Нормальная плотность электролита в аккумуляторе


Плотность электролита в аккумуляторе - какая плотность должна быть и как проверить

Автор Milavlad На чтение 6 мин. Просмотров 12 Опубликовано


Большинство автолюбителей не раз были знакомы с низкой плотью электролита. Проще говоря, проблема разряженного аккумулятора касалась практически каждого второго автовладельца.

Нормальное показание плотности электролита

Электролит проводит электрический ток и имеет в своём составе дистиллированную воду и серную кислоту. Данные вещества находятся приблизительно в одинаковых долях. На одну часть приходится дистиллированная вода и 1,25 части серной кислоты. Таким образом нормальная плотность аккумулятора составляет 1,25.

Постоянно полуразряженный или полностью разряженный аккумулятор приводит к сульфатации пластин. Это бесповоротно убивает АКБ, снижая его ёмкость и увеличивая внутреннее сопротивление. В процессе сульфатации, пластины аккумулятора покрываются сернокислым крупнокристаллическим свинцом.

Всегда следует:

  1. Делать периодическую профилактику вашего аккумулятора.
  2. Взять за правило поддерживать заряд и чистоту аккумуляторной батареи.
  3. Устранять наличие окислов на клеммах и грязи.

Почему необходим полноценный заряд аккумулятора

  1. Чем чаще происходит разреженность свинцовых пластин в аккумуляторе, тем быстрее наступает процесс сульфатации.
  2. Качественная работа АКБ прямо пропорциональна плотности электролита.

Примечания:

  1. Профилактику АКБ следует проводить каждый сезон. Особенно в период осенне-зимней эксплуатации.
  2. АКБ приходит в негодность по разным причинам. Зачастую длительными запусками двигателя стартером. Зимой стартер потребляет повышенный ток и может привести к короблению пластин.
  3. Заряд аккумулятора прямо пропорционален плотности электролита степени заряда.

Как проверить плотность электролита аккумулятора

  • Надеть перчатки и выкрутить все пластиковые крышки герметичных банок аккумулятора. Ареометр аккуратно опустить в первую банку и извлечь резиновой грушей электролит. Поплавок прибора должен находиться в свободном положении и не задевать дно и стенки банки.
  • Жидкость в приборе наглядно укажет показания плотности.
  • Этот процесс провести поочерёдно с каждой банкой. При разнице плотности в 0,01 г-на куб. см, необходимо долить дистиллированную воду.
  • При пониженной плотности до показателя 1,22 г-на куб. см и ниже необходимо поставить АКБ на зарядку.

Важно! При повышении температуры плотность электролита прямо пропорционально уменьшается на 0.01 г/см3. И, с точностью до наоборот увеличивается при понижении температуры.

Краткий инструктаж предварительной подготовки:

  1. Соблюдая меры безопасности подготовить необходимые ниже перечисленные инструменты и материалы.
  2. Самостоятельное изготовление электролита требует внимательности и аккуратности. Кислоту медленно добавляют в воду, а не наоборот. При добавлении в воду кислота реагирует не агрессивно, исключив ожоги и испарения. Кислота погружается в толщу воды и разбрызгивания не происходит из-за определенной реакции. Рекомендация: Аккуратно вливая кислоту в дистиллированную воду, непрерывно перемешивайте раствор стеклянной палочкой. Растворение серной кислоты в воде выделяет большое количество тепла. Выливая воду в кислоту, вы подвергните себя большой опасности. Кислота имеет по сравнению с водой высокую плотность (практически в два раза). Следовательно, вода растекается на поверхности кислоты. Преобразуясь в быстро нагревающуюся агрессивную среду, образуя пары и кислотные брызги. Будьте внимательны!
  3. Ни в коем случае не переворачивайте аккумулятор! Это ведет к осыпанию пластин и может вызвать короткое замыкание.
  4. Специальную посуду и инструменты для приготовления электролита следует подготовить заранее:
    1. Защитная одежда (брезентовые рукавицы, фартук прорезиненный, кислотно-щелочестойкие перчатки, защитные очки).
    2. В свободном доступе бак с чистой холодной водой.
    3. В аптечку стоит добавить пищевую соду и нашатырный спирт.
    4. Различные приспособления для работы с реагентами (мензурку, резиновую грушу и воронку).
    5. Учесть и определенные приборы (ареометр, трубку для измерения уровня, паяльник и дрель).

Инструктаж по увеличению плотности электролита

Показатель плотности решает всё. Например, хорошее состояние определяет значение 1,25-1,28, и профилактика не нужна. Низкий показатель плотности (1,18-1,20) говорит о доливке электролита с плотностью 1,25.

Итак, приступаем:

  • Откачиваем старый электролит резиновой грушей в одной из банок АКБ. Делаем необходимые замеры плотности.
  • Новый раствор, объёмом вполовину от откачанного следует долить и медленными движениями прокачать АКБ для перемешивания.
  • Измерьте плотность. Если показания неутешительны, добавьте еще часть электролита. Повторять процесс, пока не будут достигнуты нужные показатели.

Повышение плотности электролита

Наипростейшим методом решения данного вопроса — это добавление дистиллированной воды. Хотя многие не догадываются, что вода выкипает со временем, следовательно, и сам электролит тоже.

Прежде чем повышать плотность электролита, следует произвести определённые замеры. Это поможет понять износ вашего аккумулятора и выявить дальнейшие действия. Проверку следует производить правильным образом. Специальный прибор, созданный для данной процедуры — это ареометр. Электролит является небезопасным реагентом.

Прежде чем замерять его плотность, в обязательном порядке следует подумать о мерах безопасности:

  • Замеры производить в специальной одежде.
  • Стараться полностью избегать контакта раствора с кожей и одеждой.
  • Воздержаться от курения.

Понижение плотности электролита

Обыкновенным доливом электролита вряд ли удастся решить этот вопрос. В данном варианте случае понадобится аккумуляторная кислота, потому что по плотности она выше.

Совет: если вы желаете долгую и радостную жизнь вашему аккумулятору, своевременно делайте профилактику Этот метод похож на процесс добавления электролита. Не получилось с первого раза достичь нужных результатов? Повторите процедуру до требуемого результата.

Не стоит мучиться при пониженной плотности вашего аккумулятора (1,15) просто полностью замените электролит:

  1. Во-первых, откачайте большое количество жидкости резиновой грушей.
  2. Плотно закрыть отверстия пробок на банках АКБ.
  3. Далее нужно последовательно просверлить 3,5 миллиметровые зазоры в дне каждой из банок (поставив аккумулятор набок).
  4. Прежде чем просверливать новое отверстие, необходимо извлечь электролит полностью.
  5. Делаем полную промывку АКБ дистиллированной водой.
  6. Затем запаиваем высверленные отверстия кислотно-щелочной пластмассой.

Проведя данную процедуру можно смело заливать правильно приготовленный электролит.

Безопасность в профилактике АКБ

Аккумулятор состоит из свинцовых пластин, а свинец отравляет организм. Чтобы не отравиться парами серной кислоты и не получить ожогов кожных покровов, следует придерживаться четкой техники безопасности.

Обязательным условием безопасности считается применение спецодежды и средств хим защиты. Материал одежды желательно использовать из хлопка с кислотостойкой пропиткой. Для работы в зимнее время года используют грубые шерстяные волокна.

Используйте керамическую или санфаянсовую емкость для работы с реагентами. Категорически запрещена стеклянная посуда. Стекло не предназначено для использования с такими реагентами.

Предпочтительно при работе с аккумулятором в аптечке иметь запас дополнительных средств: пищевая сода, марганец, нашатырный спирт, бинты и вату.

Непроветриемость рабочего помещения приводит к различным травмам и отравлениям. Без респиратора и перчаток вы рискуете приобрести хроническую форму отравления свинцом. Свинцовая пыль, как правило, попадает в организм через дыхательные пути. Вследствие чего появляется общая слабость, малокровие, а также заболевание почек и даже судооги.

При подозрении на отравление необходимо срочно выйти на свежий воздух и прополоскать рот содовым раствором. После чего немедленно вызвать врача. Содой можно также нейтрализовать брызги воды или электролита.

Электролит плотностью 1,25 при попадании на кожу рук и лица, нейтрализуется обычной водой с мылом.

Примечание: помните, что никакая правильная профилактика не увеличивает срок службы вашего аккумулятора как у новой АКБ.

как измерить ее в батарее, почему она бывает высокой

Практически каждый автомобилист знает, насколько важно держать аккумуляторную батарею своего автомобиля в порядке. От ее состояния зависит не только возможность пуска двигателя, но и нормальная работа всего электрооборудования машины. К сожалению, далеко не всем известно, что исправность и «боеготовность» батареи зависит не только от своевременной и качественной ее зарядки, но и от нормальной плотности электролита в аккумуляторе.

Устройство и принцип работы АКБ

Для того чтобы качественно провести обслуживание аккумулятора и обеспечить правильную его работу, необходимо хотя бы приблизительно представлять, что у него внутри и как все это работает. Поэтому, прежде чем перейти к вопросам об электролите, необходимо понять, как устроен автомобильный аккумулятор и по какому принципу он работает.

Конструкция батареи

Практически все свинцово–кислотные батареи имеют одинаковую конструкцию. Состоят они из отдельных секций (банок), каждая из которых имеет набор положительных и отрицательных пластин. Первые называются катодными и выполнены из металлического свинца. Вторые, анодные, сделаны из диоксида свинца. Пластины собраны в пакет и помещены в кислотостойкую емкость, в которую впоследствии заливается рабочая жидкость – водный раствор серной кислоты или так называемый электролит.

Устройство секции свинцово-кислотного аккумулятора:

  • 1 – крышка банки;
  • 2 – корпус банки;
  • 3 – ребристый отстойник;
  • 4 – пластины, собранные в пакет;
  • 5 – отрицательный (анодный) вывод;
  • 6 – отрицательный (анодные) пластины;
  • 7 – диэлектрическая прокладка – сепаратор;
  • 8 – положительный (катодный) вывод;
  • 9 – положительные (катодные) пластины.

Готовые секции, соединенные последовательно, и являются аккумуляторной батареей. В шестивольтовых АКБ таких секций три, в 12-ти вольтовых – шесть.

