Межосевой дифференциал что это


что это такое и для чего нужна

В современных автомобилях есть немало узлов и агрегатов, которые имеются во всех моделях всех марок. Одним из них является дифференциал. Он необходим для того, чтобы обеспечить разную угловую скорость колес, расположенных при повороте на внешнем и на внутреннем его радиусе. У полноприводных автомобилей есть еще межосевой дифференциал, который в большинстве случаев оснащен блокировкой.

В данной статье мы расскажем о том, что такое межосевой дифференциал, для чего нужна блокировка межосевого дифференциала и каких основных типов она бывает.

Что такое межосевой дифференциал

В любом автомобиле есть как минимум один дифференциал. Такое устройство делит крутящий момент, поступающий в него с входного вала, между полуосями передающими его на каждое из ведущих колес. Полноприводный автомобиль (то есть имеющий четыре ведущих колеса) оснащается как минимум двумя дифференциалами, по одному на каждую пару. В большинстве случаев на них устанавливается еще один, межосевой, который имеет возможность блокирования.

Необходимость использования межосевого дифференциала на автомобилях с полным приводом вызвана тем, что им приходится передвигаться в достаточно сложных условиях, часто по неровной местности. В таких случаях на разные оси автомобиля создается разное давление и поэтому необходимо производить распределение между ними крутящего момента.

Для чего нужна блокировка межосевого дифференциала

Следует заметить, что у любого дифференциала (в том числе и межосевого) наряду с его главным достоинством, состоящим в обеспечении разделения крутящего момента, есть и один существенный недостаток. Он является прямым следствием преимущества и заключается в том, что если колеса одной из осей начинают буксовать, то именно на них дифференциалом передается больший крутящий момент. Это существенно понижает проходимость автомобиля, что совершенно недопустимо для внедорожников. По этой причине практически все межосевые дифференциалы, устанавливаемые на них, оснащаются функцией блокировки.

Когда она включена, то на обе оси автомобиля передается одинаковый крутящий момент. Благодаря этому на те колеса, которые не пробуксовывают, транслируется такое же усилие, что и на пробуксовывающие. Это необходимо для того, чтобы машина могла миновать «скользкое место». 

Разновидности блокировок межосевого дифференциала

В современных внедорожниках реализовывается два типа блокировки межосевого дифференциала: ручная и автоматическая. Оба они предполагают или полное, или частичное выключение узла. Чаще на автомобилях повышенной проходимости устанавливаются автоматические блокировки межосевых дифференциалов. Существует три их основных разновидности:

  • Блокировка с вискомуфтой;
  • Блокировка типа Torsen;
  • Блокировка с фрикционной муфтой.

Каждый из этих видов блокировки имеет свои конструктивные особенности и преимущества.

Блокировка с вискомуфтой

Такая разновидность блокировки межосевого дифференциала является на сегодняшний день наиболее распространенной. Она построена по симметричной планетарной схеме, в основе которой лежит взаимодействие между собой конических шестерен. Одним из важнейших элементов ее конструкции является наполненная масляной воздушно-силиконовой смесью герметично закрытая полость. Она связана с полуосями посредством двух отдельных пакетов дисков.

Если полноприводный автомобиль едет с постоянной скоростью по ровной поверхности, то межосевой дифференциал, снабженный такой системой блокировки, транслирует крутящий момент на переднюю и заднюю ведущие оси в соотношении 50% на 50%. В том случае, если вращение одного из пакетов дисков ускоряется, то за счет повышения давления в герметичной полости вискомуфта начинает блокировать (то есть тормозить) соответствующий пакет. Благодаря этому угловые скорости выравниваются, и, по сути дела, происходит блокировка межосевого дифференциала.

Основными достоинствами такой системы являются простота ее конструкции и невысокая стоимость. Именно эти факторы обусловили широкое распространение вискомуфт в системах блокировок межосевых дифференциалов современных внедорожников. Что касается недостатков такой конструкции, то к ним следует отнести неполное автоматическое блокирование, а также риск перегрева в том случае, если она работает в течение длительного периода времени. Дело в том, что значительная часть передаваемой ей кинетической энергии вращения преобразовывается в энергию тепловую.

Блокировка типа Torsen

Она состоит из таких основных элементов, как корпус, левая и правая полуосевые шестерни, их сателлиты и выходные валы. Специалисты в области автомобилестроения считают, что конструкция блокировки межосевого дифференциала этого типа является на сегодняшний день наиболее эффективной и совершенной.

Основу этого механизма блокировки составляют две пары червячных колес, в каждой из которых есть ведущее и ведомое (они называются полуосевыми и сателлитами). Функционирование этой системы основывается на некоторых особенностях, которые имеют шестерни такого типа. Если все колеса автомобиля имеют одинаковое сцепление с поверхностью, то дифференциал работает в штатном режиме. Как только одно из них начинает по тем или иным причинам вращаться быстрее остальных, то сателлит, связанный с ним, пытается начать вращение в обратную сторону. Вследствие этого происходит перегрузка червячной шестерни, а выходные валы блокируются. «Высвободившийся» крутящий момент переходит на другую ось, в результате чего его значения уравниваются.

Важнейшими преимуществами блокировки межосевого дифференциала типа Torsen являются очень высокая скорость срабатывания и широкий диапазон значений переброски вращающего момента с оси на ось. Кроме того, такая блокировка не перегружает тормозную систему автомобиля. Основным недостатком такой конструкции ее сложность.

Блокировка с фрикционной муфтой

Главной отличительной особенностью такой системы является то, что она предполагает возможность как автоматической, так и ручной блокировки межосевого дифференциала. Конструктивно она очень похожа на системы с вискомуфтой, только вместо последней в ней установлены фрикционные диски.

При плавном движении автомобиля угловые скорости между его ведущими осями распределяются равномерно. Если одна из полуосей ускоряется, то фрикционные диски сближаются, сила трения между ними увеличивается, в результате чего происходит притормаживание полуоси.

Системы блокировки межосевых дифференциалов, устроенные на основе фрикционных муфт, на серийных автомобилях практически не применяются. Она достаточно сложна по своей конструкции, к тому же имеет невысокий ресурс из-за того, что рабочие элементы (фрикционные диски) быстро изнашиваются. Кроме того, устройства блокировки с фрикционными муфтами требуют частого обслуживания.

Читайте также: Что такое паркетник и чем он отличается от внедорожника.

Видео на тему

Похожие публикации

Дифференциал межосевой: всем осям - нужный крутящий момент

Дифференциал межосевой: всем осям - нужный крутящий момент

В трансмиссии многоосных и полноприводных транспортных средств используется механизм для распределения крутящего момента между ведущими осями — межосевой дифференциал. Все об этом механизме, его назначении, конструкции, принципе работы, а также о ремонте и техническом обслуживании читайте в статье.


Что такое межосевой дифференциал?

Межосевой дифференциал — узел трансмиссии колесных транспортных средств с двумя и большим числом ведущих мостов; механизм, осуществляющий деление поступающего от карданного вала крутящего момента на два независимых потока, которые затем подаются на редукторы ведущих осей.

В процессе движения автомобилей и колесных машин с несколькими ведущими осями возникают ситуации, требующие вращения колес разных осей с неодинаковой скоростью. Например, в полноприводных автомобилях колеса передней, промежуточной (у многоосных ТС) и задней осей имеют неодинаковую угловую скорость при поворотах и маневрировании, при движении по дорогам с уклоном и по неровным дорожным покрытиям, и т.д. Если бы все ведущие оси имели жесткую связь, то в таких ситуациях некоторые колеса скользили бы или, напротив, буксовали, что значительно ухудшало бы эффективность преобразования крутящего момента и в целом негативно влияло бы на движение транспортного средства. Для предотвращения подобных проблем в трансмиссию автомобилей и машин с несколькими ведущими осями вводится дополнительный механизм — межосевой дифференциал.


