

Принципы функционирования устройства

Основным предназначением датчика является получение и преобразование информации о содержании кислорода в отработанных газах. В дальнейшем эта информация поступает в блок управления, а потому любая неисправность лямбды лишает контроллер таких сведений. На самом деле, показатель содержания кислорода постоянно изменяется, и это находит свое отражение в изменении электрического сигнала. Как только лямбда зонд зафиксировал подобные изменения, он подает соответствующую информацию. Конечно, если это изделие не оригинал, то гарантировать его полноценную и безотказную передачу данных он попросту не сможет.

После того, как данные о содержании кислорода переданы на контроллер, последний сравнивает полученные значения с теми, которые были в него заложены при настройке. Если обнаруживается несоответствие, то контроллеру приходится изменять длительность стадии впрыска. Это необходимо для того, чтобы максимизировать эффективную работу мотора, снизить вредные выбросы и, заодно, сэкономить на расходе горючего.

Влияние на расход горючего в автомобиле

Каким образом происходит большой расход топлива? При так называемой «правильной пропорции» подготовки рабочей смеси в ней должно содержаться 1 часть воздуха на 14–15 частей топлива. При нехватке воздуха получается излишне обогащенная смесь, которая полностью не прогорает. В результате потребление горючего только возрастает. При излишке получается обедненная смесь, а это, в свою очередь, вызывает падение мощности силового агрегата.

Как только мы убедились в том, что лямбда зонд оказывает непосредственное влияние на уменьшение расхода топлива или, напротив, способен увеличить прожорливость автомобиля, разберем возможные действия. Чтобы не платить лишние деньги за бензин, опытные автолюбители рекомендуют своевременно проводить диагностирование работы датчика. Желательно оценивать его работоспособность через каждые 30 000 пройденных километров, а полную замену проводить после пробега в 100 000 км. Однако, как показывает опыт, об этом автолюбители задумываются лишь после того, как начинаются реальные проблемы.

Последствия неисправностей

Какие бывают датчики, и чем отличается обманка от оригинального варианта исполнения? Конечно, есть смысл приобретать такое оборудование в проверенных интернет-магазинах или торговых точках.

Некачественное изделие (как уже говорилось выше) вряд ли способно передавать достоверную информацию блоку управления. На сегодняшний день в продаже можно встретить лямбды зонды с подогревом или без этой функции. Оснащенные подогревом изделия отличаются более длительным сроком эксплуатации.

Одним словом, любая серьезная неисправность этого датчика приводит к следующим последствиям:

  1. повышение расхода топлива;
  2. снижение мощностных характеристик мотора;
  3. появление нагара из-за неполного прогорания топливной смеси;
  4. ускоренный износ цилиндров;
  5. перебои в работе на холостых оборотах;
  6. повышение выброса в атмосферу вредных веществ.

Назначение второго датчика

Существуют автомобили, в которых установлен дополнительно второй лямбда зонд. В таких случаях первый из них размещен ближе к мотору, и его участие заключается в непосредственном приготовлении рабочей смеси для цилиндров. Для правильного расчета времени открытия форсунок блок управления анализирует его данные и сведения, которые дает датчик расхода воздуха.

В таких автомобилях другой датчик лямбда установлен за катализатором, и его задача состоит в том, чтобы определить чистоту полученного выхлопа. На самом деле, он не только заботится о сохранности атмосферы. Предназначение его заключается в том, чтобы распознать, не попали ли в топливо посторонние примеси, которые могут навредить двигателю. Если такое происходит, то он подает сигнал об ошибке, и на приборной панели загорается знакомый многим Check Engine. К слову обе лямбды одинаковы, но отличаются длиной провода.

Вот так, уважаемые подписчики, мы и выяснили влияние лямбды на показатели потребления горючего современного автомобиля. Не забудьте подписаться на обновления, чтобы получать самую свежую и полезную информацию. Продолжим общение в следующих публикациях!

зонд - чтобы двигатель оставался чистым

 

Лямбда-датчик обеспечивает низкий уровень выбросов загрязняющих веществ. Если он неисправен, двигатель часто реагирует сниженной производительностью и повышенным потреблением.

Кислородный датчик, расположенный в выхлопных газах двигателя внутреннего сгорания и определяет содержание кислорода в выхлопном газе. На основании этих значений система управления двигателем регулирует топливовоздушную смесь так, чтобы каталитический нейтрализатор достигал максимально возможной эффективности очистки. По этой причине лямбда-зонд также называют контрольным зондом. Еще один лямбда-зонд в настоящее время используется во многих автомобилях: так называемый диагностический зонд. Он устанавливается за каталитическим нейтрализатором и используется для контроля значений выхлопных газов, но не влияет на управление двигателем. К сожалению, лямбда-зонд также является источником ошибок. Если лямбда-зонд неисправен, это будет заметно по увеличению расхода топлива и снижению мощности двигателя. Кроме того, поведение выхлопных газов двигателя ухудшается. Замена лямбда-зонда обычно занимает всего 30 минут. Стоимость нового зонда, включая рабочее время для установки, составляет от 70 до 450 евро.

  1. Задачи лямбда-датчика
  2. Функция лямбда-датчика
  3. Датчик скачка и широкополосный датчик
  4. Признаки неисправности
  5. Проверка лямбда-датчика
  6. Замена лямбда-датчика

Функции и задачи лямбда-датчика - чтобы двигатель оставался чистым

Лямбда-датчики изнашиваются, помимо прочего, из-за загрязнения. Неисправные датчики могут привести к явным признакам своей неисправности, таким как - потеря производительности.