Как это работает

Итак, конструкция АКБ достаточно проста, но каким образом на ее выводах появляется напряжение? Действительно, если взять батарею прямо из магазина и подключить к ней вольтметр, то прибор покажет «0». Отсутствие тока обусловлено тем, что электролит не заливается в батарею сразу после изготовления, и в стоящем на магазинной полке аккумуляторе пластины сухие. Рабочая жидкость заливается в АКБ уже после покупки.

Самое время выяснить, для чего нужен электролит. Поскольку положительные и отрицательные пластины имеют различный химический состав, между ними, погруженными в кислотный раствор, возникает разность потенциалов (примерно 2 В на секцию, чем и обусловлено количество секций в батарее). При подключении к клеммам АКБ нагрузки между пластинами, благодаря высокой электропроводности электролита, начинает течь ток. Одновременно начинается химический процесс преобразования диоксида свинца в сульфат свинца с участием серной кислоты. Как только количество диоксида и серной кислоты упадет до определенного уровня, процесс прекратится, и батарея перестанет вырабатывать ток – разрядится.

В процессе разрядки серная кислота и диоксид свинца расходуются на образование сульфата свинца

Но аккумуляторы, в отличие от гальванических элементов (батареек), могут восстанавливать свои химические свойства. Если подключить АКБ к источнику постоянного тока, то под его действием сульфат начнет разлагаться на диоксид свинца и серную кислоту. Батарея начнет заряжаться, преобразуя электрическую энергию в химическую. Как только количество диоксида и кислоты достигнет исходных величин, батарею можно считать заряженной.

Химические процессы, возникающие в батарее при ее разрядке и зарядке

Серная кислота, входящая в состав электролита, играет одну из основных ролей в работе АКБ. Именно от ее свойств будет зависеть качественная и долговременная работа батареи в целом.

Понятие плотности электролита

Вполне понятно, что количество серной кислоты и диоксида свинца в батарее должно быть сбалансированным – ведь они расходуются вместе. Поскольку количество диоксида свинца определяется производителем, автомобилисту после покупки аккумулятора остается лишь заправить АКБ необходимым количеством кислоты. Емкость секций батареи тоже фиксирована, поэтому в нее больше нормы не зальешь.

Остается единственный вариант – разбавить кислоту нейтральной к свинцу жидкостью, что и делается. Разбавляется кислота обычной водой, но дистиллированной, чтобы соли, содержащиеся в обычной воде, не нарушили чистоту раствора и не вывели АКБ из строя. Обычно автолюбитель покупает уже готовый электролит нужной плотности в автомагазине, хотя приготовить его можно и самостоятельно.

Процентное отношение воды к кислоте в полностью заряженном аккумуляторе составляет 70/30. Но при составлении электролита и его измерениях намного удобнее пользоваться единицами плотности – г/см. куб. или кг/м. куб. Удельный вес воды и кислоты различен, а значит, по общей плотности раствора можно судить о процентном соотношении его составляющих – концентрации.

Оптимальная концентрация кислоты

Пониженная концентрация, как правило, приводит к ускоренной сульфатации пластин – образованию на них нерастворимого сульфата свинца, который уже не может разложиться на кислоту и диоксид. В результате емкость батареи катастрофически падает, КПД уменьшается, а внутреннее сопротивление увеличивается (сульфат – диэлектрик).

Даже полностью заряженная, но сульфатированная батарея, выдающая, казалось бы, нормальное напряжение, садится после первого пуска, а то и вообще не в состоянии провернуть стартер. Кроме того, электролит с низкой плотностью замерзает при более высоких температурах, а значит, на стоянке даже при легком морозе батарею попросту разорвет льдом.

Чрезмерно высокая плотность электролита в аккумуляторной батарее не менее опасна, поскольку излишняя кислотность сокращает ресурс батареи в разы, буквально съедая пластины. Конечно, аккумулятор, залитый одной кислотой, будет крутить «как зверь», но сколько проживет такая АКБ? Сутки, может неделю. Если повезет – месяц.

А теперь пора вернуться к оптимальной плотности. В сети можно увидеть множество таблиц «рекомендованной» плотности, в зависимости от климатических условий. Если тепло – пониже, если мороз – повыше. Чем грозят эти «повыше» и «пониже», было описано в предыдущих абзацах. Поэтому не стоит изобретать велосипед, поскольку все эксперименты уже провели производители АКБ, а рекомендованная плотность приводится в сопроводительной документации.

С новым, сухим (сухозаряженным) аккумулятором все просто – в него заливается электролит комнатной температуры с плотностью 1.28 г/см. куб. Через час концентрация упадет до 1.26 – 1.27 г/см. куб., и батарея готова к работе. Далее, в процессе заряда/разряда аккумулятора и в зависимости от температуры окружающей среды, плотность раствора будет все время колебаться. Больше разряд – ниже плотность, идет заряд – плотность повышается. В нормально функционирующей АКБ отношение плотности к степени заряда и напряжению на клеммах выражается следующими показателями:

  • 1.265 кг/м. куб. — 12.6 … 12.7 В — полностью заряжена;
  • 1.225 кг/м. куб. — 12.3 … 12.4 В — 75%;
  • 1.190 кг/м. куб. — 12.0 … 12.1 В — 50%;
  • 1.115 кг/м. куб. — 11.8 … 11.9 В — 25%;
  • 1.120 кг/м. куб. — 11.6 … 11.7 В — разряжена;
  • ниже 1.120 кг/м. куб. — ниже 11.6 В — глубокий разряд.

Стоит обратить внимание на то, что все параметры батареи, включая плотность и напряжение, сильно зависят от температуры. Поэтому значения справедливы только при 26.7 градусах Цельсия. Если нужно провести измерения при другой температуре окружающей среды, то дополнительно придется воспользоваться таблицей плотности электролита от температуры, которую несложно найти в сети.

Выяснив зависимость плотности от выходного напряжения батареи, а значит, и от степени ее заряда, контролировать концентрацию электролита несложно. Достаточно замерить напряжение на клеммах отключенного аккумулятора любым вольтметром, затем измерить плотность и проверить их соответствие.

Проверка плотности рабочей жидкости

Для измерения плотности жидкостей существуют специальные приборы – ареометры или плотномеры. Есть такой и для автомобильных аккумуляторов. Выполнен он в виде большого шприца, внутри которого расположен поплавок со специально отградуированной шкалой.

Поплавок автоареометра комплектуется специальным «шприцем» для работы в узкогорлых секциях аккумуляторов.

Для того чтобы измерить плотность в аккумуляторе, со всех его секций сворачиваются пробки. Далее грушу ареометра сжимают, а его иглу погружают в секцию. Отпустив грушу, набирают в шприц электролит. При этом поплавок прибора всплывает. Плотность жидкости считывают со шкалы по тому уровню, до которого всплыл поплавок.

Поплавок всплыл до уровня 1.200. Плотность электролита – 1.2 г/см. куб.

После измерения грушу вновь сжимают, а после слива электролита обратно в батарею ареометр промывают проточной водой и сушат. Не следует забывать, что каждая секция – отдельная, независимая часть АКБ, поэтому плотность нужно измерить в каждой.

Когда и чем доливают аккумулятор

Необходимость доливки рабочей жидкости в батарею возникает нечасто, но она бывает необходимв. Что, сколько и в каких случаях нужно доливать? Всего таких случаев два: низкий уровень электролита и ненормальная кислотность рабочей жидкости.

Низкий уровень в секциях

Эта ситуация возникает часто, поскольку в процессе работы батареи вода испаряется или, как принято говорить, выкипает. При этом уровень раствора в секциях уменьшается, и края пластин оказываются сухими. Определить это можно визуально, просто свинтив пробки с секций и заглянув в заливные горловины. Нормальный уровень жидкости в секции должен быть примерно на 1 см выше уровня среза пластин. В некоторых АКБ даже имеется специальная метка, отштампованная на корпусе. Если уровень низкий, то ситуация хоть и серьезна, но устранить ее легко. Для этой операции понадобятся:

  • медицинский шприц без иглы или автомобильный ареометр;
  • дистиллированная вода;
  • средства защиты (очки и резиновые перчатки).

Дистиллированная вода набирается в шприц и заливается в соответствующие секции, до нужного уровня. После доливки жидкости в аккумулятор его ставят на зарядку. В этом плане автоареометр намного предпочтительней, поскольку, долив воду, тут же можно проконтролировать плотность раствора.

Следует соблюдать осторожность: нельзя работать с кислотой, если глаза не защищены.

Ненормальная кислотность

Если изначально батарея была заправлена как положено, то чрезмерно большая плотность электролита в аккумуляторе может появиться только в случае, если выкипела вода или измерения проводились при сильном морозе (с понижением температуры плотность повышается, и это нормально). В первом случае достаточно просто долить воду, во втором – произвести перерасчет или, что проще и правильнее, заняться измерениями в отапливаемом помещении.

А вот падение концентрации кислоты – ситуация реальная. Обычно это происходит из-за неправильной эксплуатации АКБ или ввиду ее «преклонного возраста». Причина – появление нерастворимого сульфата, который при своем образовании использовал кислоту, но уже не разлагается при зарядке, а значит, вернуть ее обратно в раствор не может. Ситуация не особо радостная, но восстановить плотность необходимо хотя бы для того, чтобы дотянуть до покупки новой батареи.

Прежде чем принять решение о доливке кислоты, необходимо еще раз убедиться в том, что плотность действительно ниже положенной при текущем состоянии АКБ. Если решение принято, то понадобятся ареометр, перчатки, очки и корректирующий электролит плотностью 1.35 — 1.40 г/см. куб. (в продаже есть и такой).

Корректирующий электролит для доливки в автомобильный аккумулятор

В крайнем случае подойдет и стандартный 1.28 г/см. куб., но, возможно, придется отобрать лишнюю жидкость из секции в отдельную емкость, чтобы освободить место для более «крепкого».

Методика доливки та же, что и воды, но при этом плотность в банке постоянно контролируется тем же ареометром.

Категорически запрещается поднимать концентрацию раствора доливкой чистой серной кислоты. Во-первых, это очень опасно, во-вторых, даже нескольких грамм концентрированной кислоты достаточно, чтобы кардинально изменить плотность раствора в секции, а значит, выставить нужную плотность пол-литровым ареометром исключительно сложно.