Межосевой дифференциал трехосных автомобилей обычно располагается на промежуточном мосту

Межосевой дифференциал выполняет несколько функций:

  • Разделение крутящего момента, поступающего от карданного вала, на два потока, каждый из которых поступает на редуктор одного ведущего моста;
  • Изменение поступающего на каждую ось крутящего момента в зависимости от действующих на колеса нагрузок и их угловых скоростей;
  • Дифференциалы с блокировкой — разделение крутящего момента на два строго равных потока для преодоления сложных участков дороги (при движении по скользкой дороге или бездорожью).

Данный механизм получил свое название от латинского differentia — разность или различие. В процессе работы дифференциал разделяет поступающий поток крутящего момента надвое, причем моменты в каждом из потоков могут значительно отличаться друг от друга (вплоть до того, что на одну ось поступает весь входящий поток, а на вторую ось — ничего), однако сумма моментов в них всегда равна поступающему моменту (или почти равна, так как часть момента теряется в самом дифференциале за счет сил трения).

Межосевые дифференциалы используются во всех автомобилях и машинах с двумя и большим числом ведущих осей. Однако расположение данного механизма может отличаться в зависимости от колесной формулы и особенностей трансмиссии автомобиля:

  • В раздаточной коробке — используется в автомобилях 4×4, 6×6 (возможны варианты как для привода только передней оси, так и для привода всех осей) и 8×8;
  • В промежуточном ведущем мосту — наиболее часто используется в автомобилях 6×4, но также встречается на четырехосных транспортных средствах.

Межосевые дифференциалы, независимо от расположения, обеспечивают возможность нормальной эксплуатации транспортного средства в любых дорожных условиях. Неисправности или выработка ресурса дифференциала негативно влияют на характеристики автомобиля, поэтому должны как можно скорее устраняться. Но прежде, чем выполнять ремонт или полную замену этого механизма, необходимо разобраться в его конструкции и работе.


Типы, устройство и принцип действия межосевого дифференциала


Схемы механических трансмиссий

В различных ТС используются межосевые дифференциалы, построенные на основе планетарных механизмов. В общем случае агрегат состоит из корпуса (обычно составленного из двух чашек), внутри которого располагается крестовина с сателлитами (коническими шестернями), соединенными с двумя полуосевыми шестернями (шестернями привода ведущих мостов). Корпус посредством фланца соединен с карданным валом, от которого весь механизм получает вращение. Шестерни посредством валов соединены с ведущими шестернями главных передач своих мостов. Вся эта конструкция может размещаться в собственном картере, установленном на картере промежуточного ведущего моста, или в корпусе раздаточной коробки.

Функционирует межосевой дифференциал следующим образом. При равномерном движении автомобиля по дороге с ровным и твердым покрытием крутящий момент от карданного вала передается на корпус дифференциала и зафиксированную в нем крестовину с сателлитами. Так как сателлиты входят в зацепление с полуосевыми шестернями, то обе они тоже приходят во вращение и передают крутящий момент к своим мостам. Если по какой-либо причине колеса одного из мостов начинают затормаживаться, связанная с данным мостом полуосевая шестерня замедляет свое вращение — сателлиты начинают катиться по этой шестерне, что приводит к ускорению вращения второй полуосевой шестерни. В результате колеса второго моста приобретают увеличенную относительно колес первого моста угловую скорость — так компенсируется разность нагрузок на оси.

Межосевые дифференциалы могут иметь некоторые конструктивные отличия и особенности работы. В первую очередь, все дифференциалы делятся на две группы по характеристикам распределения крутящего момента между двумя потоками:

  • Симметричные — распределяют момент равномерно между двумя потоками;
  • Несимметричные — распределяют момент неравномерно. Это достигается использованием полуосевых шестерен с различным количеством зубьев.

При этом практически все межосевые дифференциалы имеют механизм блокировки, который обеспечивает принудительную работу агрегата в режиме симметричного распределения крутящего момента. Это необходимо для преодоления сложных участков дорог, когда колеса одной оси могут отрываться от дорожного покрытия (при преодолении ям) или терять с ним сцепление (например, пробуксовывать на льду или в грязи). В таких ситуациях весь крутящий момент поступает на колеса этой оси, а колеса, имеющие нормальное сцепление с дорогой, вовсе не вращаются — автомобиль просто не может продолжать движение. Механизм блокировки принудительно распределяет крутящий момент между осями поровну, предотвращая вращение колес с разной скоростью — это позволяет преодолевать сложные участки дорог.

Блокировка может быть двух типов:

  • Ручная;
  • Автоматическая.

Конструкция межосевого дифференциала грузового автомобиля

В первом случае дифференциал блокируется водителем с помощью специального механизма, во втором случае агрегат самоблокируется при наступлении определенных условий, о которых сказано ниже.

Механизм блокировки с ручным управлением обычно выполняется в виде зубчатой муфты, которая располагается на зубцах одного из валов, и может входить в зацепление с корпусом агрегата (с одной из его чаш). При перемещении муфта жестко соединяет вал и корпус дифференциала — в этом случае данные детали вращаются с одинаковой скоростью, и каждая из осей получает половину общего крутящего момента. Управление блокирующим механизмом в грузовых автомобилях чаще всего имеет пневматический привод: зубчатая муфта перемещается с помощью вилки, управляемой штоком встроенной в картер дифференциала пневматической камеры. Подача воздуха на камеру осуществляется специальным краном, управляемым соответствующим переключателем в кабине автомобиля. Во внедорожниках и другой технике без пневмосистемы управление механизмом блокировки может быть механическим (с помощью системы рычагов и тросов) или электромеханическим (с помощью электромотора).

Самоблокирующиеся дифференциалы могут иметь механизмы блокировки, отслеживающие разность крутящих моментов или разность угловых скоростей осей привода ведущих мостов. В качестве таких механизмов могут использоваться вязкостные, фрикционные или кулачковые муфты, а также дополнительные планетарные или червячные механизмы (в дифференциалах типа Torsen) и различные вспомогательные элементы. Все эти устройства допускают некоторую разность крутящих моментов на мостах, при превышении которой они блокируются. Рассматривать устройство и работу самоблокирующихся дифференциалов здесь мы не будем — сегодня существует множество реализаций данных механизмов, подробнее о них можно узнать в соответствующих источниках.


Вопросы обслуживания, ремонта и замены межосевого дифференциала

Межосевой дифференциал в процессе эксплуатации автомобиля испытывает значительные нагрузки, поэтому со временем его детали изнашиваются и могут разрушаться. С целью обеспечения нормальной работы трансмиссии данный агрегат необходимо регулярно проверять, обслуживать и ремонтировать. Обычно при регламентном ТО дифференциал разбирается и подвергается дефектовке, все изношенные детали (шестерни с изношенными или выкрошенными зубами, сальники, подшипники, детали с трещинами и т.д.) заменяются на новые. При серьезных повреждениях механизм меняется полностью.

Для продления ресурса дифференциала необходимо регулярно выполнять замену масла в нем, прочищать сапуны, проверять работу привода механизма блокировки. Все указанные работы выполняются в соответствии с инструкцией по ТО и ремонту транспортного средства.

При регулярном обслуживании и грамотной эксплуатации межосевого дифференциала автомобиль будет уверенно чувствовать себя даже в самой сложной дорожной обстановке.

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14.10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

#Палец рессоры

Палец рессоры: надежный монтаж рессорной подвески

23.09.2020 | Статьи о запасных частях

Монтаж рессор на раму транспортного средства выполняется с помощью опор, построенных на специальных деталях — пальцах. Все о пальцах рессор, их существующих типах, конструкции и особенностях работы в подвеске, а также о правильном выборе пальцев и их замене, вы можете узнать в представленной статье.

Самые расхожие заблуждения о полном приводе — журнал За рулем

Оказывается, многие владельцы внедорожников понятия не имеют, что такое крутящий момент и в какой пропорции он делится между колесами. А еще не знают, как на самом деле устроен дифференциал. ЗР помогает разобраться во всех нюансах полноприводной трансмиссии.