Лямбда-зонд используется в бензиновых двигателях с конца 1970-х годов. Только использование датчика отработавших газов (в сочетании с неэтилированным бензином) позволило использовать регулируемый каталитический нейтрализатор. С помощью лямбда-датчика электроника двигателя рассчитывает содержание кислорода в выхлопных газах. Контроллер смеси, таким образом, может оптимально регулировать соотношение топливо-воздух для сгорания посредством продолжительности впрыска впрыскивающих клапанов. Содержание кислорода в отработавших газах должно быть по возможности нулевым, поскольку кислород предотвращает восстановление токсичных оксидов азота до азота в каталитическом нейтрализаторе. Пока что нет бензинового двигателя, который может обойтись без зонда. С начала 2000-х годов лямбда-зонд также используется в дизельных двигателях и также помогает соблюдать допустимые значения выбросов. Дизельные двигатели с лямбда-зондом (-ами) также лучше защищены от дефектов, поскольку опасные дефекты могут быть обнаружены и остановлены. Лямбда-зонд также контролирует каталитические нейтрализаторы-накопители NOX: он предоставляет данные для управления каталитическим нейтрализатором, который необходимо периодически регенерировать, чтобы сохранить эффект накопления.

Лямбда-контроль: функции лямбда-зонда

Значение лямбда (λ) обозначает соотношение топлива и воздуха. Значение лямбда, равное единице (λ = 1), является желаемым эталонным значением, также называемым стехиометрическим отношением. Потому что при таком соотношении именно то количество кислорода, которое необходимо для сжигания всего топлива. С бензином премиум-класса (октановое число 95) на кг топлива приходится 14,7 кг воздуха. Если в выхлопных газах содержание кислорода выше, смесь бедна (λ> 1). В случае избытка топлива говорят о богатой смеси (λ <1).

Блок управления стремится поддерживать топливно-воздушную смесь в идеальном соотношении. Для бензиновых двигателей это соотношение находится в так называемом «лямбда-окне» (λ = 0,97–1,03). В результате каталитический нейтрализатор достигает максимальной эффективности очистки. С другой стороны, двигатель достигает максимально возможного крутящего момента с лямбда-значением 0,85 (богатая смесь). Следовательно, значение лямбды лежит вне лямбда-окна, например, в фазах ускорения. Дизельные двигатели работают с обедненной смесью от λ = 1,3 до λ = 6. Кстати, лямбда-датчик не оказывает прямого влияния на количество топлива, которое впрыскивается в дизельный двигатель. Вместо этого лямбда-зонд воздействует на клапан рециркуляции отработавших газов в дизельном топливе, который регулирует топливную смесь посредством скорости рециркуляции отработавших газов.

Двоичные и широкополосные зонды

Лямбда-датчики можно разделить на две группы. Более современный вариант известен как так называемый широкополосный зонд.

Двоичные датчики.

Двоичные лямбда-зонды, сигнализируют о скачках между двумя значениями.

Датчики кислородные.

Существует два различных типа датчиков: датчики кислорода на основе диоксид циркония и на диоксиде титана. Оба типа имеют форму пальца и полые внутри. С зондами из диоксида циркония наружная часть зонда находится в потоке выхлопных газов, внутренняя часть находится в контакте с окружающим воздухом (эталонный газ). Между ними находится твердый электролит на основе диоксида циркония, способный проводить ионы кислорода от 300 градусов. Ионы кислорода затем мигрируют из наружного воздуха через диоксид циркония к выхлопному газу, чтобы компенсировать различные концентрации кислорода между наружным воздухом и выхлопным газом. На платиновых электродах, окружающих диоксид циркония, генерируется электрическое напряжение - выходной сигнал, который передается на блок управления. Если смесь бедна (высокое содержание кислорода в выхлопных газах, низкий поток ионов кислорода к выхлопным газам), присутствует напряжение менее 0,2 вольт. Если смесь обогащена (высокое содержание топлива в выхлопных газах, высокий поток ионов кислорода к выхлопным газам), напряжение превышает 0,8 вольт. В диапазоне идеального значения лямбды, равного единице, напряжение между ними составляет около 0,45 вольт.

Это также относится к датчику на основе диоксида титана. Но здесь есть два основных различия по сравнению с зондом из диоксида циркония: твердый электролит состоит, как следует из названия, из диоксида титана. Для этого электрическое сопротивление изменяется пропорционально содержанию кислорода в выхлопных газах. Проводимость внезапно падает внутри лямбда-окна с λ = 0,98 (жирный шрифт) и λ = 1,02 (наклонный). Таким образом, информация о рабочем состоянии двигателя обеспечивается соответствующим измеренным сопротивлением. В отличие от зонда диоксида циркония, сам зонд диоксида титана не генерирует никакого напряжения. И нет необходимости в окружающем воздухе как эталонного газа для определения содержания кислорода в выхлопных газах. Это делает зонд из диоксида титана более компактным. Однако датчик должен быть нагрет для быстрого достижения рабочей температуры 700 градусов. Сегодня этот тип зонда больше не используется в серийном производстве.

Широкополосные

Широкополосные зонды определяют состав смеси гораздо более дифференцированным образом, чем прыгающие зонды. Это означает, что они отвечают требованиям современных бензиновых и дизельных двигателей, которые требуют точного контроля соотношения воздух / топливо даже за пределами лямбда-окна. Прямые бензиновые инжекторы преднамеренно работают на обедненной основе (λ> 1), чтобы снизить потребление в диапазоне частичной нагрузки. А в случае дизелей регулярный процесс требует богатой смеси (λ <1). Широкополосные датчики могут определять значения лямбда от 0,6 (очень богатые), диапазон измерения расширяется до бесконечности.

Конструкция такого зонда более сложна. Он состоит из двух ячеек, измерительной ячейки и ячейки насоса. Содержание кислорода в отработавших газах определяется в измерительной ячейке. Если это значение отклоняется от своего эталонного, ионы кислорода закачиваются в измерительную ячейку через ячейку насоса. Ток накачки, необходимый для этого, является переменной измерения, которая определяет точное значение лямбда смеси.

Лямбда-датчик неисправен: признаки

Широкополосные пробники охватывают гораздо большие измерительные диапазоны, чем двоичные пробники.

В случае дефектов в лямбда-зонде следует различать контрольный зонд, который расположен перед каталитическим нейтрализатором, и диагностический зонд, который устанавливается после каталитического нейтрализатора. Последний только контролирует функцию катализатора и не показывает никаких прямых симптомов в случае дефекта. С другой стороны, лямбда-датчик перед каталитическим нейтрализатором оказывает непосредственное влияние на управление двигателем. Если этот лямбда-зонд неисправен, он больше не передает правильные измеренные значения в блок управления. В результате получается либо слишком много, либо слишком мало кислорода в выхлопных газах (слишком богатый или слишком бедный). Однако эти признаки также могут указывать на другие источники ошибок в двигателе. В некоторых двигателях программа аварийной работы активируется, если лямбда-зонд неисправен или сильно загрязнен. Это должно защитить двигатель и окружающую среду одновременно. Загорается контрольная лампа двигателя , соответствующее сообщение затем сохраняется в памяти ошибок бортовой диагностики.