Какая должна быть плотность электролита в аккумуляторе

Всем привет, дорогие читатели, сегодня расскажу какая должна быть плотность электролита в аккумуляторе. Электролит – основной компонент аккумуляторной батареи, от его плотности зависит накопление и удержание батареей заряда. Низкая концентрация не позволяет АКБ нормально заряжаться, а разрядка наоборот происходит слишком быстро. При низкой плотности машина плохо заводится с утра и может не завестись совсем, остановившись где-нибудь в поле. Неприятный момент, не правда ли? Чтобы его избежать, разберемся какая должна быть концентрация и как её повышать.

Причины и последствия

Почему падает плотность электролита? Она понижается в результате испарения из секций батареи. Больше всего это происходит при закипании его при перезарядке. Постепенно испаряется электролит и вода естественным путем через дренажные отверстия. Есть такие в крышках банок АКБ, чтобы его не разорвало избытком газа или паров.

О необходимости доливать воду по уровню в обслуживаемых батареях знают многие владельцы машин. Но вот о том, что необходимо доливать и электролит, когда его концентрация низкая, знают далеко не все. Частично кислота выпаривается вместе с водой, частично разлагается, вступая в реакцию с веществом пластин АКБ.

Разумеется это происходит не быстро, поэтому проверять электролит ежедневно не имеет смысла. А вот ежемесячная проверка, для обслуживаемого аккумулятора будет не лишней.

Тем более что проверка дело быстрое и совсем не трудное. Для проверки нужно лишь снять АКБ. Открутить пробки и проверить ареометром все банки. После этого закрутить пробки обратно, и вернуть батарею на место. Займет не более 10 минут, даже если все делать не спеша.

К чему приводит безответственность

Когда водитель постоянно доливает по уровню лишь воду в батарею, нормальная плотность электролита падает, зимой такой аккумулятор просто разорвет льдом. Воды в нем больше чем кислоты, значит при понижении температуры она перейдет в лед. А лед, как известно расширяется, вот и происходит разрыв корпуса АКБ

Летом такая батарея быстро разряжается, не смотря на исправный генератор и постоянные стационарные подзарядки.  С похолоданием, при температуре около нуля машина не заводится. Так как плотность снижается и от снижения температуры. Уровень заряда падает автоматически.

Какая нужна плотность

Понятие летней и зимней плотности относительное, поддержание нужной концентрации необходимо и зимой и летом. В областях с более холодным климатом -  плотность должна быть несколько выше, но все равно в определенных пределах. Поддерживать концентрацию помогает систематическая проверка. Вот график плотности и температур, который поможет вам сориентироваться, нужно ли повышать плотность электролита в вашей батарее.

Из графика видно, что даже при относительно нормальной плотности летом, с наступлением холодов все равно возникнут проблемы. Если электролит в аккумуляторе помутнел или почернел, лучше его заменить полностью, отрегулировав плотность в процессе замены. Как правильно это сделать сейчас расскажу.

Повышаем плотность

Начнем с того, что для этого необходимо:

  • Ареометр – прибор для измерения плотности.
  • Резиновая груша.
  • Мерная колба или стакан.
  • Емкость, куда сливать электролит.
  • Бутылка с электролитом для аккумуляторов.
  • Бутылка дистиллята.

Техника безопасности

Техника безопасности тоже на первом месте, вы же не хотите остаться слепыми? Я точно этого не хочу. Поэтому работайте в плотных резиновых перчатках, для защиты глаз приобретите специальные защитные очки, закрытые со всех сторон.

 

Если приходится разводить электролит своими руками, тогда помните: сначала в сосуд наливается вода, а потом в воду постепенно доливается кислота. Если сделать наоборот, происходит мгновенный нагрев жидкости и кипение. Сосуд может лопнуть, и тогда точно получите ожоги. А вам ведь это не нужно?

Если полностью менять электролит, нужно слить из АКБ старый раствор. При этом запрещено сильно наклонять или переворачивать корпус АКБ. Это может привести к осыпанию материала пластин и замыканию их. Тогда батарею можно выбросить.

Замеры плотности выполняют при температуре в помещении 20 градусов, или чуть выше. Когда на улице мороз, батарею нужно принести в отапливаемое помещение. Дайте ей постоять и согреться. Учтите, что чем сильнее разряжена батарея, тем ниже её концентрация электролита. Поэтому перед замерами необходимо будет зарядить АКБ на максимум.

Как поднять плотность в не обслуживаемой батарее, я рассматривать не буду, лучше её просто сдать на свинец. Все манипуляции с такой батареей вы будете делать на собственный страх и риск, потому что её конструкция не позволяет выполнять обслуживание. Если вы любите риск и советы «очумельцев», помешать я вам не смогу, однако все же не советую.

Емкость для старого электролита лучше брать стеклянную или резиновую. Выливать его на землю или в водоем запрещено категорически. В канализацию тоже не рекомендуется. Лучше сдать на утилизацию, во избежание неприятностей, чем утилизировать самому, тем более что сейчас это сделать просто. В Интернете множество фирм, которые этим занимаются.

Обслуживание батареи

Процесс повышения плотности объясню на примере кислотной АКБ, как более распространенной. Показатели для щелочного типа будут отличаться, от приведенных мной.

Плотность для электролита приводится в граммах на кубический сантиметр (г/см3). Измеряется она ареометром, поочередно во всех банках. Допустимая плотность 1,25-1,29.Допустимый разброс между измерениями в банках 0,01. Как выровнять в банках уровень плотности? Конечно же не водой.

Когда показатель 1,20 или ниже, тогда нужно повышать концентрацию добавлением электролита.  Добавляемый электролит должен быть с плотностью 1,27.

Действуйте следующим образом:

  • Сначала, при помощи резиновой груши выкачиваете из одной банки старый электролит, как можно больше, и сливаете в мерный стаканчик, чтобы измерить его количество.
  • После этого заливаете в ту же банку новый электролит, только ½ откачанного объема.
  • Теперь нужно покачать батарею, не переворачивая, и сильно не наклоняя, чтобы старый электролит перемешался с новым.
  • Затем снова замеряете плотность, если её не хватает, доливаете вторую половину откачанного объема.
  • Так поступаете поочередно со всеми банками, пока не получите нужную плотность.
  • Как увеличить плотность, если показатели ниже 1.18? Рекомендуется доливать уже не электролит, а кислоту аккумуляторную по описанной выше схеме. Пока не получим нужную концентрацию. Превышение плотности не желательно, будут быстрее разлагаться пластины аккумулятора и снижаться его ресурс.
  • После достижения нужной концентрации, заряжаете АКБ.
  • После зарядки снова измеряете концентрацию и выравниваете по необходимости дистиллятом или электролитом.

В общем, как повысить плотность электролита вы теперь знаете, работа это кропотливая. Зато АКБ потом отлично работает в течение года, а может и дольше, если избегать закипаний и замыканий. Если рассыпались пластины хотя бы одной банки, тогда поможет только замена АКБ.

Спасибо всем, подписывайтесь на обновления и делитесь с друзьями, будет еще много познавательного. До встречи.

какая должна быть, как проверить, как поднять плотность

Какая плотность электролита должна быть в аккумуляторе

Добраться до электролита, измерить плотность и отрегулировать показатель можно только в обслуживаемых аккумуляторах. Они изготавливаются по технологии WET или иначе мокрых банок. Представляют собой пластиковый корпус, поделенный на 6 отсеков (банок). В отсеках находятся пакеты пластин, залитые электролитом. Каждая банка это отдельный маленький аккумулятор напряжением 2,1 вольт, соединённые последовательно. Поэтому на крайних контактах в сумме получается 12,5 – 12,6 В. Сверху отсеки закрыты крышкой с пробками. Через эти пробки можно контролировать состояние электролита. Внешне всё выглядит как пластиковая коробка с ручкой, пробками и двумя контактами плюс и минус.

Залитые свинцово – кислотные батареи до сих пор остаются самыми распространёнными АКБ (аккумуляторными батареями). Их используют в легковых и гольф автомобилях, газонокосилках и другой садовой технике, грузовиках и на водном транспорте. Имеют две отличительные особенности – низкую цену и необходимость обслуживания. В составе электролита никаких секретов нет, это водный раствор обыкновенной серной кислоты h3SO4.

Показатель плотности измеряют в весе одного кубического сантиметра раствора. В продаже имеется электролит для заливки плотностью - 1,28 г/см3 и так называемый, корректирующий - 1,33. Для изготовления электролита плотностью 1,28 при температуре 25 °С смешивают 0,285 мл кислоты с 0,781 лм дистиллированной воды.

Оптимальная плотность очень важна для стабильной и долговечной работы аккумулятора. Она зависит от уровня заряда и температуры окружающей среды при измерении. Достоверные данные можно получить только на полностью заряженной батарее с температурой электролита 25 °С.

Немаловажным фактором являются условия эксплуатации. Для жаркого и холодного климата используют батареи с различной плотностью. В условия Крайнего Севера при сильных морозах она должна быть 1,3 и снижаться до 1,23 в жарком климате при высокой температуре. Это связано с поведением электролита при различных температурах. На морозе он должен не замерзнуть и не закипеть в жару. Для эксплуатации в средних климатических условиях допускается плотность 1,27 полностью заряженной АКБ. На разряженной показатель снижается до 1,11 и ниже.

Как проверить плотность электролита аккумулятора

Обслуживаемые АКБ требуют повышенного внимания. Они склонны к выкипанию и разбрызгиванию электролита. Плотность в банках может разнонаправленно меняться. Поэтому замеры необходимо проводить через каждые 15 – 20 тыс. км пробега или весной и осенью.

Для измерения необходим ареометр, очки, резиновые или силиконовые перчатки и старая одежда. Электролит очень агрессивен. В зависимости от чувствительности, при попадании на кожу его можно не почувствовать. А вот глаза и слизистые оболочки нужно беречь. Попадание на одежду на первый взгляд незаметно. Но даже небольшие капли проявят себя. После стирки обнаружатся большие и маленькие дырки на любимых джинсах, рубашке или куртке.

Ареометр – единственный прибор для измерения плотности электролита. Состоит из стеклянной колбы с помещенным внутрь денсиметром. Сверху находится резиновая груша. Денсиметр, это запаянная стеклянная трубка с металлическими шариками в нижней части и утончённым верхом. В утонченной части расположена шкала.