«Господь Бог вычисляет дифференциалы эмпирически».
Альберт Эйнштейн

Материалы по теме

Обилие комментариев к материалам о распределении моментов в трансмиссиях автомобилей, особенно полноприводных, и радует, и огорчает. Народ интересуется техникой — это хорошо. А вот постоянно ощущать влияние безграмотных блогерских стереотипов на массовое сознание — это обидно. Впрочем, подобное явление подметил еще изобретатель теории эволюции, причем задолго до интернетов. Мол, «уверенность чаще порождается невежеством, нежели знанием».

Что ж, попробуем пробежаться еще разок по основным болевым точкам в массовом сознании. Во всех ситуациях условно считаем, что трение и прочие потери отсутствуют как класс. Нагрузки на колеса — одинаковые. Продольная и поперечная развесовки — равномерные. Условия сцепления шин с покрытием — одинаковые, если иное не оговорено. Все дифференциалы — симметричного типа. Момент, передаваемый двигателем на конкретный дифференциал, условно принимаем за 100 %. И прошу прощения у всех читателей, которые хорошо в этом разбираются безо всяких повторений.

Итак, вспоминаем основные заблуждения.

Крутящий момент на вывешенном колесе не может равняться нулю: за чей же счет оно вращается-то?

Материалы по теме

Если не разобраться в этом, то дальше можно не читать. Главная мысль проста: момента без сопротивления не бывает! Поэтому момент на валу двигателя, молотящего вхолостую, равен нулю: он не совершает никакой полезной работы. Точно так же на колесе, зависшем в воздухе, никакого момента нет. Конечно, можно порассуждать насчет сил трения и прочих негативных факторов, которые приходится преодолевать, но мы сразу уточнили, что подобные потери не принимаем во внимание.

Межколесные дифференциалы задают колесам равные угловые скорости.

Ничего подобного: дифференциал (от лат. differentia — разность, различие) — это механизм, обеспечивающий вращение ведущих колес именно с разными скоростями (например, в повороте). Простенькие игрушечные автомобильчики зачастую плохо ездят по кругу именно потому, что в них нет дифференциалов, а потому колеса, проходящие разный путь, вынуждены проскальзывать или пробуксовывать. Дифференциал выравнивает не угловые скорости, а моменты. Если он делит крутящий момент поровну, его называют симметричным.

Если у Нивы (будь то Chevrolet Niva или Лада 4х4) одно колесо повисает в воздухе, то за счет остальных трех она спокойно поедет дальше, поскольку момент постоянно поступает на все четыре колеса. В данной ситуации на каждое из трех оставшихся колес придется при этом по 33,3% момента.

Выражение «момент поступает» не вполне корректное: напоминаем, что без сопротивления никакого момента на колесе быть не может. А Нива в данном случае не стронется с места, поскольку нулевой момент на зависшем колесе тут же отразится на всех остальных: межколесные и межосевой дифференциалы изначально делят его поровну — по 25% каждому. Чтобы ехать дальше, надо заблокировать межосевой дифференциал. В этом случае на оси с зависшим колесом момент останется нулевым, зато на другой оси на каждое колесо придется половина от усилий мотора.

Самый надежный тип привода…

Самый надежный тип привода…

После блокировки дифференциала момент распределяется пополам.

Не после, а до блокировки! После блокировки распределение моментов определяется только реальной дорожной ситуацией. Скажем, после блокировки межколесного дифференциала моменты на колесах этой оси распределяются пропорционально нагрузке и силам сцепления, но никак не поровну.

Пока межосевой дифференциал не заблокирован, крутящий момент распределяется между осями поровну (если, конечно, дифференциал симметричный). Как только заблокировали, демократия заканчивается: теперь распределение момента по осям пойдет пропорционально реальной нагрузке.

Пока межосевой дифференциал не заблокирован, крутящий момент распределяется между осями поровну (если, конечно, дифференциал симметричный). Как только заблокировали, демократия заканчивается: теперь распределение момента по осям пойдет пропорционально реальной нагрузке.

Если ось с заблокированным дифференциалом — аналог железнодорожной колесной пары, то и момент на обоих колесах всегда одинаковый! Ведь этот механизм уже представляет собой единое целое, а потому не может быть так, чтобы слева момент был, а справа куда-то пропал… В каком месте вала момент, передаваемый для нагруженного колеса, превращается в ноль для незагруженного? Этого же теоретически не может быть.

Материалы по теме

В том-то и дело, что может! Представьте себе, для упрощения, вместо заднего моста с заблокированным дифференциалом что-нибудь попроще — допустим, черенок от лопаты. Вообразите, что вы держите его посередке и при этом пытаетесь вращать вдоль продольной оси, то есть прикладываете момент. Пусть один конец черенка буравит асфальт, а второй находится в воздухе. Согласитесь, что конец черенка, который грызет асфальт, будет изнашиваться у вас на глазах, поскольку там есть сопротивление. А тот конец, что висит в воздухе, переживет всех: нет сопротивления — нет момента. Он останется свеженьким и чистеньким, хотя и вращается с той же скоростью, что и весь черенок. Точно так же себя ведет и ось с заблокированным межколесным дифференциалом.

AWD в сравнении с 4WD выдает меньший крутящий момент.

Тут даже спорить, в общем-то, не с чем. Чем определяется момент, мы повторяем в каждом втором абзаце. Можно лишь еще раз отметить, что обозначения такого рода в целом являются маркетинговыми, условными. По большей части в реальной жизни AWD — это «моноприводники», у которых есть возможность подключать вторую ведущую ось. А 4WD — это машины с постоянно подключенными осями с заданным изначально распределением момента между осями (например — 50 на 50, у которых есть возможность блокировать межосевой дифференциал). Кто из них что куда «выдает», в каждом случае нужно разбираться индивидуально, а не кивать на аббревиатуру.

Всем удачи на любых дорогах!

Что такое межосевой дифференциал и для чего он нужен?

Дифференциал – устройство, управляющее распределением вращательного момента между входным и выходными валами. Хотя скорость отдельных элементов может разниться. Данный механизм успешно применяется в автомобилестроении и широко применим в нём. Различие дифференциалов проявляется в месте их установки, предназначению и конструктивным особенностям. Автомобили с приводом только на заднюю или переднюю ось оснащаются одним дифференциалом – межколёсным.

Необходимость в наличии дифференциала вызвана особенностями поведениями колёс в поворотах. Они проходят различное расстояние в эти моменты. Грузовые автомобили с приводами 6х6 и 8х8 оснащаются дополнительным межтележечным дифференциалом. В моделях с полным приводом устанавливаются три дифференциала: кроме двух межколёсных, ещё и один межосевой. О работе межосевого дифференциала, о его конструкции и предназначении мы и поговорим далее более подробно.

Конструкция межосевого дифференциала

Давайте рассмотрим конструкцию межосевого дифференциала на самом распространённом примере – коническом дифференциале. Конический дифференциал по своей конструкции схож с другими видами дифференциалов. Конический дифференциал – это планетарный редуктор с полуосевыми шестернями сателлитами, которые помещены в корпус. Корпус, или как его ещё называют «чашка дифференциала» принимает крутящий момент на себя от главной передачи и раздаёт его через сателлиты на шестерни полуосей. К корпусу жёстко прикреплена ведомая шестерня главной передачи. На внутренних осях корпуса вращаются сателлиты. Сателлиты выполняют роль планетарной шестерни. Они обеспечивают контакт корпуса с полуосевыми шестернями. В зависимости от того, какой величины передаётся крутящий момент, конструкция дифференциала насчитывает два или четыре сателлита.

Дифференциалы легковых автомобилей, как правило насчитывают два сателлита. Полуосевые (солнечные) шестерни передают вращение на ведущие колёса через полуоси по шпицевому соединению. Правая и левая шестерни полуосей имеют как равное, так и различное число зубцов. Шестерни с равным количеством зубцов образуют симметричный дифференциал, в то время, когда неравное количество зубцов характерно для несимметричного дифференциала.