Следующие признаки указывают на возможный дефект лямбда-датчика:

  • снижение мощности двигателя
  • слабая тяга при ускорении
  • мотор дрожит, пропуски зажигания
  • высокий расход топлива
  • высокие выбросы выхлопных газов

Причины неисправности лямбда-датчика

Лямбда-зонд также можно заменить самостоятельно. Важно использовать высокотемпературную пасту.

Лямбда-датчик является изнашиваемой деталью. С увеличением пробега может случиться так, что все более неточные значения отправляются в систему управления двигателем. Если расход топлива заметно выше, а пробег большой, следует учитывать неисправный или, по крайней мере, загрязненный лямбда-зонд. Однако лямбда-зонд также может выйти из строя и раньше. Частые поездки на короткие расстояния могут привести к ускоренному химическому старению электродов. Дефектный лямбда-зонд также может быть индикатором более серьезного повреждения двигателя, например, если зонд был поврежден сгоревшим моторным маслом. Разрыв кабельных соединений или плохое заземление также указывают на неисправность. Механическое повреждение также может произойти. Также может серьезно ухудшить работу засорение из-за остатков нефти, например, в случае неисправных поршневых колец. Неправильный воздухозаборник из-за поврежденных уплотнений также может привести к выходу датчика из строя. Если лямбда-зонд берет эталонный кислород из окружающего воздуха, следует позаботиться о том, чтобы штекерные соединения были чистыми. Воздушные камеры в зонде всасывают окружающий воздух через жилы соединительного кабеля. Неправильный воздухозаборник из-за поврежденных уплотнений также может привести к выходу датчика из строя.

Проверьте лямбда-датчик

Считывание памяти неисправностей является первым вариантом диагностики неисправности лямбда-зонда. Однако не следует делать поспешных выводов, если лямбда-датчик появляется в памяти неисправностей. Если диагностическое устройство пишет, например, «Сигнал лямбда-зонда неисправен», вполне может быть так, что встроенная диагностика перегружена интерпретацией значений. Например, если двигатель всасывает неправильный воздух после расходомера воздуха, например, через негерметичный впускной коллектор. Тогда слишком скудная смесь не имеет смысла для электроники двигателя, результатом чего является неправильная интерпретация неисправности. То же самое будет, если инжектор неисправен. Если клапан больше не закрывается правильно, в камеру сгорания поступит больше топлива, чем требуется, и смесь станет слишком богатой. В этом случае или если чтение из памяти ошибок не дает результата, но симптомы указывают на дефект в лямбда-зонде, мастер должен провести дальнейшие измерения - например, с помощью мультиметра, осциллографа или с помощью тестера лямбда-зонда.

Посмотрев на зонды, механик также может увидеть, где находится дефект. Подобно свечам зажигания, лямбда-зонды имеют определенные профили износа, которые указывают на различные причины дефектов. Например, очень закопченная защитная трубка указывает на то, что смесь слишком густая. В этом случае зонд должен быть заменен, и причина слишком богатой смеси должна быть устранена. Неправильная установка может также повредить лямбда-датчик до такой степени, что надлежащее функционирование больше не гарантируется. Например, непрофессионал может игнорировать предписанное использование специальных инструментов или указанные моменты затяжки и, таким образом, способствовать дефекту в новой детали.

Поменять лямбда зонд

К счастью, лямбда-датчик, как правило, очень легко поменять, поэтому требуются относительно низкие затраты. Однако анализ может занять время. При хорошем доступе к лямбда-зонду замена обычно занимает менее 30 минут. Однако перед началом работы выхлопная система должна немного остыть. Рекомендуется отвинчивать лямбда-зонд, когда он теплый. Новый должен быть прикручен в холодном состоянии. Если вы хотите выполнить работу самостоятельно, при ее снятии следует надевать термостойкие перчатки. Высокотемпературная паста также наносится на резьбу перед установкой. Паста предотвращает горение и заклинивание, облегчая расшатывание в будущем и делая зонд многоразовым. Если машина старше, может случиться так, что лямбда-зонд сгорел в выхлопе и резьба повреждена. Тогда замена будет более сложной.

Сколько стоит замена лямбда-зонда

Цены на новый лямбда-зонд (как контрольный, так и диагностический) варьируются от 30 до 170 евро. Кроме того, существуют расходы на диагностику повреждений и рабочее время. Вся замена обычно занимает от 30 минут до двух часов. За это с клиента будет взиматься от 40 до 250 евро на все про все.

Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода

О том, что такое лямбда зонд и для чего он нужен, к сожалению, знают далеко не все автовладельцы. Лямбда зонд — это кислородный датчик, который позволяет электронной системе контролировать и балансировать правильное соотношение воздуха и бензина в камерах сгорания. Он способен своевременно исправить структуру топливной смеси и предупредить дестабилизацию рабочего процесса двигателя.

Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.

Принцип действия лямбда зонда

Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.

При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В  принципе, иное расположение не влияет на рабочую производительность данного прибора.

Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.

Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.

С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.

Основные признаки неисправности лямбда зонда

Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.

Причиной выхода из рабочего состояния лямбда зонда может быть следующее:

  • разгерметизация корпуса;
  • проникновение внешнего воздуха и выхлопных газов;
  • перегрев датчика вследствие некачественной покраски двигателя или неправильной работы системы зажигания;
  • моральный износ;
  • неправильное или прерывающееся электропитание, которое ведет к основному блоку управления;
  • механическое повреждение в следствие некорректной эксплуатации автомобиля.

Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.

Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.

Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.

На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.

В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.

Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.

Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.

Как определить неисправность лямбда зонда рассказывается на видео:

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы

На чтение 5 мин. Просмотров 2.9k. Опубликовано

Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).