Для измерения нужно открутить пробки. Нажать на грушу и поместить в заливное отверстие кончик ареометра. Отпустить грушу и набрать электролит до всплывания денсиметра. Он не должен касаться донышка и стенок колбы. Ареометр нужно держать в вертикальном положении. Денсиметр будет плавать, на плотность укажет шкала на уровне электролита. Предварительный замер укажет на состояние аккумулятора. Обычно крайние банки разряжены сильнее и плотность в них меньше средних. После замера надо проверить уровень электролита, если необходимо долить дистиллированную воду.

Состояние батареи можно оценить только полностью зарядив её. Заряжаем АКБ и даём отдохнуть пару часов. Зарядка сопровождается кипением и повышением температуры электролита. Для достоверного замера газы должны выйти, температура упасть. После остывания можно проводить измерение. В зависимости от этих результатов можно сделать выводы о состоянии АКБ.

Таблица плотности электролита в аккумуляторе

Состояние можно оценить сопоставив плотность и напряжение аккумулятора, это делают руководствуясь данными таблицы:

Плотность электролита, г/см3

Напряжение без нагрузки, В

Напряжение под нагрузкой 100 А, В

Уровень заряда, %

1,11

11,7

8,4

0

1,12

11,75

8,5

6

1,13

11,8

8,6

12

1,14

11,85

8,8

19

1,15

11,9

9

25

1,16

12

9,2

31

1,17

12

9,3

37

1,18

12,1

9,4

44

1,19

12,2

9,6

50

1,2

12,25

9,7

56

1,21

12,3

9,9

62

1,22

12,35

10

69

1,23

12,4

10,2

75

1,24

12,47

10,3

81

1,25

12,5

10,5

87

1,26

12,6

10,6

94

1,27

Не менее 12,66

10,8

100

Не всегда возможно создать идеальные условия для зарядки и измерения плотности электролита. В большинстве случаев применяют поправки. Для этого пользуются таблицей приведения полученных измерений.

Температура электролита от и до, °С

Температурная поправка, г/см3

+ 47 + 50

+ 0,02

+ 33 + 46

+ 0,01

+ 18 + 32

0

+ 4 + 17

- 0,01

+ 3 – 10

- 0,02

– 11 – 25

- 0,03

– 26 – 39

-0,04

– 40 – 50

-0,05

На что влияет плотность электролита в аккумуляторе

Отрицательно влияют на аккумулятор колебания плотности в обе стороны.

При повышенной бурный химический процесс ведет к выкипанию воды и разрушению пластин. Необходимо постоянно доливать дистиллированную воду. Срок эксплуатации АКБ резко снижается.

Низкая затрудняет пуск двигателя, а при отрицательной температуре электролит может попросту замерзнуть. В теплый период года затруднения можно не заметить, но зимой стартер не сможет прокрутить двигатель. Электролит плотностью 1,11 замерзает при температуре всег лишь - 10 °С. Аккумулятор с пониженной плотностью полностью не заряжается, что провоцирует сульфатацию пластин.

Соблюсти баланс помогает утвердившаяся практика использования электролита различной плотности в зависимости от климата:

  • Очень холодный и в условиях Крайнего Севера 1,3
  • Умеренный климат - большая часть РФ от 1,26 до 1,27
  • Южные районы страны от 1,23 до 1,25
  • Минимально возможное значение 1,23 г/см3

Как следствие, ненормированная плотность приводит к преждевременной сдаче аккумулятора в утиль.

Как поднять плотность электролита

Первое, что необходимо сделать - попробовать поднять плотность полностью зарядив аккумулятор. Открыть пробки, при необходимости долить дистиллированной воды и подключить зарядное устройство. Полная зарядка может привести к следующим результатам:

  1. Плотность во всех банках одинакова.
  2. Во всех ниже нормы.
  3. Различается более на 0,1 г/см3 и более.

В первом случае каких либо действий не требуется.

Во втором случае потребуется специфическая зарядка. На поверхности свинцовых пластин уже хорошо потрудившихся аккумуляторов откладывается сульфат свинца. В таком состоянии батарею невозможно зарядить полностью. Её необходимо разрядить и провести зарядку импульсным устройством автоматически переключив его на Десульфатацию.

Обычным устройством это сделать труднее и процесс длится дольше. Для этого на 2 часа установить ток зарядки в 1/10 от ёмкости АКБ. Например для аккумулятора 65 Ач, ток зарядки выставить 6,5 А. После этого снизить ток до 2 А и заряжать 8 – 12 часов. Дать отстояться батарее до комнатной температуры измерить плотность. Если не пришла в норму, опять разрядить и провести ступенчатую зарядку.

Десульфатация обычно проводится в два – три цикла. Отрицательный результат говорит о том, что с АКБ придётся расстаться. Можно ещё попробовать полностью слить электролит, промыть дистиллированной водой и залить новый. Но этого обычно хватает ненадолго.

В третьем случае, когда плотность в банках разница более чем на 0,1 надо попробовать провести десульфатацию. Не помогло – откорректировать. Для этого приобрести корректирующий электролит плотностью 1,33 – 1,4 и дистиллированную воду. В банках с ненормальной плотностью откачать по 20 мл электролита. Для повышения добавить корректирующий, для снижения дистиллят. Зарядить 30 минут, дать отстояться ещё полчаса и замерить. Скорее всего к успеху приведут несколько корректировок.

Усилия ни к чему не приведут, а аккумулятор окажется непригоден при буром цвете электролита. В этом случае можно не предпринимать никаких действий.

Не сильно изношенным аккумуляторам десульфатация и корректировка значительно продлевает жизнь. Если усилия не увенчались успехом, то с батарей нужно расстаться немедленно и без сожаления. Иначе непредвиденный отказ станет неприятным сюрпризом.

Срок службы АКБ при условии соблюдения элементарных правил до пяти лет. В автомобиле нужно контролировать напряжение, не допускать чрезмерного и нулевого заряда батареи. Периодически заряжать и следить за плотностью электролита. При таком отношении аккумулятор служит долго и безотказно.

самый подробный обзор ?, какие должны быть в заряженном АКБ или при разрядке зимой и летом (таблицы с показателями и видео)

Плотность электролита в аккумуляторе автомобиля представляет собой соотношение химически активного вещества и дистилированной воды, залитых в банки АКБ в определенной пропорции. Данный параметр устанавливается в зависимости от условий использования транспортного средства и совокупности требований к автомобилю.

Какие должны быть плотность и уровень электролита

В регионах с умеренным климатом рабочий параметр плотности электролита должен составлять от 1,25 до 1,27 г/см3 ±0,01 г/см3.

Важно знать

Следует учитывать, что чем ниже плотность электролита в полностью заряженной батарее авто, тем дольше она прослужит.

Плотность кислоты с водой в банках автомобильного аккумулятора разная, и зависит от нескольких параметров:

  • заряженность батареи;
  • процентного содержания серы — чем больше концентрация раствора, тем более высокая плотность жидкости;
  • температуры раствора — чем больше это значение, тем ниже уровень плотности.

Оптимальный уровень электролита в аккумуляторе машины должен быть таким, чтобы в каждой банке раствор покрывал пластины с запасом 10-15 мм.

Таблица: плотность в зависимости от климатической зоны

Климатический район (среднемесячная температура воздуха в январе, °C)Время годаЗаливаемогоПолностью заряженная батареяБатарея разряжена
на 25%на 50%
Очень холодный (от -50 до -30)Зима1,28-1,291,301,261,22
Лето1,271,281,241,20
Холодный (от -30 до -15)Круглый год1,261,271,241,20
Умеренный (от -15 до -8)Круглый год1,241,271,241,20
Теплый влажный (от 0 до +4)Круглый год1,221,231,191,05
Жаркий сухой (от +4 до +15)Круглый год1,201,231,191,15

Плотность электролита в аккумуляторе зимой

В странах, где зимой температура воздуха опускается до -30 градусов данное значение должно быть на 0,01 г/см3 больше, а в областях с жарким климатом — на 0,01 г/см меньше. Если в зимнее время года температура воздуха опускается до -50 °C, то уровень плотности рекомендуется увеличивать до 1,29 г/см3. Если данный показатель будет меньше, это станет причиной снижения электродвижущей силы и возможного замерзания рабочего раствора.

Важно знать

Слишком высокий уровень плотности раствора электролита в банках аккумуляторной батареи повлияет на ее срок службы. Пониженный параметр становится причиной падения напряжения и трудному пуску силового агрегата.

Если плотность рабочего раствора в холодное время года снизится до 1,09 г/см3, это станет причиной замерзания аккумуляторной батареи уже при -7 градусах. Надо учитывать, что кратковременные поездки на транспортном средстве, составляющие менее 30 минут, не дают возможности рабочей жидкости полностью прогреться и эффективно заряжаться. Поэтому разряд электролита при низких температурах ежедневно растет, что серьезно влияет на уровень плотности.

Полезно знать

Для нового и исправного аккумулятора нормальная величина изменения плотности рабочей жидкости при полном заряде и разряжении составляет в диапазоне от 0,15 до 0,16 г/см3.

Таблица: температура замерзания электролита в зависимости от его плотности
Плотность электролита (г/см3)Степень заряженности (%)Температура замерзания, °C
1,110,0-7
1,126-8
1,1312,56-9
1,1419-11
1,1525-13
1,1631-14
1,1737,5-16
1,1844-18
1,1950-24
1,256-27
1,2162,5-32
1,2269-37
1,2375-42
1,2481-46
1,2587,5-50
1,2694-55
1,27100-60

Плотность электролита в аккумуляторе летом

Важно знать

Данный параметр для теплых и влажных климатических регионов должен составить не менее 1,22 г/см3 (эта величина является критической).

В конце весны и летом температура в моторном отсеке более высокая, что приводит к испарению воды из кислотного раствора и более активному протеканию электрохимических процессов в аккумуляторе. Это становится причиной повышенной токоотдачи.

В жаркое время года из-за высокой температуры особо остро стоит проблема обезвоживания для аккумулятора. Поскольку высокий уровень плотности негативно влияет на свинцовые пластины обслуживаемых и необслуживаемых батарей, рекомендуется, чтобы этот параметр имел отклонение на 0,02 г/см3 меньше номинального. В частности, если речь идет о южных регионах, где используется устройство. При снижении объема или количества рабочей жидкости и увеличения параметра плотности коррозийные процессы на электродных выходах могут увеличиться.