Симметричный дифференциал распределяет вращение по осям в равных пропорциях, в независимости от того какой величины угловые скорости ведущих колёс. Благодаря своим свойствам симметричный дифференциал успешно применяется как межколёсный дифференциал. Несимметричный дифференциал разделяет крутящий момент в определённом соотношении, поэтому его устанавливают между осями полноприводного автомобиля.

Принцип работы межосевого дифференциала

Когда автомобиль движется по прямолинейной траектории по ровной дороге, расстояние, пройденное ведущими колёсами будет равным, так как у обоих колёс будет одинаковая угловая скорость. В процессе такого движения все сателлиты, шестерни и корпус дифференциала синхронизированы. Передачу крутящего момента данному механизму обеспечивает шестерня. Также отметим и тот факт, что при таком движении крутящий момент на каждом из ведомых колёс одинаков, а полуосевые шестерни заклиниваются сателлитами, которые статичны относительно своей оси.

Когда автомобиль входит в поворот, путь, который проходит колесо, идущее по внутреннему краю, меньший, чем у колеса на внешнем круге, следовательно и скорость вращения у них разная. Для стабилизации ситуации полуосевая шестерня замедляется, а сателлиты и корпус в это время упираются в полуосевую шестерню слева. Благодаря тому, что сателлиты вращаются вокруг своей оси, растёт и скорость, с которой вращается правая полуосевая шестерня. Это позволяет ведущим колёсам вращаться с разными скоростями, что предотвращает проскальзывание и пробуксовку. Отметим, что колесо с большей скоростью вращения получает меньший крутящий момент.

Давайте рассмотрим дифференциал с классической конструкцией. Основным его недостатком будет пробуксовка одного колеса, когда оно потеряет контакт с дорожной поверхностью. Всё дело в том, что колесо в подвешенном состоянии вращается примерно в два раза быстрее колеса, которое контактирует с дорогой при равном количестве оборотов ведомой шестерни дифференциала. Второе колесо остаётся статичным. Причиной всему является очень маленький крутящий момент, подведённый к нему, так как вращающееся подвешенное колесо получает незначительное сопротивление крутящего момента. Исходя из этого понятно, что крутящий момент противоположного колеса аналогично мал, поэтому оно и неподвижно.

Если колесо пробуксовывает на повышенных оборотах в среде со значительным сопротивлением, крутящий момент, подаваемый на него будет большим в сравнении с проскальзывающим колесом, а следовательно и второму колесу будет предоставляться больший момент для осуществления вращения. Благодаря такому распределению автомобиль может медленно, но уверенно выбираться из ловушки. Буксующее колесо затрачивает много мощности, расходуемой на нагрев дорожного полотна, покрышек и т.д. Пробуксовка заметно снижает проходимость автомобиля с со свободным дифференциалом. Чтобы избежать подобных проблем, на автомобили устанавливают дифференциалы с возможностью их блокировки, как ручной, так и автоматической.

Предназначение межосевого дифференциала

Как Вам уже стало понятно, предназначение межосевого дифференциала заключается в распределении крутящего момента между ведущими осями в полноприводных автомобилях, что даёт им возможность вращения с различными угловыми скоростями. Потребность в таком механизме возникла в следствии движения автомобилей по неровным поверхностям, когда масса самой конструкции давит на ось, что находится в гораздо низком положении. Так, если Вы едете под горку, то большая часть крутящего момента передаётся на заднюю ось. В случае спуска же всё происходит наоборот. Сам механизм межосевого дифференциала располагается, как правило, в раздаточной коробке транспортного средства.

По своему типу межосевой дифференциал может быть, как симметричным, так и несимметричным. Первый вариант дифференциалараспределяет крутящий момент в соотношении 50/50, когда второй в разных соотношениях, например, 60/40. Кроме того бывают межосевые дифференциалы, не имеющие блокировочного механизма, что не позволяет двигаться колёсам с разными скоростями. Есть самоблокирующиеся дифференциалы и с ручной блокировкой.

Второй вариант позволяет принудительно распределять крутящий момент между осями. Это хорошо помогает преодолевать различные дорожные преграды в виде грязи, песка или снега. Принудительное блокирование межосевого дифференциала может быть полным и частичным. При этом обеспечивается жёсткое соединение полуосей между собой. Зачастую для реализации всего внедорожного потенциала автомобиля применяется дифференциал с механизмом автоматической блокировки. Он имеет три вида конструкций и соответственно различные принципы функционирования.

Режимы работы межосевого дифференциала

Работа симметричного межосевого дифференциала разделяется на три, присущих ему, режима:

- прямолинейное движение;

- движение в повороте;

- движение по скользкой дороге.

При движении прямо, колёса принимают на себя равнораспределённое сопротивление дорожного полотна. Крутящий момент передаётся к корпусу дифференциала от главной передачи. Вместе с ним перемещаются и сателлиты. Сателлиты, обходя шестерни полуосей, передают на ведущие колёса весь крутящий момент в равных пропорциях. В отсутствии вращения сателлитов на осях, шестерни полуосей движутся с одинаковой угловой скоростью. Они вращаются с той же частотой, что и ведомая шестерня главной передачи.

При входе в поворот, ведущее колесо, идущее по внутреннему радиусу, принимает на себя большее сопротивление, чем колесо внешнего радиуса. Внутренняя полуосевая шестерня замедляет своё движение и побуждает вращаться сателлиты вокруг своей оси. Они в свою очередь, ускоряют вращение наружной шестерни полуоси. Колёса, движущиеся с разными угловыми скоростями позволяют проходить автомобилю поворот без излишней пробуксовки. Сумма частот вращения полуосевых шестерен внутри и снаружи равна частоте вращения ведомой шестерни, умноженной на двое. Крутящий момент распределяется между ведущими колёсами в равной степени. И на это не влияет разность угловых скоростей.

Когда автомобиль движется по скользкой дороге, одно колесо принимает на себя большую часть сопротивления, в то время как второе пробуксовывает или проскальзывает. Дифференциал заставляет вращаться «проблемное» колесо с большей скоростью. Второе колесо вынуждено остановиться. Сила тяги, образуемая на буксующем колесе очень мала в силу низкого сцепления, поэтому его вращение тоже происходит с небольшой скоростью. А в силу конструкции симметричного дифференциала, другое колесо будет обладать теми же характеристиками на тот момент. Ситуация зашла в тупик – автомобиль не сдвигается с места. Решить эту проблему можно увеличив крутящий момент на небуксующем колесе. Это легко осуществляется блокировкой дифференциала.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

что это такое и принцип работы? + Видео

На автомобилях с передним или задним приводом на ведущей оси устанавливается такой узел, как колесный дифференциал, механизма же его блокировки не предусмотрено по понятным причинам. Основная задача данного узла — распределение крутящего момента на колеса ведущей оси. Например на поворотах или во время езды по грунтовым дорогам колеса крутиться с одинаковой скоростью не могут.

Если же вы являетесь владельцем транспортного средства с полным приводом, то помимо колесного дифференциала на кардан устанавливают и межосевой дифференциал с механизмом блокировки. Естественно, у читателей возникает вопрос: зачем нужна блокировка, какую функцию выполняет, какие существуют виды блокировки межосевого дифференциала?

Зачем нужна блокировка межосевого дифференциала и принцип ее работы

Мы уже частично затрагивали данную тему на сайте vodi.su в статье об вязкостной муфте (вискомуфта). Если говорить простыми словами, то межосевой дифференциал необходим для повышения проходимости транспортного средства и включения полного привода.

Принцип его работы довольно прост:

  • когда машина едет по нормальной дороге, все тяговое усилие приходится лишь на основную тяговую ось;
  • вторая ось посредством отключения механизма блокировки, не входит в сцепление с трансмиссией машины, то есть в данный момент она выступает в качестве ведомой оси;
  • как только авто выезжает на бездорожье, где нужно, чтобы работали две оси для повышения проходимости, водитель либо принудительно включает блокировку межосевого дифференциала, либо происходит ее автоматическое подключение.