Где находится датчик кислорода

Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.

Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.

На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.

ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.

Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.

Как работает датчик кислорода

Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.

Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.

Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.

Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).

Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Задний датчик кислорода

Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.


Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.

Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

Замена датчика кислорода

Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.

В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).

Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.

Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.

Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.

Замена лямбда зонда, первый и второй лямбды датчики

Главная » Электрика » Замена лямбда зонда, первый и второй лямбды датчики

просмотров 2 119

Первый из пары датчиков лямбда зондов, называемая регулирующей, помещается в выхлопную систему между двигателем и катализатором, а вторая лямбда, так называемая диагностика, должны быть размещены сразу же после выхода катализатора. Неисправности этих датчиков сигнализируют первоначально контрольной лампой (MIL) (check engine) на приборной панели, и для их точной идентификации позволяет диагностировать главный контроллер, изготовленный с использованием соответствующего тестера. В ходе этого сначала выявляются соответствующие записи в памяти ошибок, а затем их точная интерпретация становится возможной на основе стандартных тестов и измерений реальных параметров.

Критерии для правильной работы лямбда зонда

Условием эффективной оптимизации состава выхлопных газов с помощью катализаторов, установленных в автомобилях, является сжигание в цилиндрах двигателей, так называемых стехиометрических смесей, в которых 14,7 одинаковых единиц воздуха на 1 единицу массы топлива.

Его выполнение очень сложно из-за необходимости постоянной регулировки введенных доз топлива до текущей нагрузки двигателя, его температуры, скорости вращения и т. д. Поэтому, помимо использования датчиков, измеряющих эти количества, возникла необходимость ввести систему постоянного контроля фактического состава выработанных выхлопных газов

Это то, что использует лямбда-зонд, также известный как кислородный датчик, потому что он реагирует непосредственно на изменение содержания кислорода в выхлопных газах. Его увеличение свидетельствует о сжигании слишком плохой топливно-воздушной смеси, уменьшение — при чрезмерном обогащении композиции. Согласно этой информации, полученной зондом, контроллер увеличивает или уменьшает размер введенной дозы топлива.

Видео, что такое лямбда зонд

 

Дополнительные требования для правильной работы лямбды

Лямбда-датчики работают правильно только после достижения достаточно высокой рабочей температуры. Чем короче время прогрева, тем быстрее они становятся активными в выполнении своих функций. Ранее блок управления двигателем игнорирует свои сигналы, что всегда приводит к увеличению расхода топлива и ухудшению состава выхлопных газов. Зонд должен как можно скорее реагировать на изменения состава испускаемого дымового газа, поскольку любая задержка в реакции означает неблагоприятную задержку в коррекции пропорций топливовоздушной смеси с помощью модуля управления двигателем.

Причины неисправности лямбда зонда

Лямбда-датчики, изготовленные в соответствии со стандартами оригинальных деталей, обычно не портятся в течение всего срока службы транспортного средства без участия внешних причин. К ним относятся: механические воздействия, вызывающие физический ущерб, например, растрескивание керамического сердечника или прерывание кабельных соединений; загрязнение сенсора из-за твердых частиц паров, осаждающихся на него, что заставляет реакцию зонда замедляться до изменений состава выхлопных газов и, следовательно, нарушения электронного модуля управления двигателем; Увлажнение и коррозия электрических соединителей, которые изменяют значения сигналов, излучаемых зондом.

Выбор лямбда зонда

  • Неисправные лямбда-зонды не подвергаются никакому ремонту, поэтому в случае неисправностей возникает необходимость их замены.
  • Опыт показывает, чтобы выбрать зап-часть проверенного бренда, отвечающего требованиям качества, чем дешевая замена.
  • Надлежащая и надежная работа датчика зависит от качества материалов, используемых для его изготовления, хорошо спроектированной конструкции, точной обработки и точной сборки (лазерной сварки) компонентов. Здесь применяются очень строгие требования, так как весь датчик подвергается очень неблагоприятным условиям, существующим внутри выхлопной системы, и, следовательно, к значительным разностям температур, сильным вибрациям, влажности и химически активным веществам.
  • Использование более дешевых деталей может обеспечить только очевидную экономию, так как обычно ускоряет период замены. Кроме того, дешевые замены часто предлагаются как «универсальные», то есть без оригинальных разъемов на концах проводов.
  • Ручное изготовление повышает риск соединений с плохой проводимостью или даже совершенно неправильными, что может привести к серьезным и дорогостоящим отказам других компонентов электронной системы управления двигателем.

Установка нового датчика лямбда зонда в автомобиль

После установки правильной запасной части убедитесь, что ее связь с контроллером двигателя микропроцессора верна. Для этой цели он тестирует, запускает и настраивает различные циклы вождения, пока контроллер не распознает от 3 до 5 типичных циклов, предопределенных производителем автомобилей. Если это условие не выполняется, индикатор предупреждения MIL отключится после следующего запуска двигателя. После этой первоначальной конфигурации бортовой диагностической системы начинается надлежащее функционирование самого лямбда-зонда. Если процедуры установки не соблюдаются или несовместимый кислородный датчик, проблемы, характерные для поврежденного зонда, снова появятся, так как на самом не будет работать оптимально, что отрицательно скажется на расходе топлива и выбросах.

Замены с качеством оригинальных деталей Лямбда-зонды, разработанные для вторичного рынка, производятся в соответствии со стандартами OE, благодаря которым они идеально подходят к автомобилю. Это проверяется в нескольких тестах во время производственного процесса, так что каждый продукт соответствует 100% требований к спецификации. Кроме того, зонды покрыты специальными покрытиями для предотвращения образования сажи и других загрязнителей. Программа лямбда-зонд для вторичного рынка включает 356 частей с 3558 возможными приложениями.

Проголосуйте, понравилась ли вам статья? Загрузка...

лямбда-зондов. Широкополосный | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130

Для проверки выхлопных газов используются кислородные датчики. Давным-давно появились циркониевые узкополосные лямбда-зонды (вначале - без подогрева, затем - с дополнительным подогревом, что позволяет быстрее готовить датчики, а также обеспечивает более точные данные), начиная с двигателя BMW N серии, их заменяют на циркониевые широкополосные (для регулирования топливной смеси) датчики.