Причины изменения плотности

Список причин, которые приводят к изменению уровня плотности аккумулятора:

  1. Снижение уровня электролита в АКБ (приводит к повышению плотности).
  2. Уменьшение концентрации серной кислоты в аккумуляторе или так называемая сульфатация пластин. Сульфат свинца кристаллизуется, теряя способность участвовать в химических реакциях. В результате такого процесса аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства, поскольку не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений.
  3. Разряд батареи. Данная проблема особо актуальна для зимы и тех автомобилей, которые редко используются или где замена аккумулятора производилась давно.
  4. Неоднократная зарядка аккумулятора. Это приводит к закипанию раствора и его испарению, что снижает его количество и повышает концентрацию. В этом случае активных молекул для ионизации свинца и его солей становится меньше, соответственно снижается густота жидкости.
  5. Не осуществляется контроль за уровнем концентрации раствора в емкостях с электродами после каждого пополнения дистиллятом. С каждым новым разбавлением концентрата снижается доля электролита за счет испарения воды и небольшого количества электролитической жидкости.

Как самостоятельно проверить плотность электролита и степень разряженности батареи?

Прежде чем измерить плотность электролита нужно провести проверку и подготовку аккумулятора, затем произвести замер с помощью:

  1. Ареометра (денсиметра). Для этого на отключенном аккумуляторе откручиваются все банки, прибор погружается в жидкость, и делается забор небольшого количества электролита. Определение уровня плотности производится в соответствии с показаниями на шкале тестера.
  2. Тестера (мультиметра). Прибор переводится в режим вольтметра, производится мониторинг параметра напряжения и полученные данные сравниваются с нормированными.
  3. Самодельным устройством. Способ аналогичен проверке ареометром, однако в данному случае в качестве резервуара используют стеклянную пробирку, в которую помещают какой-нибудь грузик (пшено, кусок свинца). Затем нужно будет самостоятельно произвести градуировку ареометра.

Важно знать

Если батарея необслуживаемая и на ней нет индикатора для проверки уровня и плотности, то для измерения ареометром потребуется высверлить отверстия в банках, которые после выполнения задачи необходимо запаять.

Видео: проверка плотности электролита в автомобильной батарее

Канал «videostar» в своем видео подробно рассказал о том, сколько должно быть электролита в банках аккумулятора и как проверять его плотность.

Таблица: поправка к показаниям ареометра

Температура рабочего раствора при измерении величины плотности, °СПоправка к показаниям ареометра, полученным в ходе проверки, г/см3
от -55 до -41-0,05
от -40 до -26-0,04
от -25 до -11-0,03
от -10 до +4-0,02
от +5 до +19-0,01
от +20 до +300,00
от +31 до +45+0,01
от +46 до +60+0,02

Таблица определения заряженности аккумулятора по плотности электролита

Температура воздухаСтепень заряженности аккумуляторной батареи
На 100% заряженаЗаряжена на 70%Полностью разряжена
+25 градусов и выше1,21 — 1,231,17 — 1,191,05 — 1,07
менее +25 градусов1,27 — 1,291,23 — 1,251,11 — 1,13

Таблица: плотность электролита и степень заряженности АКБ при проверке мультиметром

Степень заряженности аккумулятораПлотность рабочего раствора электролита, г/см3Напряжение аккумуляторной батареи, В
100%1,2812,7
80%1,24512,5
60%1,2112,3
40%1,17512,1
20%1,1411,9
0%1,111,7

Как скорректировать плотность электролита в аккумуляторе?

Полезно знать

Стабилизация плотности электролита производится с помощью добавления раствора рабочей жидкости и зарядки. Однако, чтобы поднять данный параметр, недостаточно просто долить дистиллированную воду в банки и тем самым увеличить или уменьшить плотность.

Таблица: корректировка плотности электролита

Плотность электролита в батарее, г/см3Уровень плотности по стандарту, г/см3
1,241,251,26
Отсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллята
1,246062120125
1,2544456570
1,2685883940
1,2712212678804043
1,281561621171208086
1,29190200158162123127
1,30
Плотность электролита в батарее, г/см3Уровень плотности по стандарту, г/см3
Отсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллята
1,24173175252256
1,25118120215220
1,266566177180290294
1,27122126246250
1,2840436365198202
1,297578143146
1,3010911336387981

Видео: руководство по увеличению параметра плотности в АКБ

Канал «Denis МЕХАНИК» в своем видео подробно рассказал о том, как повысить плотность электролита в аккумуляторной батарее автомобиля.

что это такое и ее значения

Большинство автомобилей комплектуются свинцово-кислотными аккумуляторными батареями. Принцип действия свинцовых аккумуляторов заключается в обратимой химической реакции свинца и его окиси, расположенный в пластинах и раствора электролита. В качестве электролита используется водный раствор серной кислоты Плотность электролита показывает концентрацию (степень разбавленности) кислоты.

Что такое плотность электролита

Серная кислота и вода могут смешиваться в любых пропорциях. Понятие плотность электролита введено для того, чтобы показать, какое количество чистой кислоты содержится в единице объем электролита.

Смешивая кислоту с водой, получают промежуточные значения. Чем больше воды содержит раствор, тем меньшее значение плотности он имеет, поскольку концентрированная кислота гораздо тяжелее:

  • дистиллированная вода – 1.00 г/см3;
  • концентрированная серная кислота – 1.84 г/см3.

Какую плотность имеет электролит в аккумуляторах

Плотность электролита в аккумуляторе имеет определенные значения, которые существенны для нормального протекания химических реакций в процессе работы. В зимний период и летом концентрация кислоты должна иметь разные значения. Особенно это касается регионов с большими колебаниями температуры. Несоответствие плотности оптимальным значениям может привести к отрицательным последствиям:

  1. Низкая плотность:
  • снижение КПД батареи из-за повышения внутреннего сопротивления;
  • снижение емкости, так как свинец пластин не полностью вступает в реакцию из-за недостатка кислоты;
  • вероятность замерзания при низких отрицательных температурах;
  1. Высокая плотность:
  • Сульфатация пластин из-за образования крупных труднорастворимых кристаллов сульфида свинца;
  • Осыпание пластин.

Важно! Плотность электролита в АКБ не является постоянной величиной. Это связано с тем, что во время разряда кислота из раствора реагирует с материалом пластин и ее концентрация падает. Во время зарядки происходит обратная реакция. Разность плотностей заряженного и разряженного аккумулятора составляет примерно 0.15 – 0.16 г/см3.

Таким образом, зная параметры электролита в полностью заряженном аккумуляторе, можно определить степень разрядки, не пользуясь измерительными приборами, а определив состояние электролита при помощи ареометра.

Измерения производят с учетом температуры, так как наблюдается сильная зависимость. Рекомендуемые значения относятся к измерениям при температуре от +20 до +30°С В других случаях поправки к измерениям должны иметь такие значения:

  • от +31 до +45°С + 0.01 гр/см3;
  • от +20 до +30°С + 0.00 гр/см3;
  • от +5 до +19°С — 0.01 гр/см3;
  • от +4 до -10°С — 0.02 гр/см3;
  • от -11 до -25° -03 гр/см3;
  • от -26 до -40° -04 гр/см3.

Зависимость плотности от степени заряженности

Для электролита автомобильного аккумулятора с нормальной плотностью 1.27 гр/см3 можно привести следующую зависимости от степени разряда батареи:

Плотность гр/см3 Уровень заряда Температура замерзания
1.27 100%, – 60°С;
1.26 95%, – 55°С;
1.25 87%, – 50°С;
1.24 80%, – 46°С;
1.23 75%, – 42°С;
1.22 70%, – 37°С;
1.21 63%, – 32°С;
1.20 56%, – 27°С;
1.19 50%, – 24°С;
1.18 44%, – 18°С;
1.17 37%, – 16°С;
1.16 31%, – 14°С;
1.15 25%, – 13°С;
1.14 19%, – 11°С;
1.13 13%, – 9°С;
1.12 6%, – 8°С;

В таблице плотности электролита приведена зависимость плотности и температуры замерзания. Приведенные данные показывают, что глубокий разряд батареи чреват ее замерзанием уже при температуре 8 — 16°С

Рекомендуемые значения плотности

Часто задаваемый вопрос – какая должна быть плотность электролита для лета и для зимы? Большинство производителей аккумуляторов рекомендуют придерживаться следующих значений плотности, в зависимости от минимальной зимней температуры. Важность контроля плотности электролита зимой связана не только с недопущением перемерзания электролита, но и повышением КПД батареи для успешного запуска непрогретого двигателя:

  • от +6 до +4° 22 гр/см3;
  • от +4 до -15° 24 гр/см3;
  • от -4 до -15° 26 гр/см3;
  • от -15 до -30° 28 гр/см3;
  • от -30 до -50° 29 гр/см3;

Перечисленные значения справедливы для полностью заряженных батарей. Заливка электролита в новую батарею производится раствором меньшей концентрации – на 0.02 гр/см3. В процессе зарядки значение поднимется до необходимой величины.

Нормой плотности электролита в средней полосе принято считать 1.26 – 1.27 гр/см3.

Коррекция плотности при смене сезона

При большой разнице среднесуточных температур в летний и зимний период рекомендуется корректировать значение плотности. Процесс не представляет сложности, но опасен из-за агрессивности электролита.

Если машина храниться в гараже и эксплуатируется регулярно, то необходимость в коррекции не возникает, поскольку в результате длительных поездок батарея успевает зарядиться до нормального состояния и содержание кислоты не палает до критических значений.

Кратковременные поездки не способствуют нормальному заряду. Старые аккумуляторы имеют повышенные значения саморазряда, поэтому после длительного простоя плотность может упасть до недопустимых значений.

Электролит корректируется на полностью заряженном аккумуляторе. Важно знать, что в большинстве автомобилей с правильно отрегулированной системой регулировки напряжения, уровень заряда аккумулятора не превышает 80 – 90%. В зимнее время при наличии большого числа мощных потребителей (вентилятор печки, обогрев стекол и сидений, свет фар), это значение еще меньше. Для правильной подготовки батареи к зимнему сезону необходима полная зарядка специализированным зарядным устройством.