Когда блокировка включена, обе оси оказываются в жесткой сцепке и вращаются за счет передачи момента вращения на них посредством трансмиссии от двигателя транспортного средства. Так, если установлена вискомуфта, то на дорожном покрытии, где не требуется мощь обеих осей, тяговое усилие поступает лишь на передние или задние колеса. Ну, а когда выезжаете на грунтовую дорогу и начинаются пробуксовки, колеса разных мостов начинают вращаться с разной скоростью, происходит сильное перемешивание дилатантной жидкости, она затвердевает. Тем самым создается жесткая сцепка между мостами и момент вращения поровну распределяется между всеми колесами машины.

Преимущества механизма блокировки межосевого дифференциала:

  • существенное повышение проходимости транспортного средства в сложных условиях;
  • отключение полного привода автоматически или принудительно, когда в нем нет необходимости;
  • более экономное расходование топлива, ведь с подключенным полным приводом двигатель потребляет больше горючего для создания дополнительной тяги.

Блокировка межосевого дифференциала в зависимости от модели автомобиля включается различными способами. На более старых моделях, например УАЗ, НИВА или грузовые авто, необходимо выбрать соответствующую передачу на раздаточной коробке. Если стоит вискомуфта, блокировка происходит автоматически. Ну, а на самых совершенных на сегодняшний момент внедорожниках с муфтой Haldex блокировка контролируется электронным блоком управления. Сигналом же к ее включению является нажатие на педаль газа. Так, если вы желаете эффектно разогнаться с пробуксовкой, то блокировка сразу включится, а отключение произойдет автоматически, когда машина будет двигаться на стабильной скорости.

Разновидности механизмов блокировки межосевого дифференциала

Если говорить про принцип действия, то выделяют несколько основных групп, которые в свою очередь делятся на подгруппы:

  1. жесткая 100-процентная блокировка;
  2. дифференциалы с ограниченным проскальзыванием — жесткость сцепки зависит от интенсивности вращения колес разных осей;
  3. с симметричным или ассиметричным распределением тягового усилия.

Так, вискомуфту, можно отнести к второй и третьей группам одновременно, так как в разных режимах езды может наблюдаться проскальзывание дисков, например на поворотах. Соответственно, тяговое усилие ассиметрично распределяется между осями. В наиболее же сложных условиях, когда одно из колес сильно буксует, то происходит 100-процентная блокировка за счет полного затвердевания жидкости. Если же вы ездите на УАЗ Патриот с раздаткой, то там предусмотрена жесткая блокировка.

Портал vodi.su отмечает, что при включенном полном приводе, особенно на асфальте, происходит быстрый износ резины.

Выделяют также различные конструкции блокировки межосевого дифференциала:

  • фрикционная муфта;
  • вискомуфта;
  • кулачковая муфта;
  • блокировка Torsen.

Так, фрикционы работают примерно по той же схеме, что и вискомуфта или сухое сцепление. В нормальном состоянии фрикционные диски не взаимодействуют между собой, но как только начинаются пробуксовки, происходит их зацепление. Муфта Haldex Traction является фрикционной, в ней установлено несколько дисков, которые контролируются электронным блоком управления. Минус данной конструкции — износ дисков и необходимость их замены.

Блокировка Torsen является одной из наиболее совершенных, ее устанавливают на такие авто как Audi Quattro и универсалы Allroad Quattro. Схема довольно сложная: правая и левая полуосевая шестерни с сателлитами, выходные валы. Блокировка обеспечивается за счет разных передаточных чисел и червячной передачи. В нормальных режимах стабильной езды все элементы вращаются с определенным передаточным числом. Но в случае пробуксовки сателлит начинает вращаться в обратном направлении и происходит полная блокировка полуосевой шестерни и момент вращения начинает поступать на ведомую ось. Причем распределение происходит в соотношении 72:25.

На отечественных авто — УАЗ, ГАЗ — устанавливают кулачковый дифференциал повышенного трения. Блокировка происходит за счет звездочек и сухарей, которые при пробуксовке начинают вращаться с разными скоростями, в результате чего возникает сила трения и блокируется дифференциал.

Существуют и другие разработки. Так, современные внедорожники оснащают антипробуксовочной системой TRC, в которой весь контроль осуществляется через ЭБУ. А избежать пробуксовки удается за счет автоматического подтормаживания буксующего колеса. Есть также гидравлические системы, например DPS на автомобилях Хонда, где на заднем редукторе установлены насосы, вращающиеся от карданного вала. А блокировка происходит за счет подключения пакета многодискового сцепления.

У каждой из перечисленных систем существуют свои достоинства и недостатки. Нужно понимать, что езда с включенным полным приводом приводит к скорейшему износу шин, трансмиссии и двигателя. Поэтому полный привод используют лишь там, где он действительно нужен.

Загрузка...

Поделиться в социальных сетях

что это такое, принцип работы

Внедорожные авто оснащены дифференциалом. Этот элемент нужен для обеспечения ведущим колесам разной угловой скорости. При повороте колеса расположены на внешнем и внутреннем радиусе. Межосевой дифференциал на внедорожнике имеет блокировку. Далеко не все знают, что это такое – блокировка межосевого дифференциала. Давайте разберемся, что это, для чего и как пользоваться.

Межосевой дифференциал

В любых автомобилях точно имеется один дифференциал. Данный механизм призван делить крутящий момент, который на него подается с входного вала между двумя полуосями. Полноприводные авто оснащены двумя дифференциалами – для каждой колесной пары. Также имеется еще и межосевой. Необходимость в нем вызвана тем, что внедорожники эксплуатируются в очень сложных условиях. Разные оси испытывают разное давление, и нужно распределять крутящий момент между ними.

Блокировка

Любой дифференциал имеет, кроме достоинств, и очень серьезный недостаток. Недостаток этот является следствием преимущества – если одно из колес начинает буксовать, то дифференциал отдает больший крутящий момент именно на это колесо. Это очень сильно снижает характеристики проходимости. Если для гражданских автомобилей это норма, то для внедорожников это совсем недопустимо. По данной причине практически все межосевые дифференциалы оснащаются системами блокировки. Но есть исключения. Например, блокировка межосевого дифференциала на «Ниве» отсутствует, зато можно купить и установить самостоятельно одно из предлагаемых рынком решений.

Когда включена блокировка, то на каждую ось отдается один и тот же крутящий момент. Поэтому колеса не будут буксовать. Это нужно, чтобы машина могла с легкостью пройти скользкие места.

Виды блокировок

Мы узнали, что это такое – блокировка межосевого дифференциала. Теперь стоит познакомиться с видами данных систем. Сейчас можно выделить ручную и автоматическую блокировку. В первом и во втором случае можно частично или полностью отключить дифференциал. На моделях авто с повышенной проходимостью имеются автоматические блокировки. Их три разновидности – это система с вискомуфтой, блокировка Trosen и с фрикционной муфтой. В чем особенности и отличия данных систем? Рассмотрим каждую более детально.

Блокировки с вискомуфтой

Это наиболее распространенная блокировка. Она базируется на симметричной планетарной схеме. Работа основана на взаимодействующих между собой конических шестеренках. Важным элементом данной конструкции является специальная герметичная полость. В ней воздушно-силиконовая смесь. Механизм связан с полуосями за счет пакетов дисков.

Если авто с полным приводом двигается с какой-то постоянной скоростью по достаточно ровной поверхности, то дифференциал с такой блокировкой передает крутящий момент к передней и задней оси в пропорции 50:50. Если же один из пакетов будет вращаться быстрее, то за счет повышенного давления в герметичной емкости вискомуфта начнет тормозить пакет. За счет этого выровняются угловые скорости. Дифференциал заблокируется.