В отличие от узкополосных датчиков, линейный диапазон которых равен 0.99 .. 1.01, широкополосные датчики могут измерять коэффициент от 0,65 до состава атмосферного воздуха.

Основы работы широкополосных циркониевых зондов вы можете найти в Интернете, в этом посте я уделю больше внимания некоторым конкретным нюансам.

Первое поколение пробников Bosch, известных под названием LSU 4.2, отличалось необходимостью их повторной калибровки, поскольку в качестве эталонного источника тока использовался атмосферный воздух. С следующего поколения - СМЛ 4.9 - эта проблема была решена: полупроводниковый переход используется в качестве источника тока опорного.

LSU 4.2

LSU 4.9

Основная техническая информация:

Bosch LSU4.2 против LSU4.9

LSU 4.9 обеспечивает более точные измерения лямбда: справочные данные определены в 30 точках в таблице лямбда / Ipump (LSU 4.2 определил только 10 точек).

Вместе с датчиками Bosch OEM предлагал также наборы микросхем управления для датчиков: CJ110, CJ120, CJ125. CJ110 и CJ120 были предназначены для работы с LSU 4.2 зонда, CJ125 - также с датчиком кислорода типа LSU 4.9.

В отличие от CJ110, CJ120 включает также динамический контроль сопротивления ячейки Нернста, который использовался для контроля температуры кислородного датчика. Оптимальное сопротивление ячейки Нернста для LSU 4.2, измеренное на частоте 1..4 кГц: 80 Ом.

CJ125 дополнен некоторыми специфическими нюансами по работе с кислородным датчиком LSU 4.9. Динамическое сопротивление ячейки Нернста для LSU 4.9: 300 Ом (при достижении оптимальной рабочей температуры).

CJ125 лист данных

Позже чипсет CJ125 был заменен на контроллер CJ135 со встроенным АЦП, кислородный датчик LSU 4.9 был заменен на LSU 5.2.

Общими недостатками для CJ110, CJ120, CJ125 были повышенное потребление энергии (которое было выше 30 мА / 150 мВт, и чипсет был вынужден работать в жестких тепловых условиях), большое напряжение смещения для усилителя измерения тока ячейки накачки (CJ110, CJ120, CJ125 ): даже до +/- 10 мВ, хотя для точных измерений необходимо напряжение смещения не более нескольких сотен мкВ.Такая же нехватка актуальна и для модуля измерения температуры, используемого в CJ120, CJ125. Для решения этих проблем все упомянутые ранее наборы микросхем используют процесс прерывания для компенсации напряжения смещения и сравнения измеренных значений с эталонными. К сожалению, ключи MOSFET, используемые для прерывателей (коммутации), имеют повышенный ток утечки, что очень сильно влияет на точность измерения, а также увеличивает количество паразитных помех. Функциональное управление для CJ120 и CJ125 предусмотрено через последовательный интерфейс SPI, управление нагревом - внешнее.

В двигателях

N52, N53 и аналогичных используются широкополосные кислородные датчики типа LSU 4.2 для контроля топливной смеси. Для калибровки контрольной точки (лямбда = 1,00) используются узкополосные кислородные датчики. Этот нюанс необходимо учитывать, когда один из банков показывает сбалансированное (интегратор топливной коррекции стабильный и находится в надлежащем диапазоне значений) значение лямбда, отличное от 1,00.

Технические параметры, общие для CJ110, CJ120 и CJ125:

Напряжение ячейки Нернста: 450 мВ

опорное напряжение, Ipump: 1.500 В

Сопротивление шунтирующего резистора Ipump: 62 Ом

Коэффициент усилителя Ipump: 8/17 (богатый / обедненный режим)

Примечание: двигатели серии N имеют напряжения опорного значения: 2,00 В (напряжение штифта Нернста ячейки, как представляется, сообщается) и различный коэффициент усилителя из наборов микросхем управления серии CJ.

PS: Используя контроллеры управления датчиками CJ120, CJ125, имейте в виду, что Bosch предлагает (не юридически) несколько версий контроллеров, которые имеют некоторые отличия в управлении SPI (регистры управления SPI и необходимые данные НЕ СООТВЕТСТВУЮТ таблице данных), это означает , что, например, когда вам нужно заменить контроллер, вы можете столкнуться с некоторыми неопределенными проблемами, которые приведут к ухудшению измерений лямбда - решения с прерыванием не будут работать и т. д.

Связанные записи:

Управление лямбда-зондами

N52 диагностика двигателя

STFT и LTFT

.

Старение лямбда-зонда | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130

Если лямбда-зонд поврежден или забит настолько, что его сигнал неверен - скорее всего, будут записаны сообщения об ошибке, касающиеся этой проблемы.

В этой записи - об одном симптоме, который позволяет заметить старение лямбда-зондов до того, как будет записано какое-либо сообщение об ошибке.
Что указывает на старение лямбда-зонда? Увеличил ШИМ своего нагрева!

Вот пример:

и сопротивление Нернсту (химическая эффективность) зонда:

Как мы видим, сопротивление Нернста правильное (правильные значения: 0/256 Ом), но ШИМ нагрева датчика, чтобы достичь этого значения Нернста на 20% (как минимум) выше, чем для второго контрольного датчика.

На что указывает такая повышенная ШИМ? Очевидно, зонд с правильной ШИМ не может достичь необходимой химической эффективности, поэтому ДМЭ увеличил свой нагрев. Страшная новость - лямбда-зонд не выдержит такой термической перегрузки. Поэтому рекомендуется вовремя приобрести новый лямбда-зонд и подготовиться к его замене.

Примечание: DME измеряет сопротивление Нернсту (химическую эффективность) каждого зонда примерно раз в секунду. Через источник I (ток) сигнал выходного сигнала подключается к напряжению +5.0 В, и измеряется изменение U (напряжения). Оптимальные значения сопротивления Нернста: 80 .. 300 Ом (согласно Паспорту датчиков). Шаг значений, отображаемых INPA, составляет 256 Ом. Соответственно правильные значения меню INPA: 0/256 Ом (разрешено 512 Ом на короткое время). ШИМ обогрева управляется согласно карте управления (с учетом смоделированной температуры выхлопных газов и скорости / давления выхлопных газов), которая дополняется адаптацией Offset, учитывающей различия измеренного сопротивления Нернстса от идеального значения.