Заряд производят при слабом кипении электролита до тех пор, пока в течении текущих двух часов плотность расти уже не будет. Рост плотности говорит о том, что заряд еще не окончен.

Плотность электролита в заряженном аккумуляторе измеряют через два часа после зарядки, чтобы пластины полностью освободились от пузырьков газа и снизилась температура. Не забывайте про учет температуры электролита!

Содержание кислоты повышают при помощи корректирующего электролита, который добавляют в банки взамен части основного электролита.

Важно! Отбор раствора из каждой банки батареи должен быть одинаковым! Количество добавляемого корректора также одинаково. Сколько убрано жидкости, столько корректирующего раствора нужно добавлять

Плотность электролита в аккумуляторе и зимой и летом проверяется после получаса дополнительного заряда с последующей двухчасовой выдержкой. Это делается с целью равномерного перемешивания электролита. Обязателен учет температуры.

Переход на летнюю эксплуатацию делается аналогично, только вместо более крепкой кислоты добавляется дистиллированная вода. Дополнительный заряд должен продолжаться более длительное время, поскольку добавляемая вода из-за низкого удельного веса будет находится в верхнем слое.

Важно! Нельзя ускорять перемешивание покачиванием и переворачиванием батареи, поскольку осадок с дна емкости попадет между пластинами и батарея выйдет из строя.

Выравнивание плотности

В процессе эксплуатации аккумулятора можно увидеть, что разные банки имеют расхождения при измерении плотности. Если эта величина не превосходит 0.01 – 0.02 гр/см3, то ничего страшного нет. Большая разница свидетельствует, что банка с меньшим значением начинает выходить из строя.

Встречаются рекомендации исправлять состояние неисправной банки путем долива корректирующего раствора. Этого делать нельзя ни в коем случае. Простое увеличение концентрации кислоты даст только отрицательный эффект и ускорит выход банки из строя.

В данной ситуации необходимо произвести тренировочный цикл заряда. Полностью заряженный аккумулятор разряжают до 50% номинальной емкости, а затем заряжают малым током до полного заряда. Повторяя процесс несколько раз, можно полностью восстановить неисправные банки батареи.

 

Такие же требования предъявляются к выравниванию уровня электролита. В процессе зарядки током бортовой сети происходит частичное испарение воды из банок. Особенно активно этот процесс происходит летом. Кислота при этом не испаряется, вопреки некоторым источникам из интернета. Поэтому уровень электролита выравнивается исключительно дистиллированной водой.

Батарея

Сравнение плотности энергии

Рисунки на этой странице были получены из разного количества источников при различных условиях. Сравнение аккумуляторных элементов затруднено, и любое фактическое сравнение должно использовать проверенные данные для конкретной модели аккумулятора.

Батареи

работают по-разному из-за различных процессов, используемых разными производителями. Даже ячейка другой модели от того же производителя будет работать по-разному в зависимости от того, для чего они оптимизированы.

Вы также должны принять во внимание фактическое приложение, в котором используется аккумулятор. Это может существенно повлиять на производительность батареи, поэтому при выборе аккумуляторной батареи для вашего продукта необходимо учитывать множество факторов.

Для получения дополнительной информации см. Сообщение в нашем блоге о том, как выбрать тип элемента для использования в аккумуляторной батарее.


Сравнение плотности энергии в аккумуляторных элементах

Эта сравнительная таблица аккумуляторов иллюстрирует объемную и гравиметрическую плотности энергии на основе голых аккумуляторных элементов.

Фото предоставлено НАСА - Национальное управление по аэронавтике и исследованию космического пространства


Плотность энергии, сравнение размеров и веса

Приведенная ниже сравнительная таблица аккумуляторов показывает объемную и удельную плотности энергии, показывая меньшие размеры и меньший вес элементов.


Спецификации Battery Chemistry

Технические характеристики Свинцово-кислотный NiCd NiMH Литий-ионный
Кобальт Марганец Фосфат
Удельная энергия (Втч / кг) 30-50 45-80 60-120 150-190 100-135 90-120
Внутреннее сопротивление (мОм) <100
12 В в упаковке
100-200
6 В в упаковке
200-300
6 В в упаковке
150-300
7.2В
25-75
на ячейку
25-50
на ячейку
Жизненный цикл (разрядка 80%) 200-300 1000 300-500 500–1 000 500–1 000 1 000–2 000
Время быстрой зарядки 8-16ч 1 час стандартно 2-4 часа 2-4 часа 1 ч или меньше 1 ч или меньше
Допуск перезарядки Высокая Умеренный Низкий Низкий.Не выносит непрерывного заряда
Саморазряд / месяц (комнатная температура) 5% 20% 30% <10%
Напряжение элемента (номинальное) 2 В 1,2 В 1.2В 3,6 В 3,8 В 3,3 В
Напряжение отключения заряда (В / элемент) 2,40
Поплавок 2,25
Обнаружение полного заряда
по сигнатуре напряжения
4,20 3,60
Напряжение отключения разряда (В / элемент, 1С) 1.75 1,00 2,50–3,00 2,80
Пиковый ток нагрузки
Лучший результат
5C
0,2C
20C
1C
5C
0,5C
> 3С
<1С
> 30 ° C
<10 ° C
> 30 ° C
<10 ° C
Температура заряда от -20 до 50 ° C
от -4 до 122 ° F
от 0 до 45 ° C
от 32 до 113 ° F
от 0 до 45 ° C
от 32 до 113 ° F
Температура нагнетания от -20 до 50 ° C
от -4 до 122 ° F
от -20 до 65 ° C
от -4 до 149 ° F
от -20 до 60 ° C
от -4 до 140 ° F
Требования к техническому обслуживанию 3-6 месяцев
(доплата)
30-60 дней
(выписка)
60-90 дней
(выписка)
Не требуется
Требования безопасности Термостойкость Термостойкость, общий предохранитель Обязательная схема защиты
Используется с Конец 1800-х годов 1950 1990 1991 1996 1999
Токсичность Очень высокий Очень высокий Низкий Низкий
.

Практические соображения - Аккумуляторы | Аккумуляторы и системы питания

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google
      • LinkedIn
      • GitHub

0:00 / 0:00

.

Frontiers | Новые твердые электролиты для литий-ионных аккумуляторов: перспективы исследований электронной микроскопии

Введение

В связи с исчерпанием ископаемых видов топлива в последние годы большое внимание уделяется высокоэффективным накопителям энергии (Quartarone and Mustarelli, 2011; Bruce et al., 2012). Хотя литий-ионный аккумулятор (LIB) является очень многообещающим альтернативным источником энергии, проблемы безопасности и недостаточная плотность энергии препятствуют его применению в тяжелых условиях, например.г., электромобили и сетевое хранилище энергии (Quartarone and Mustarelli, 2011; Bruce et al., 2012). К счастью, эти проблемы можно решить путем интеграции новых твердых электролитов (Quartarone and Mustarelli, 2011; Takada, 2013; Wang et al., 2015). С одной стороны, эти твердые материалы обычно негорючие и не имеют утечки, что позволяет обойти проблемы безопасности, связанные с обычными органическими жидкими электролитами. Это необходимое условие для крупномасштабного применения. С другой стороны, также можно эффективно улучшить плотность энергии.Гораздо большее электрохимическое окно позволяет использовать современные электродные материалы, несовместимые с обычными жидкими электролитами. Кроме того, исключая необходимость в громоздких предохранительных механизмах, можно значительно уменьшить размер батареи. Благодаря этим преимуществам твердые электролиты в последние годы вызывают огромный интерес.

Однако перед использованием твердых электролитов в коммерческих аккумуляторах необходимо решить две большие проблемы. Во-первых, их ионная проводимость обычно низкая, что предотвращает быструю зарядку и разрядку (Takada, 2013; Wang et al., 2015). Во-вторых, сложно сформировать стабильную проводящую поверхность раздела между твердым электролитом и электродом (Zhu et al., 2015 и 2016; Richards et al., 2016). Преодоление первой проблемы требует механистического понимания взаимодействия между миграцией Li и атомной структурой материала. Для решения второй задачи сначала необходимо систематически установить корреляцию между структурой интерфейса / химией и ионным транспортом. Очевидно, что обе задачи требуют структурного и химического анализа со сверхвысоким пространственным разрешением.

Просвечивающая электронная микроскопия (ПЭМ), в первую очередь сканирующая просвечивающая электронная микроскопия с коррекцией аберраций (STEM), является идеальным инструментом для получения критически важных сведений на атомном уровне. Он не только способен непосредственно визуализировать атомные конфигурации, но также может прояснять химическую информацию с пространственным разрешением суб-ангстрема с помощью спектроскопии потерь энергии электронов (EELS) и энергодисперсионной рентгеновской спектроскопии (EDS) (Pennycook, 1992; Muller et al. al., 2008; Chi et al., 2011; Yabuuchi et al., 2011; Wu et al., 2015). Однако исследования твердых электролитов методом STEM создают многочисленные проблемы, поскольку высокая подвижность Li и плохая электронная проводимость делают эти материалы очень уязвимыми для повреждений электронным облучением (Egerton et al., 2004). К счастью, благодаря значительно улучшенным возможностям визуализации и подготовки образцов для ПЭМ, в последние годы эта проблема значительно уменьшилась. Некоторые светочувствительные материалы, которые ранее не могли быть изучены, теперь могут быть проанализированы в атомном масштабе (Ma et al., 2015), и многие из этих исследований внесли значительный вклад в исследования твердых электролитов.

В данном мини-обзоре будут рассмотрены исследования с помощью электронной микроскопии трех важных факторов, определяющих поведение твердых электролитов: (1) влияние атомной конфигурации внутри зерна на ионную проводимость, (2) влияние границ зерен и (3) поведение твердого тела. границы раздела электролит – электрод. На основе этого будут обсуждены возможности, проблемы и перспективы будущих исследований.

Влияние внутренней атомной конфигурации зерна на ионную проводимость

Миграция Li внутри кристаллической решетки продиктована атомным каркасом, который формирует каналы для транспорта Li. Для объяснения ионного переноса внутри решетки требуется точное понимание атомной структуры. Обладая сверхвысоким пространственным разрешением и чувствительностью к тонким различиям в дифракции, (S) ПЭМ не только дополняет исследования рассеяния рентгеновских лучей и нейтронов, но также предоставляет уникальные возможности для понимания на атомном уровне.Недавние микроскопические исследования в основном были сосредоточены на двух системах: Li 7 La 3 Zr 2 O 12 (LLZO) и Li 3 x La 2 / 3− x TiO 3 (LLTO).