Среди главных достоинств этой системы можно выделить ее простоту и малую стоимость. Именно за счет этих факторов механизм получил такое широкое распространение в современных внедорожниках. Если говорить о недостатках, то автоматическое блокирование осуществляется не полностью и существует риск перегрева системы, если блокировка эксплуатируется достаточно долго.

Система Trosen

Вот еще одна блокировка межосевого дифференциала. Что это такое? Она представляет собой корпус, две полуосевые шестеренки с сателлитами и выходными валами. Считается, что блокировка такого типа наиболее эффективная и совершенная. Нередко данную систему можно увидеть на новых внедорожниках европейского и американского производства.

В основе лежат червячные колеса в количестве двух пар. В каждой паре имеется ведущее и ведомое колесо – полуосевое и сателлит. Принцип действия основан на особенностях червячных шестерен. Если каждое колесо имеет одинаковое сцепление с дорогой, тогда блокировка не будет задействована, а дифференциал будет работать в обыкновенном режиме.

Включение блокировки межосевого дифференциала осуществляется, если одно колесо начнет вращаться быстрее, чем остальные. Сателлит, связанный с колесом, будет пытаться крутиться в обратную сторону. В результате червячная шестерная перегружается и тем самым блокируются выходные валы. Освободившийся крутящий момент передается на другую ось и значения крутящего момента таким образом выравниваются.

В чем плюсы данной системы? Главным преимуществом такой блокировки считается максимальная скорость срабатывания и очень широкий диапазон распределения крутящего момента с одной оси на другую. Среди прочих плюсов можно выделить, что данные блокировки не ведут к перегрузке тормозных систем. Минус один – это сложность данной конструкции. Кстати, схожую блокировку можно увидеть на ГАЗ-66.

Блокировки с фрикционными муфтами

Основная отличительная особенность в том, что предполагается возможность включения блокировки автоматически или вручную. Конструкция и работа блокировки межосевого дифференциала похожа на систему с вискомуфтой. Но здесь работают фрикционные диски.

Когда машина двигается плавно, угловые скорости на осях распределены равномерно. Если на одной из полуосей имеется ускорение, то диски начнут сближаться, между ними будет расти сила трения – полуось притормаживается.

Данные системы практически не используются на серийных моделях авто. Причина в сложности конструкции и невысоком ресурсе. Диски очень быстро изнашиваются, а сама конструкция требует особого ухода и тщательного обслуживания.

Электронные блокировки и имитации блокировок

В большинстве современных авто имеются так называемые электронные блокировки межосевого дифференциала. Что это такое, мы рассмотрим далее. Электронная блокировка в большинстве случаев представляет собой лишь имитацию.

ЭБУ получает информацию от датчиков колес, что одно из колес вращается быстрее и начинает прерывистыми командами притормаживать колесо. Тем самым момент перераспределяется на другую сторону. Обычно узнать о том, что включена данная система, можно узнать по приборной панели – мигает блокировка межосевого дифференциала.

Недостатки и особенности

При долгой работе в таком режиме существует риск перегрева и выхода из строя тормозных систем. Автомобиль имеет автоматическую защиту, если температура поднимается выше допустимой, но это не везде есть и не всегда работает.

Если нагрузка серьезная, то крутящего момента может быть мало, чтобы сдвинуть авто вперед. Вроде бы и моргает лампа, трещит тормозная система, но машина никуда не едет. Поднять обороты невозможно – электроника не дает.

Межосевая блокировка дифференциала “Паджеро”, а она там электронная, в воде теряет эффективность. Мокрые колодки не могут затормозить мокрый диск.

Но даже имитация – это не пустая забава. Естественно, она не подойдет для серьезного бездорожья, но ездят туда далеко не все владельцы. Электронной блокировки вполне хватит для самых обычных случаев. Например, они могут понадобиться зимой. Но сильно рассчитывать на систему нельзя – электроника может подвести в самый неподходящий момент. Поэтому в “Паджеро” дополнительно есть настоящая, железная блокировка.

Что такое межосевой дифференциал и как он работает?

Межосевой дифференциал - это самый эффективный метод увеличения проходимости любого автомобиля. В настоящее время практически все внедорожники, в том числе некоторые кроссоверы, оснащены данным элементом. Как и у всех других технических механизмов, у межосевого дифференциала есть свои плюсы и минусы. В этой статье мы постараемся узнать, как эффективно использовать этот элемент, и каков его принцип действия.

Принцип работы и свойства механизма

На данный момент любой современный межосевой дифференциал (например, Нива 2121, тоже им оснащается) работает в нескольких режимах:

  1. Прямолинейное движение (автомат).
  2. Накладка.
  3. Оборотов.

Самый эффективный межосевой дифференциал при пробуксовке, при котором он часто используется. Когда автомобиль встречает скользкую поверхность, будь то лед, утрамбованный снег или грязь, этот элемент действует на оси, а именно на колесе. Принцип его работы следующий. Когда одно из колес падает на твердую поверхность с хорошим сцеплением, а второе, в отличие, скажем, от скользкой, дифференциал начинает передавать одинаковый крутящий момент на оба привода, то есть элемент равняется «прогресиваемости» двух колес. к той же стоимости.Это позволяет автомобилю выехать из заснеженного или загрязненного участка дороги за секунды. Та же машина, в которой отсутствует межосевой дифференциал, начинает буксовать - левое колесо движется с одинаковой скоростью, правое - совершенно с другой. Оказывается, машина еще больше утопает в снегу или песке. Поэтому межосевой дифференциал (КАМАЗ, кстати, тоже им оснащался) - неотъемлемая часть любого автомобиля с полным приводом. Часто этот элемент поставляется либо армейскими грузовиками, либо отечественными внедорожниками, предназначенными для использования в гражданских условиях.Производители импортировали традицию оснащать свои джипы дифференциалом, который постепенно уходит. Это не так уж и странно - почему у "немца" межосевой дифференциал, если он жив, он никогда не применится! Поэтому среди европейских внедорожников была только одна модель, которая до сих пор дополняет систему.

Таким образом, деталь как бы «соединяет» оба колеса, передавая им одинаковый крутящий момент от двигателя, придавая автомобилю дополнительное тяговое усилие при пробуксовке.

Напоследок отметим несколько правил эксплуатации легковых и грузовых автомобилей, оборудованных данным товаром.

  1. Чтобы межосевой дифференциал не вибрировал и не издавал посторонних звуков при работе, можно перевести заблокированный элемент в автоматический режим.
  2. В режиме скольжения нет необходимости изменять степень блокировки элемента.
  3. При буксировке автомобиля необходимо перевести рычаг трансмиссии в нейтральное положение и обязательно изменить межосевой дифференциал в ручном режиме. Для этого нужно опустить регулировочное колесо в крайнее нижнее положение.
.

Дифференциал (механическое устройство) - Простая английская Википедия, бесплатная энциклопедия

Дифференциал - это механическое устройство, состоящее из нескольких шестерен. Применяется практически во всех механизированных четырехколесных автомобилях. Он используется для передачи мощности от карданного вала на ведущие колеса. Его основная функция - позволить ведущим колесам вращаться с разной скоростью, позволяя колесам проходить повороты, получая при этом мощность от двигателя. [1]