.

Контроль расхода топлива

Преимущества внедрения мониторинга расхода топлива

Контроль расхода топлива позволяет исключить хищения топлива в автопарке и тем самым помогает снизить общие расходы на топливо и затраты на парк.

Решена еще одна важная задача - контроль наработки двигателя. Это помогает менеджеру автопарка исключить ненадлежащее использование или чрезмерные простои техники.

Учет рабочего времени двигателя также помогает перейти на систему оплаты труда водителей и операторов оборудования.Это означает, что водителям платят за фактическое рабочее время и за достигнутый показатель экономии топлива.

Система контроля расхода топлива позволяет владельцу техники пересчитывать квоты расхода топлива для каждой единицы техники.
Наш опыт показывает, что автопарки, в которых используются менее распространенные тракторы или специальные автомобили, имеют лишь общее представление о реальном потреблении дизельного топлива. Нормы потребления (квоты), утвержденные государственными органами или внутренней документацией компании, также неточны, потому что они не включают влияние условий работы техники.

Таким образом, внедрение системы контроля расхода топлива дает владельцу автопарка разнонаправленный экономический эффект:

  • Увеличение парка техники
  • Более высокая экономия топлива и экономия топлива и смазочных материалов
  • Внедрение системы оплаты труда за фактически выполненный труд
  • Увеличение срока службы техники, снижение затрат на ремонт и обслуживание
.

2 Основы расхода топлива | Оценка технологий экономии топлива для легковых автомобилей

ТАБЛИЦА 2.3 Средние характеристики легковых автомобилей для четырех модельных лет

1975

1987

1998

2008

Скорректированная экономия топлива (миль на галлон)

13.1

22

20,1

20,8

Масса

4 060

3,220

3,744

4,117

Мощность

137

118

171

222

Время разгона от 0 до 60 (сек)

14.1

13,1

10,9

9,6

Мощность / масса (л.с. / т)

67,5

73,3

91,3

107.9

ИСТОЧНИК: EPA (2008).

Эти предположения очень важны. Очевидно, что уменьшение габаритов автомобиля приведет к снижению расхода топлива. Кроме того, уменьшение способности автомобиля к ускорению позволяет использовать двигатель меньшей мощности с меньшей мощностью, который работает с максимальной эффективностью. Это не варианты, которые будут рассматриваться.

Как показано в Таблице 2.3, за последние 20 лет или около того, чистым результатом улучшений в двигателях и топливе стало увеличение массы транспортного средства и его способность к ускорению, в то время как экономия топлива оставалась постоянной (EPA, 2008).Предположительно, этот компромисс между массой, ускорением и расходом топлива был обусловлен потребительским спросом. Увеличение массы напрямую связано с увеличением габаритов, переходом от легковых автомобилей к грузовым, добавлением средств безопасности, таких как подушки безопасности, и увеличением количества аксессуаров. Обратите внимание, что хотя стандарты CAFE для легких легковых автомобилей с 1990 года составляли 27,5 миль на галлон, средний парк остается намного ниже в течение 2008 года из-за более низких стандартов CAFE для легких пикапов, внедорожников и пассажирских фургонов. .

СИЛА ТЯГИ И ЭНЕРГИЯ ТЯГИ

Механическая работа, производимая силовой установкой, используется для приведения в движение транспортного средства и привода вспомогательного оборудования. Как обсуждали Sovran и Blaser (2006), концепции силы тяги и энергии тяги полезны для понимания роли массы транспортного средства, сопротивления качению и аэродинамического сопротивления. Эти концепции также помогают оценить эффективность рекуперативного торможения в снижении требуемой энергии электростанции.Анализ сосредоточен на графиках испытаний и не учитывает влияние ветра и восхождения на холмы. Мгновенное тяговое усилие ( F TR ), необходимое для приведения в движение транспортного средства, составляет

.

(2,1)

, где R - сопротивление качению, D - аэродинамическое сопротивление, C D - коэффициент аэродинамического сопротивления, M - масса автомобиля, V - скорость, dV / dt - это скорость изменения скорости (т.е.е., ускорение или замедление), A - фронтальная зона, r o - коэффициент сопротивления качению шины, g - гравитационная постоянная, I w - полярный момент инерции четырех узлов вращения шины / колеса / оси, r w - его эффективный радиус качения, а ρ - плотность воздуха. Эта форма тягового усилия рассчитывается на колесах транспортного средства и, следовательно, не учитывает компоненты внутри системы транспортного средства, такие как силовая передача (т.е.е., инерция вращения компонентов двигателя и внутреннее трение).

Тяговая энергия, необходимая для прохождения нарастающего расстояния dS , составляет F TR Vdt , и ее интегральная часть по всем частям графика движения, в котором F TR > 0 (т. Е. , движение с постоянной скоростью и ускорения) - общая потребность в тяговой энергии, E TR . Для каждого графика движения EPA Sovran и Blaser (2006) рассчитали тяговую энергию для большого количества транспортных средств, охватывающих широкий диапазон наборов параметров ( r 0 , C D , A , M ), представляющие спектр современных автомобилей.Затем они аппроксимировали данные линейным уравнением следующего вида:

(2,2)

, где S - это общее расстояние, пройденное по графику движения, а α , β и γ - конкретные, но разные константы для расписаний UDDS и HWFET. Sovran и Blaser (2006) также определили, что комбинация пяти схем UDDS и трех HWFET очень точно воспроизводит комбинированный расход топлива EPA, равный 55 процентам UDDS плюс 45 процентов HWFET, и предоставили его значения α , β и γ .

Тот же подход использовался для тех частей графика движения, в которых F TR <0 (то есть замедления), где силовая установка не требуется для обеспечения энергией для движения. В этом случае сопротивление качению и аэродинамическое сопротивление замедляют движение транспортного средства, но их влияние недостаточно, чтобы следовать за замедлением цикла движения, и поэтому требуется некоторая форма торможения колес. Когда транспортное средство достигает конца расписания и становится неподвижным, вся кинетическая энергия его массы, которая была получена, когда F TR > 0, должна быть удалена.Следовательно, уменьшение кинетической энергии, производимой при торможении колес, составляет

.