Li 7 La 3 Zr 2 O 12 в настоящее время является наиболее многообещающим оксидным твердым электролитом благодаря сосуществованию превосходной стабильности по отношению к металлическому Li и относительно высокой проводимости (Муруган и др., 2007; Кассен, 2010). Он кристаллизуется в структуре граната с двумя полиморфами (Cussen, 2010): кубической фазой с относительно высокой проводимостью (c-LLZO) и менее проводящей тетрагональной фазой (t-LLZO). Различение этих двух фаз имеет решающее значение для правильной интерпретации поведения ионного транспорта. Исследование прецессионной дифракции электронов (PED) Buschmann et al. (2011) успешно разграничили эти две фазы, избежав влияния двойной дифракции. Этот результат дополнительно подтвердил, что легирование алюминием имеет решающее значение для стабилизации кубической фазы.В сочетании с дифракцией нейтронов было обнаружено, что позиции Li в c-LLZO, в отличие от тех, что в t-LLZO, частично заполнены. Высокая концентрация вакансий в c-LLZO приводит к более высокой подвижности лития и превосходной проводимости. Помимо исследования PED, Buschmann et al. также пытались выполнить ПЭМ с высоким разрешением (ПЭМВР), но подробный анализ был невозможен из-за повреждения электронным пучком. Недавно эта проблема была успешно решена Ma et al. (2015). Тщательный выбор условий получения изображений и подготовки образцов позволил провести высококачественный анализ TEM / EELS с атомным разрешением (S) (рисунки 1A, B).Исследования Ма показали, что c-LLZO сохраняет свою кубическую кристаллическую структуру даже в водной среде с pH> 7. Такая высокая структурная стабильность указывает на то, что c-LLZO предлагает надежную атомную основу для транспорта Li. Учитывая высокую ионную проводимость, совместимость с литием и желаемую структурную стабильность по отношению к водным растворам с широким диапазоном значений pH, LLZO является многообещающим кандидатом в качестве сепаратора в новых водных литиевых батареях.

Рисунок 1.(A) Атомная структура чувствительного к электронному лучу твердого электролита LLZO успешно визуализирована с помощью STEM-изображения в высокоугловом кольцевом темном поле (HAADF). (B) Данные EELS LLZO после обмена Li + / H + с различными водными растворами. Содержание Li можно точно контролировать. Воспроизведено с разрешения (Ma et al., 2015).

Другой системой, которая широко исследовалась электронной микроскопией, является LLTO, имеющая структуру типа перовскита (Stramare et al., 2003). Изменяя состав и / или условия обработки, можно получить несколько полиморфов с разной ионной проводимостью. Тем не менее, большинство из них демонстрируют чередующееся наложение между слоями A-сайта с высоким содержанием La и бедным по La, а миграции Li благоприятствуют слои с низким содержанием La. Наибольшая объемная проводимость составляет 10 −3 См · см −1 , приближаясь к проводимости обычных жидких электролитов (10 −2 См · см −1 ) (Takada, 2013). Следовательно, глубокое понимание происхождения таких исключительных характеристик имеет решающее значение при разработке твердых электролитов с высокой проводимостью.Исследования (S) TEM внесли важный вклад в это дело. Воспользовавшись чувствительностью STEM-изображения кольцевого светлого поля (ABF) к легким элементам, таким как Li, Gao et al. (2013) непосредственно визуализировали вариацию положений Li в разных полиморфах LLTO. Было обнаружено, что Li находится в окне O4 для состава с низким содержанием Li La 0,62 Li 0,16 TiO 3 , но рядом с позицией A для состава с высоким содержанием Li La 0,56 Li 0,33 TiO 3 .Содержание Li, валентное состояние катионов и геометрия кислородных октаэдров в слоях, богатых La и бедных La, также были выявлены с помощью EELS. Кроме того, были исследованы доменные структуры, связанные с упорядочением между слоями, богатыми La и бедными La (Gao et al., 2014). Было обнаружено, что с La, блокирующим пути Li, доменные границы препятствуют ионному транспорту. Помимо этого, можно также визуализировать структурные особенности, которые нелегко обнаружить дифракционными методами. Как упоминалось выше, транспорт Li в LLTO зависит от бедных La слоями.Однако ни одно из предыдущих дифракционных исследований не обнаружило таких важных особенностей у наиболее проводящего полиморфа, закаленного при 1350 ° C La 0,56 Li 0,33 TiO 3 (Stramare et al., 2003). В результате механизм его ионного транспорта оставался неясным в течение многих лет. Недавно STEM-исследование с атомным разрешением напрямую визуализировало ранее упущенные из виду пути ближнего упорядочения Li в этом материале (Ma et al., 2016). Длина когерентности упорядочения оказалась в мезоскопическом масштабе (менее 10 нм), что не позволяло обнаружить его большинством дифракционных методов.В сочетании с моделированием молекулярной динамики (МД) это наблюдение показало, что такая неуловимая мезоскопическая структура может наиболее эффективно максимизировать количество путей переноса лития, приводя к высокой проводимости. Это открытие не только примирило давно существовавшее несоответствие структуры и свойств, но также указывало на новый взгляд на улучшение ионной проводимости.

Хотя ПЭМ с атомным разрешением (S) очень помог фундаментальному пониманию ионного транспорта, текущие исследования ограничиваются оксидами.Для сравнения, сульфидные твердые электролиты, несмотря на их более высокую проводимость (Takada, 2013), редко исследуются. Микроскопические исследования этих материалов чрезвычайно сложны из-за (1) уязвимости слабых связей Li – S для электронов и (2) их чувствительности к окружающей атмосфере. Если эти проблемы могут быть устранены, (S) ТЕА будет играть еще более важную роль в исследовании твердых электролитов.

Воздействие границ зерен

Хотя исследования твердых электролитов в основном сосредоточены на внутренней части зерен, границы зерен часто являются узким местом.Хотя объемная проводимость многих твердых электролитов уже сопоставима с проводимостью традиционных жидких электролитов, их большое сопротивление границ зерен обычно снижает общую проводимость на порядки (Takada, 2013). Из-за отсутствия надлежащего понимания механизма проводимости Li по границам зерен целенаправленная оптимизация пока невозможна.

Границы зерен в твердых телах часто ограничиваются очень маленьким масштабом длины с шириной всего в несколько элементарных ячеек.Таким образом, STEM с его разрешением ниже ангстрема кажется идеальным инструментом для их изучения. Ma et al. (2014) успешно использовали STEM / EELS с атомным разрешением, чтобы раскрыть атомарное происхождение сопротивления границ крупных зерен в LLTO. Наблюдалось, что большинство границ зерен демонстрируют более темный контраст Z-, чем соседние зерна, что позволяет предположить, что средний атомный номер на границе зерен ниже. Дальнейший анализ в атомном масштабе показал, что атомная конфигурация границ зерен значительно отличается от конфигурации внутри зерен (рис. 2A, B).Вместо структуры перовскита ABO 3 такие реконструированные границы зерен, по существу, представляют собой бинарный слой Ti – O, запрещающий избыток носителя заряда Li + . Следовательно, они действуют как внутренние барьеры для транспорта лития. Эта тема также исследовалась HRTEM и EDS. Кроме того, Gellert et al. (2012) изучали границы зерен в литий-алюминиевом фосфате титана (LATP). В зависимости от взаимной ориентации между соседними зернами наблюдались два типа границ зерен.Если ориентации аналогичны, будет присутствовать толстая граница кристаллического зерна. Считалось, что его высокая степень кристалличности обеспечивает относительно легкий перенос ионов. Если ориентации сильно различаются, образуется более тонкий, но аморфный слой, который, как полагают, обладает высоким сопротивлением.

Рис. 2. (A) Изображение HAADF-STEM с атомным разрешением границы зерен в LLTO. (B) Атомная модель границы зерен LLTO с дефицитом лития, основанная на всестороннем исследовании STEM / EELS.Воспроизведено с разрешения (Ma et al., 2014).

В отличие от двух материалов, рассмотренных выше, LLZO демонстрирует сопротивление границ зерен, сравнимое с сопротивлением внутренней части зерна (Муруган и др., 2007). Однако происхождение этого доброкачественного поведения остается неизвестным. Несколько исследовательских групп пытались изучить границы зерен LLZO с помощью электронной микроскопии, но результаты противоречивы. Кумадзаки и др. (2011) наблюдали аморфный Li – Al – Si – O и нанокристаллический LiAlSiO 4 на границах зерен LLZO.Напротив, чистые границы зерен, свободные от каких-либо изменений второй фазы или состава, сообщили Wolfenstine et al. (2012). Для окончательного объяснения необходимы систематические исследования с более высоким пространственным разрешением.

Эти исследования демонстрируют, что границы зерен, несмотря на их сильно локализованный характер, можно эффективно исследовать с помощью (S) ПЭМ в сочетании с локальными аналитическими методами, такими как EELS и EDS. Однако текущие усилия в этой области очень ограничены.Прежде чем можно будет осуществить систематическое понимание и рациональную оптимизацию переноса лития на границах зерен, необходимы дальнейшие углубленные исследования.

Поведение границ раздела электролит-электрод

Стабильная и проводящая граница раздела электрод / электролит является предпосылкой для длительной эксплуатации аккумуляторов на основе твердого электролита (Zhu et al., 2015 и 2016; Richards et al., 2016). Тем не менее, из-за отсутствия механистического понимания, которое могло бы направить рациональное улучшение, все еще очень сложно сформировать такие интерфейсы.В качестве первого шага к этой цели необходимо прямое экспериментальное наблюдение за интерфейсами.