  • Открытый дифференциал (OD) является наиболее распространенным типом.К тому же это самый дешевый. Открытый дифференциал позволяет автомобилю проходить повороты, не таща за собой внешнее колесо. Однако мощность передается на колесо с наименьшим тяговым усилием (сцеплением с дорогой). Если это колесо находится на льду или другой скользкой поверхности, транспортное средство не будет двигаться вперед, а колесо с мощностью просто вращается. В автомобилях с приводом на два колеса, если они имеют открытый дифференциал, они имеют только одно ведущее колесо. В полноприводных автомобилях с открытыми дифференциалами (обычно заводскими) только одно колесо на каждой оси приводит в движение автомобиль.Преимущества включают в себя редкую поломку оси, меньший износ шин и бесплатность, поскольку большинство новых автомобилей поставляются с открытыми дифференциалами. [2]
  • Дифференциал повышенного трения (LSD) решает эту проблему. Используя серию сцеплений (называемых пакетом сцепления), LSD позволяет ограничить проскальзывание колес, сохраняя мощность на обоих ведущих колесах. [3] LSD популярны в гоночных автомобилях, так как бывают случаи, когда они выходят из поворота и нуждаются в ускорении без потери мощности на одном ведущем колесе. [3]
  • Блокировка дифференциала (шкафчик) позволяет заблокировать два ведущих колеса на оси. Преимущество в том, что оба колеса всегда имеют мощность. Недостатком является то, что поворот намного сложнее, поскольку оба колеса должны вращаться с одинаковой частотой вращения. Поэтому при резких поворотах большинство шкафчиков необходимо отключать. Шкафчики также могут представлять водителю опасные ситуации. Например, при движении по склону (переходу по перекрестку), если одно ведущее колесо теряет сцепление с дорогой, теряется сцепление с дорогой, и автомобиль может скользить вбок по склону.Водителей часто предупреждают не пересекать склон, если поверхность рыхлая или скользкая. [4] Шкафчики можно включать и выключать механически, электронным способом (электронный шкафчик) или сжатым воздухом (шкафчик воздуха). Шкафчики желательны на внедорожниках, но обычно бесполезны на улицах и шоссе.
  • Золотник - открытый дифференциал, оси которого механически скреплены между собой. [2] Это не позволяет колесам двигаться быстрее или медленнее на поворотах.Это дешево и почти не добавляет веса автомобилю, но обычно ограничивается соревнованиями по бездорожью и трейлраннингом. [2] Они не подходят для движения по улице, так как они будут «чирикать» при движении по поворотам. [2]

Torsen - тот же торцевой эффект, что и ограниченное скольжение, но не использует сцепления или колеблется, чтобы это сделать.

.

Что такое дифференциальная сигнализация? | EAGLE

Есть что-то удивительное в возможности использовать новейшие технологии и интерфейсы в конструкции вашей печатной платы. Мы говорим о таких вещах, как USB 3.0, HDMI, Ethernet; список продолжается. Все, что добавляет вашему устройству современные функциональные возможности и выделяет его. Но есть компромисс при добавлении некоторых из этих передовых технологий на вашу доску; они внезапно бросают вас в мир высокоскоростного дизайна. Именно в этом мире вам нужно обращать внимание на большее количество переменных, чем когда-либо, таких как целостность сигнала (SI), электромагнитные помехи (EMI) и, что наиболее важно, дифференциальная сигнализация.Хотя в прошлом вы могли использовать однолинейные трассировки, если вы хотите работать с новейшими технологиями, подготовьтесь к добавлению парной трассировки в микс. Так что же такое дифференциальная сигнализация и зачем вам вообще ее использовать на высокоскоростной печатной плате? Давайте выясним.

К чему вы привыкли

Чтобы понять дифференциальную сигнализацию, вы сначала должны понять ее противоположность - несимметричную сигнализацию. Не позволяйте причудливому имени сбить вас с толку; это именно тот вид сигналов, с которым вы работали над любой конструкцией печатной платы, которая не считается высокоскоростной.Как следует из названия, несимметричная сигнализация - это отправка сигнала от передатчика к приемнику с одним следом. Это оно.

Пример несимметричной сигнализации на схеме, обратите внимание на одиночную сигнальную линию от Data Into Data Out. (Источник изображения)

Это означает, что у вас будет одна медная дорожка, несущая ваш сигнал до конечного пункта назначения, а оттуда он направится к вашей общей земле и обратно к вашему источнику. Это обычная практика для каждой стандартной компоновки печатной платы, над которой вы, возможно, работали в прошлом.Каждый раз, когда вы рисуете трассу в Autodesk EAGLE и соединяете ее от одного вывода к другому; то вы работаете с несимметричным сигналом.

Когда вы начинаете втиснуть кучу трасс и компонентов в очень ограниченное пространство, вам нужен способ обойти проблемы с потенциальными электромагнитными помехами (EMI). Потому что, если есть что-то, что нужно знать о проблемах с электромагнитным излучением, так это то, что он отлично справится с испорченным качеством сигналов, которые вы отправляете. Вот пример:

  • Допустим, вам нужно сохранить фрагмент данных в определенном месте в памяти DDR, поэтому вы отправляете сигнал из точки A в точку B.
  • Что происходит на пути этого сигнала, если он сталкивается с некоторыми электромагнитными помехами? Помехи могут повлиять на данные внутри сигнала. Превращаем нашу красивую квадратную волну в нечеткий беспорядок.
  • И прежде чем вы это узнаете, сигнал, который вы отправили, оказывается беспорядочным и неузнаваемым.

Чтобы помочь защитить целостность сигналов на пути их прохождения в высокоскоростной конструкции, вам нужен более надежный способ защиты передаваемой информации, чем может обеспечить односторонняя сигнализация.И это именно то, что помогает прикрыть дифференциалы сигнализации.

Что такое дифференциальная сигнализация

В отличие от несимметричных сигналов, дифференциальные сигналы используют не одну, а две трассы, которые работают вместе в тандеме. Вот как это работает: у вас есть две трассы, каждая из которых несет один и тот же сигнал, одна из которых считается положительным сигналом, а другая - отрицательным.

Здесь расположены дифференциальная сигнализация (внизу) и односторонняя сигнализация (вверху) рядом.(Источник изображения)

Когда информация передается по этому устройству с двумя трассами и достигает места назначения, приемник может извлечь данные, анализируя разность потенциалов между положительным и отрицательным сигналом. И анализируя этот двойной сигнал и его разность напряжений, ваш приемник может понять, передает ли этот сигнал 1 или 0, высокое или низкое напряжение.

Итак, для каждого дифференциального сигнала, который вам нужно добавить на вашу плату, вам нужно будет выстроить две дорожки, расположенные рядом.Например, если у нас есть доска с 20 различными цепями, которые необходимо соединить, нам потребуется всего 40 отдельных трасс для выполнения работы.

Мы знаем, о чем вы сейчас думаете - с какой стати мне вообще когда-либо захочется удвоить количество трасс на моем макете платы? Это займет некоторое ценное пространство на печатной плате, которое можно было бы использовать для размещения компонентов и облегчить мою работу по трассировке. На первый взгляд, вы правы, дифференциальные сигналы действительно занимают больше места на вашей печатной плате, но они имеют некоторые удобные преимущества в приложениях для высокоскоростного проектирования, например:

Сохранение отдельных энергосистем

Поскольку дифференциальные сигналы равны и противоположны, они не обязательно посылают обратный сигнал на землю; тогда вы можете сделать что-то вроде аналогового сигнала, поступающего на цифровое устройство, не беспокоясь о пересечении границ мощности.Это значительно упрощает разделение энергосистем. Однако следует иметь в виду одну вещь: если вы работаете с технологиями USB или RS-485, вам, скорее всего, понадобится общая земля, чтобы ваши дифференциальные сигналы оставались в пределах требуемого порога напряжения.

Сопротивление входящим электромагнитным помехам

Дифференциальная сигнализация также имеет дополнительное преимущество, заключающееся в уменьшении любых входящих электромагнитных помех или перекрестных помех от других зашумленных трасс. Любая помеха, которую поглощает дифференциальный сигнал, равномерно распределяется между положительной и отрицательной трассами, что снижает любое изменение амплитуды, которое может вызвать внешние электромагнитные помехи.

Как определить, что включается и выключается в этом зашумленном цифровом сигнале? (Источник изображения)

Сопротивление исходящим электромагнитным помехам

Ваши дифференциальные сигналы также будут генерировать собственные электромагнитные помехи при передаче информации, как и несимметричные сигналы. Однако, поскольку положительный и отрицательный сигналы в дифференциале имеют одинаковую полярность и расстояние, это эффективно нейтрализует любые электромагнитные помехи.