(2,3)

Коэффициенты α ' и β' также специфичны для графика испытаний и приведены в справочнике. Представляют интерес два наблюдения: (1) γ одинаково как для движения, так и для торможения, поскольку относится к кинетической энергии транспортного средства; (2) поскольку энергия, используемая для сопротивления качению, составляет r 0 M g S , сумма α и α ' равна g .

Sovran и Blaser (2006) рассмотрели 2500 автомобилей из базы данных EPA за 2004 год и обнаружили, что их уравнения соответствуют энергии тяги для графиков UDDS и HWFET с r = 0,999, а энергии торможения - с

. .

Расчеты расхода мазута на судах: что должны знать моряки

Расчет расхода мазута и ведение учета на борту судна - одна из наиболее важных задач, за которые отвечает главный инженер.

Мазут предоставляется фрахтователями судна, и главный инженер должен отчитываться перед ними каждый день с отчетом о расходе мазута, остатке на борту и потребностях в следующем рейсе.

Примененный метод измерения для корабля кратко описан в этой статье.Описание объясняет процедуру измерения данных и расчета годовых значений, используемое измерительное оборудование и т. Д.

Измерение и учет расхода мазута

Если расходомер установлен на трубопроводе, подающем топливо к источнику выбросов (главный двигатель, дизель-генератор, вспомогательный котел и т. Д.), Показания расходомера являются основным средством определения расхода топлива.

Показания расходомера и температуры топлива должны регистрироваться ежедневно в 12 часов (полдень) среднего времени судна, а также во время прибытия (как указано в отчете о прибытии) и отбытия (как указано в отчете о прибытии) в электронная таблица Excel, содержащая все правильные формулы расчета.

Кредит: Wikimedia / Mtaylor848

Формула (Скорректированная плотность = Плотность при 150C X [1 - {(Температура топлива (0C) - 150C) X 0,00065}]) должна использоваться для получения скорректированной плотности при зарегистрированной температуре топлива. Для этого в таблице Excel предоставлена ​​таблица расчетов.

Связанное чтение: 3 Важные расчеты, которые должен знать каждый морской инженер на судах

В дополнение к отчетам о расходе топлива каждый полдень, а также по прибытии и отбытии судна, также необходимо записывать показания расходомера при следующих событиях:

• В конце морского перехода
• В начале морского перехода и
• После завершения каждой операции по замене топлива

Связанное чтение: Процедура замены топлива для судового главного и вспомогательного двигателей

Топливо, перелившееся из сливного бака или сливного бака мазута обратно в топливный / отстойный бак, должно быть отмечено в отчетах о местонахождении, прибытии и отправлении.Эта сумма будет автоматически вычтена из путевого расхода топлива.

Для источников выбросов, которые не оснащены расходомерами или когда расходомеры не работают, необходимо проводить мониторинг бункерного топливного бака на борту.

В этом методе показания всех топливных баков, относящихся к источнику выбросов, с использованием данных зондирования / незаполненного объема или показаний указателя уровня должны быть записаны в журнале зондирования машинного отделения. Расходы должны регистрироваться в таблице Excel.

Кроме того, количество топлива во всех топливных баках на борту судна должно определяться периодически, по крайней мере, в соответствии со следующим графиком.

Количества могут быть определены с использованием стационарной измерительной системы, если таковая имеется, или путем ручного зондирования:

• При каждом заходе судна к причалу и при каждом отходе от причала. (Это может отличаться в зависимости от политики компании)
• Предварительная бункеровка / разгрузка
• После бункеровки / разборки
• Минимум один раз в семь дней

Прочтите по теме: 20 пунктов, которые инженеры на борту корабля должны учитывать при планировании дальнего плавания

Отчеты о местонахождении, прибытии и отправлении

Отчеты о местонахождении, прибытии и отправлении в инфраструктуре отчетности компании для судов являются основным средством представления данных, связанных с MRV, включая потребление топлива, работу транспорта и другие данные, связанные с рейсом.

Отчет о местонахождении должен подаваться каждый день в 12.00. (полдень) время судна, когда судно находится в море или в порту.
Между двумя отчетами о местонахождении или между отчетом о местоположении и отчетом о прибытии, или между отчетом об отправлении и следующим отчетом о местоположении, или между отчетами об отправлении и прибытии не должно быть промежутка более 24 часов (среднее время судна).

Как правило, если перерыв составляет более 24 часов, пользователь не сможет отправить отчет и должен будет отправить недостающий отчет (с перерывом не более 24 часов.) первый.

Отчет о прибытии должен быть представлен для первого прибытия в порт. «Первое прибытие в порт» означает, что судно впервые (для определенного порта / места) находится:

- Все пришвартованы к причалу / буйным швартовкам / SBM (при швартовке напрямую, без якорной стоянки), или
- Стоят на якоре (т.е. «поставлены на якорь») в пределах порта, или
- Стоят на якоре (т.е. «поставлены на якорь») ) за пределами порта, или
- Стоянка на якоре в районе облегчения, или
- Все швартовка к более легкому судну (при швартовке непосредственно к более легкому судну, без якорной стоянки), или
- Прибытие в район облегчения (если дрейфует, без постановки на якорь, в ожидании лихорадки)

Отчет об отбытии должен быть представлен для окончательного отбытия из порта.«Конечная отправка из порта» означает отход от последней:

.

- Причал / швартовка буя / SBM (все ярусы отстранены), или
- Якорная стоянка в пределах порта (якорная нагрузка), или
- Якорная стоянка за пределами порта (якорная платформа в прибрежной зоне), или
- Место лихорадки (все шнуры, снятые с лихтера / якорного груза)

Прочтите по теме: 7 важных моментов для безопасного зажигания на судах

За отчетом о прибытии в конкретный порт или прибрежное местоположение должен следовать отчет об отправлении из того же порта или прибрежного местоположения.Невозможно отправить отчет об отправлении, если название порта или оффшорного местоположения отличается от названия в отчете о прибытии.

В дополнение к отчетам о местонахождении, прибытии и отправлении должны быть заполнены другие соответствующие периодические отчеты, включая полуденные отчеты, ежемесячные отчеты и квартальные отчеты в соответствии с форматами в инфраструктуре отчетности компании для судов.

Определение бункерного топлива и топлива в цистернах

Количество заправленного топлива, как указано в накладной на поставку бункерного топлива (BDN), должно проверяться путем замера всех топливных баков на борту до и после завершения бункеровки, применения соответствующего поправочного коэффициента к плотности для температуры и получения количества в метрических тоннах до и после бункеровки.Количество бункерованного топлива на судне - это разница между количеством топлива до и после бункеровки.

Судовая цифра считается официальным количеством бункерованного топлива и является количеством, указанным судовым персоналом в отчете об отправлении

Письменные отчеты, показывающие промеры до и после всех топливных баков, а также детали расчетов, показывающие количество судна в метрических тоннах заправленного бункером, должны храниться на борту.

Температура топлива в баках должна быть получена с помощью датчиков температуры в баках, если они есть, или с помощью переносных устройств для измерения температуры, если они есть.Если датчики не предусмотрены, температура топлива в баках может быть определена путем измерения температуры сторон баков с помощью инфракрасного термометра или оценена путем взятия средневзвешенного значения наилучшей оценки температуры топлива в баках перед заправкой. и топлива, хранящегося в каждом баке.

Плотность заправленного топлива следует получить из BDN.

Плотность смешанного топлива в баках получается путем расчета средневзвешенной плотности топлива, оставшегося в баках до заправки, и топлива, заправленного в каждый бак.

Прочтите по теме: Процедура бункеровки на судне

Плотность топлива следует скорректировать с использованием соответствующего температурного поправочного коэффициента, полученного из таблицы 54B ASTM Petroleum или эквивалентного программного обеспечения, включающего эти таблицы, или формулы: Скорректированная плотность = Плотность (в воздухе) при 150 ° C X [1- {(T0C - 150C) X 0,00065}] , где T0C - температура топлива в градусах Цельсия.

В случае бункеровки с баржи, все танки на барже должны быть проверены до и после бункеровки ответственным офицером.Резервуары баржи также необходимо проверить на наличие свободной воды. Должна быть сделана письменная запись о результатах этих зондирований и проверок бесплатной воды.

Главный инженер отвечает за проверку количества топлива в бункерах.

Количество топлива (в тоннах) во всех бункерных цистернах должно быть повторно проверено через 24 часа после завершения бункеровки или непосредственно перед началом использования только что заправленного топлива (если оно должно быть использовано в течение 24 часов после бункеровки) для учета возможное оседание топлива из-за нагнетания воздуха при бункеровке.

Читать по теме: Злоупотребления в бункеровочных операциях Моряки должны знать

Перед поступлением в ECA необходимо начать переход на мазут с низким содержанием серы. Время запуска зависит от того, какой объем топлива используется в системе, вы рассчитываете, сколько времени потребуется для полного перехода системы на топливо с низким содержанием серы. Соответственно, должны быть сделаны записи в журнале, регистрирующие объем топлива с низким содержанием серы в баках, дату, время и местонахождение судна, когда была завершена замена жидкого топлива.Требуется, чтобы процедуры переключения были доступны в надлежащем письменном формате.

Измерение и регистрация пройденного расстояния

Пройденные расстояния должны быть измерены над землей между отправлением и прибытием и должны быть указаны в отчетах о местоположении и прибытии. Расстояния, пройденные по земле, могут быть взяты из ECDIS или GPS, или путем ручного измерения на карте. Пройденные расстояния по воде также должны указываться в отчетах о местоположении и прибытии и должны быть взяты из журнала скорости (воды).

Расстояния, которые могут быть пройдены между отчетами о прибытии и отправлении (например, во время транзита от якорной стоянки до причала или при переключении между терминалами в порту), не требуется сообщать в отчетах о рейсе, но должно быть отмечено в журнале учета палубы.

Связанное чтение: Почему морские мили и узлы используются в море?

Метод измерения рабочего времени в пути

«Часы в пути» от последней причала в порту отправления до первой причала в порту прибытия рассчитываются на основе времени отправления и прибытия (GMT) и дат (GMT), указанных в отчетах об отправлении и прибытии.

Время и даты должны быть записаны как в GMT, так и в SMT. Время, проведенное между первой пристанью в порту прибытия и последней причалами в порту отправления, считается временем, проведенным в порту. Сюда входят периоды пребывания у причала, стоянки на якоре и периоды маневрирования в порту.

Расходомеры топлива, устройства для измерения стационарных резервуаров и устройства / датчики температуры должны проверяться и откалиброваться на точность с интервалами, рекомендованными производителем / как указано в PMS.Сертификаты калибровки должны выдаваться после этих проверок и храниться на борту.

Действительность сертификатов калибровки будет проверяться во время ежегодного внутреннего аудита.

Коэффициент выбросов

CF - это безразмерный коэффициент преобразования между расходом мазута и выбросами CO2 в Руководстве 2014 года по методу расчета достигнутого проектного индекса энергоэффективности (EEDI) для новых судов. Общее годовое количество CO2 рассчитывается путем умножения годового расхода мазута на CF для типа топлива.

Прочтите по теме: 20 способов для моряков уменьшить углеродный след на судах

Информация для отправки в базу данных ИМО по расходу мазута на судах

С 2019 года каждое судно валовой вместимостью более 5000 должно собирать определенную информацию о судне и его топливе и передавать в ИМО. Сюда входят сведения о судне, период календарного года, за который представляются данные, расход мазута в метрических тоннах, тип мазута и методы, используемые для сбора данных о расходе мазута, пройденное расстояние и время в пути.

Эти данные, предоставленные судном, помогут им суммировать потребление мазута на всех судах и будут использованы для исследования и поиска способов сокращения выбросов и загрязнения.

Заявление об отказе от ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них.Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и компании Marine Insight.

Ищете электронные книги, написанные опытными морскими профессионалами?

Ознакомьтесь с нашими последними электронными книгами:

Теги: мазут

.

Смотрите также