Еще один отличный пример того, как электромагнитные помехи в виде шума могут влиять на сигнал на его пути.К счастью, здесь использовались дифференциальные сигналы. (Источник изображения)

Нижнее напряжение

Дифференциальные сигналы также обладают дополнительным преимуществом, поскольку они могут работать при более низких напряжениях, чем несимметричные сигналы, при сохранении их отношения сигнал / шум (SNR). А при более низком напряжении вы получаете преимущество, заключающееся в возможности использовать более низкие напряжения питания, сниженное энергопотребление и уменьшенные эмиссии EMI.

Точность синхронизации

Несимметричных сигналы имеют кучу факторов, чтобы рассмотреть, чтобы определить, какой тип логического состояния они могут быть, как напряжение питания, опорное напряжение и т.д.Но с дифференциальными сигналами это определить намного проще. Если отрицательная кривая в дифференциальном сигнале имеет более высокое напряжение, чем положительная кривая, то у вас высокое логическое состояние, а если наоборот, то у вас низкое логическое состояние.

Логические состояния имеют как высокий, так и низкий диапазон, чтобы сигнализировать о передаче 1 или 0. (Источник изображения)

Использование дифференциальных сигналов в вашем проекте

Теперь, когда вы понимаете все огромные преимущества, которые дает использование дифференциальной сигнализации в вашей высокоскоростной конструкции, вы можете задаться вопросом, какие ограничения они требуют.Как вы, наверное, догадались, все преимущества дифференциальной передачи сигналов сильно зависят от возможности постоянно держать эти трассы на постоянной длине и расстоянии друг от друга, иначе вы испортите преимущества равного напряжения и полярности между два. Вот три быстрых совета при настройке правил проектирования для дифференциальных сигналов в Autodesk EAGLE:

  • Правило 1 - Следы должны быть одинаковой длины . Если вы этого не сделаете, то вы испортите все преимущества двух трасс, соединенных вместе на всем пути их передачи от передатчика к приемнику.И потерять это означает иметь дело с некоторыми неприятными выбросами EMI, которые могут повредить ваши данные. В большинстве устройств разница в длине дорожек может составлять до 500 мил, но при этом сохраняйте их как можно ближе.
  • Правило 2 - Трассы дифференциальных трасс близко друг к другу . Это называется связью. Это опять же связано с проблемой электромагнитных помех. Чем ближе вы маршрутизируете свои дифференциальные сигналы вместе, тем меньше площадь контура индуцированного тока, который напрямую влияет на количество электромагнитных помех, излучаемых вашими дорожками.Хранение двух трасс рядом друг с другом значительно расширяет ваши возможности по устранению проблем с электромагнитными помехами.
  • Правило 3 - Поддерживайте постоянный импеданс . Важно поддерживать постоянное дифференциальное сопротивление трассы на всем протяжении пути от передатчика до приемника. Ваш импеданс будет зависеть от многих вещей, таких как ширина ваших следов, толщина вашей меди и материалы, которые вы используете в своем слое. Наберите эти переменные, точно рассчитайте, каким должен быть импеданс, и придерживайтесь его.

В ногу со временем

Если вы собираетесь работать с новейшими технологиями в конструкции вашей печатной платы, такими как USB 3.0, HDMI, DDR, Ethernet и т. Д., Тогда дифференциальные пары станут вашим новым лучшим другом. Эти тесно связанные трассы не только помогают снизить входящие и исходящие электромагнитные помехи, но также упрощают разделение энергосистем и могут снизить общее напряжение, необходимое для питания вашего проекта. Помните, однако, чтобы получить все преимущества дифференциальной сигнализации, вам необходимо строго определить правила проектирования, чтобы ваши трассы имели одинаковую длину с небольшими интервалами и точным импедансом.Если вы этого не сделаете, вы испортите их выгодный баланс!

Готовы начать работу с дифференциальной сигнализацией в своем первом высокоскоростном проектном проекте? Попробуйте Autodesk EAGLE бесплатно сегодня!

.Независимость от

языков - что такое дифференциальное исполнение?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама
.

Что такое дифференциал? | HowStuffWorks

Дифференциал - это устройство, которое распределяет крутящий момент двигателя на два направления, позволяя каждому выходу вращаться с разной скоростью.

Дифференциал используется во всех современных легковых и грузовых автомобилях, а также во многих полноприводных (постоянных полноприводных) автомобилях. Эти полноприводные автомобили нуждаются в дифференциале между каждым набором ведущих колес, и им также нужен дифференциал между передними и задними колесами, потому что передние колеса проходят за поворот другое расстояние, чем задние колеса.

Объявление

Частично полноприводные системы не имеют дифференциала между передними и задними колесами; вместо этого они заблокированы вместе, так что передние и задние колеса должны вращаться с одинаковой средней скоростью. Вот почему этим машинам сложно поворачивать по бетону при включенной системе полного привода.

.

Дифференциальные уравнения - интервалы действия

Онлайн-заметки Павла

Ноты Быстрая навигация Скачать

  • Перейти к
  • Ноты
  • Задачи практики и задания еще не написаны.Пока позволяет время, я работаю над ними, однако у меня нет того количества свободного времени, которое я имел раньше, поэтому пройдет некоторое время, прежде чем здесь что-нибудь появится.
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Замены
  • Моделирование с помощью DE первого порядка
  • Разделы
  • Основные понятия
  • DE второго порядка
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Алгебра и триггерный обзор
  • Распространенные математические ошибки
  • Праймер комплексных чисел
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои студенты
  • Заметки Загрузки
  • Полная книга
  • Текущая глава
  • Текущий раздел
  • Practice Problems Загрузок
  • Проблем пока не написано.
  • Проблемы с назначением Загрузок
  • Проблем пока не написано.
  • Прочие товары
  • Получить URL для загружаемых элементов
  • Распечатать страницу в текущем виде (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • Алгебра
    • Предварительные мероприятия
      • Целочисленные экспоненты
      • Рациональные экспоненты
      • Радикалы
      • Полиномы
      • Факторинговые многочлены
      • Рациональные выражения
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и наборы решений
      • Линейные уравнения
      • Приложения линейных уравнений
      • Уравнения с более чем одной переменной
      • Квадратные уравнения - Часть I
      • Квадратные уравнения - Часть II
      • Квадратные уравнения: сводка
      • Приложения квадратных уравнений
      • Уравнения, сводимые к квадратичным в форме
      • Уравнения с радикалами
      • Линейные неравенства
      • Полиномиальные неравенства
      • Рациональные неравенства
      • Уравнения абсолютных значений
      • Неравенства абсолютных значений
    • Графики и функции
      • Графики
      • Строки
      • Круги
      • Определение функции
      • Графические функции
      • Комбинирование функций
      • Обратные функции
    • Общие графы
      • Прямые, окружности и кусочные функции
      • Параболы
      • Эллипсы
      • Гиперболы
      • Разные функции
      • Преобразования
      • Симметрия
      • Рациональные функции
    • Полиномиальные функции
      • Делящие многочлены
      • Нули / корни многочленов
      • Графические полиномы
      • Нахождение нулей многочленов
      • Частичные дроби
    • Экспоненциальные и логарифмические функции
      • Экспоненциальные функции
      • Логарифмических функций
      • Решение экспоненциальных уравнений
      • Решение логарифмических уравнений
      • Приложения
    • Системы уравнений
      • Линейные системы с двумя переменными
      • Линейные системы с тремя переменными
      • Расширенные матрицы
      • Подробнее о расширенной матрице
      • Нелинейные системы
  • Исчисление I
    • Обзор
      • Функции
      • Обратные функции
      • Триггерные функции
      • Решение триггерных уравнений
      • Триггерные уравнения с калькуляторами, часть I
      • Триггерные уравнения с калькуляторами, часть II
      • Экспоненциальные функции
      • Логарифмических функций
      • Экспоненциальные и логарифмические уравнения
      • Общие графы
.

Смотрите также