Хотя до настоящего времени не сообщалось об исследованиях электронной микроскопии с атомным разрешением, границы раздела между катодными материалами и несколькими твердыми электролитами были исследованы с помощью наноэлектронной дифракции (NED), STEM и EDS. Kim et al. (2011) исследовали межфазную стабильность между LLZO и LiCoO 2 (LCO). Тонкая пленка LCO была выращена на полированной поверхности керамики LLZO методом импульсного лазерного осаждения при 937 К.Наблюдения с помощью просвечивающей электронной микроскопии показали наличие межфазного реакционного слоя толщиной ~ 50 нм. Измерения профиля линии EDS и NED, полученные вблизи границы раздела, позволили предположить, что этот реакционный слой состоит из La 2 CoO 4 , который, как полагают, препятствует диффузии Li. Кроме того, граница раздела между LCO и прототипом сульфидного электролита Li 2 S – P 2 S 5 была исследована Сакудой и др. (2009). Интерфейс был просто сформирован механическим шлифованием.После зарядки образовался межфазный слой, связанный с взаимной диффузией Co, P и S, и этот слой вызвал большое сопротивление. Аналогичное поведение наблюдалось между LiMn 2 O 4 и Li 2 S – P 2 S 5 (Китаура и др., 2010). Наблюдали межфазный слой, возникающий в результате диффузии Mn в твердый электролит, и полагали, что он дает большое сопротивление. Эти исследования с помощью электронной микроскопии показывают, что реакционный слой часто может образовываться между твердым электролитом и катодом из-за взаимной диффузии.В отличие от границы раздела твердого электролита (SEI) в обычных LIB, реакционные слои на границе раздела твердый электролит / электрод обычно скорее вредны, чем полезны, поскольку они обычно препятствуют ионному переносу (Qian et al., 2015).

Помимо этих экспериментально наблюдаемых реакционных слоев, часто предполагалось сильно локализованное межфазное разложение на границах раздела твердый электролит и электрод, хотя они демонстрируют определенную степень стабильности в электрохимических измерениях (Zhu et al., 2015 и 2016; Richards et al., 2016). Однако большинство таких предположений основано на теоретических расчетах. Экспериментальная проверка является довольно сложной задачей из-за чрезвычайно малого масштаба предполагаемой толщины и высокой летучести / нестабильности металлического Li (Wenzel et al., 2015, 2016). (S) ПЭМ, который может исследовать локальные особенности с чрезвычайно высоким пространственным разрешением вплоть до уровня субангстрема, предоставляет прекрасные возможности для исследования этих интригующих межфазных взаимодействий.

Итоги и перспективы

В этом мини-обзоре мы обсудили недавний прогресс в исследованиях (S) ТЕМ твердых электролитов для литиевых батарей. С успехом в решении проблем, вызванных повреждением электронным пучком, сообщается о все большем и большем количестве исследований, которые ранее невозможно было провести. Эти исследования прояснили несколько давних заблуждений относительно взаимосвязи структура-свойство, предоставили первые экспериментальные сведения о большом сопротивлении границ зерен и внесли вклад в понимание реакционного слоя на катоде / SEI.

Тем не менее, проблемы остаются. Для ионного транспорта внутри зерна сульфидные электролиты, которые часто демонстрируют более высокую проводимость, чем оксиды, требуют тщательного изучения на атомном уровне. Их уязвимость для электронного пучка из-за слабых связей Li с S в структуре и ограниченной электронной проводимости значительно ограничивает надежные измерения их атомной и электронной структуры в ПЭМ. Чтобы понять роль границ зерен в твердых электролитах, необходимо исследовать широкий спектр материалов, чтобы установить систематическое понимание.В частности, особого внимания заслуживают материалы с доброкачественными границами зерен, так как они могут вдохновить на создание материалов с проводящими границами зерен. Для границы раздела твердый электролит / электрод одной из наиболее актуальных задач является проверка сильно локализованных межфазных реакционных слоев, которые недавно были предложены теоретическими работами. Кроме того, оставалось исследовать изменение этих поверхностей раздела в зависимости от состава, условий обработки и цикличности. Следует подчеркнуть, что недавно разработанные методы ПЭМ in situ, , такие как in situ, нагрев и in situ, электрохимический цикл с желаемым пространственным разрешением, значительно облегчат эти исследования (Gu et al., 2013; Chi et al., 2015; Zeng et al., 2015). Их способность проводить структурный / химический анализ с высоким разрешением в режиме реального времени позволит получить уникальную информацию, которую невозможно получить другим способом. В связи с недавними замечательными разработками в области приборов для микроскопии, таких как быстрые камеры и детекторы, низковольтные ПЭМ и многофункциональные столики для образцов, эти проблемы должны быть преодолены в ближайшем будущем, и ожидается, что электронная микроскопия будет играть все более важную роль в исследование литий-ионных твердых электролитов.

Авторские взносы

Все перечисленные авторы внесли существенный, прямой и интеллектуальный вклад в работу и одобрили ее к публикации.

Заявление о конфликте интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Финансирование

Эта работа спонсировалась Министерством энергетики США (DOE), Управлением науки, Управлением фундаментальных энергетических наук, Отделом материаловедения и инженерии.Характеристика материалов была проведена в рамках предложения пользователя в Центре науки о нанофазных материалах, который является пользовательским учреждением Управления науки Министерства энергетики США.

Список литературы

Брюс П. Г., Фрейнбергер С. А., Хардвик Л. Дж. И Тараскон Ж.-М. (2012). Li-O 2 и Li-S батареи с высоким накопителем энергии. Nat. Mater. 11, 19–29. DOI: 10.1038 / nmat3191

CrossRef Полный текст | Google Scholar

Бушманн, Х., Долле, Дж., Берендтс, С., Кун, А., Боттке, П., Вилкенинг, М., и др. (2011). Структура и динамика быстрого литий-ионного проводника «Li 7 La 3 Zr 2 O 12 ». Phys. Chem. Chem. Phys. 13, 19378–19392. DOI: 10.1039 / c1cp22108f

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Chi, M. F., Mizoguchi, T., Martin, L. W., Bradley, J. P., Ikeno, H., Ramesh, R., et al. (2011). Атомная и электронная структура интерфейса SrVO 3 -LaAlO 3 . J. Appl. Phys. 110, 046104. doi: 10.1063 / 1.3601870

CrossRef Полный текст | Google Scholar

Чи, М. Ф., Ван, К., Лей, Ю. К., Ван, Г. Ф., Ли, Д. Г., Мор, К. Л. и др. (2015). Поверхностная огранка и поведение элементарной диффузии на атомном уровне для наночастиц сплава во время отжига in situ и . Nat. Commun. 6, 8925. DOI: 10.1038 / ncomms9925

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Куссен, Э.Дж. (2010). Структура и ионная проводимость литиевых гранатов. J. Mater. Chem. 20, 5167–5173. DOI: 10.1039 / b925553b

CrossRef Полный текст | Google Scholar

Гао, X., Фишер, К.А.Дж., Кимура, Т., Икухара, Ю.Х., Кувабара, А., Мориваке, Х., и др. (2014). Структуры доменных границ в титанатах лития лантана. J. Mater. Chem. А 2, 843–852. DOI: 10.1039 / C3TA13726K

CrossRef Полный текст | Google Scholar

Гао, X., Фишер, К. А. Дж., Кимура, Т., Икухара, Ю. Х., Мориваке, Х., Кувабара, А. и др. (2013). Распределение атома лития и вакансии в позиции A в титанате лития лантана. Chem. Mater. 25, 1607–1614. DOI: 10,1021 / см3041357

CrossRef Полный текст | Google Scholar

Геллерт, М., Грис, К. И., Яда, К., Роскиано, Ф., Волц, К., и Ролинг, Б. (2012). Границы зерен в литий-алюминиевой титан-фосфатной стеклокерамике с быстрой ионно-литиевой проводимостью: микроструктура и свойства нелинейного переноса ионов. J. Phys. Chem. С 116, 22675–22678. DOI: 10.1021 / JP305309R

CrossRef Полный текст | Google Scholar

Гу, М., Родитель, Л. Р., Мехди, Б. Л., Уноцич, Р. Р., МакДауэлл, М. Т., Саччи, Р. Л. и др. (2013). Демонстрация электрохимической жидкой ячейки для наблюдения с помощью просвечивающей электронной микроскопии литиирования / делитирования анодов батарей с Si-нанопроволокой. Nano Lett. 13, 6106–6112. DOI: 10.1021 / nl403402q

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ким, К.Х., Ирияма, Ю., Ямамото, К., Кумазаки, С., Асака, Т., Танабе, К. и др. (2011). Характеристика границы раздела между LiCoO 2 и Li 7 La 3 Zr 2 O 12 в полностью твердотельной перезаряжаемой литиевой батарее. J. Источники энергии 196, 764–767. DOI: 10.1016 / j.jpowsour.2010.07.073

CrossRef Полный текст | Google Scholar

Китаура, Х., Хаяси, А., Таданага, К., и Тацумисаго, М. (2010). Полностью твердотельные литиевые вторичные батареи с использованием электрода LiMn 2 O 4 и твердого электролита Li 2 S-P 2 S 5 . J. Electrochem. Soc. 157, A407 – A411. DOI: 10.1149 / 1.3298441

CrossRef Полный текст | Google Scholar

Кумазаки, С., Ирияма, Ю., Ким, К.-Х., Муруган, Р., Танабе, К., Ямамото, К., и др. (2011). Высокая проводимость для ионов лития Li 7 La 3 Zr 2 O 12 за счет включения как Al, так и Si. Электрохим. Commun. 13, 509–512. DOI: 10.1016 / j.elecom.2011.02.035

CrossRef Полный текст | Google Scholar

млн лет назад, C., Chen, K., Liang, C.D., Nan, C.W., Ishikawa, R., More, K., et al. (2014). Атомно-масштабное происхождение большого сопротивления границ зерен в перовскитных литий-ионных твердых электролитах. Energy Environ. Sci. 7, 1638–1642. DOI: 10.1039 / c4ee00382a

CrossRef Полный текст | Google Scholar

Ma, C., Cheng, Y., Chen, K., Li, J., Sumpter, B., Nan, C.-W., et al. (2016). Мезоскопический каркас обеспечивает легкий перенос ионов в твердых электролитах для литиевых батарей. Adv. Energy Mater. DOI: 10.1002 / aenm.201600053

CrossRef Полный текст | Google Scholar

Ма, К., Рангасами, Э., Лян, К. Д., Сакамото, Дж., Мор, К. Л., и Чи, М. Ф. (2015). Превосходная стабильность литий-ионного твердого электролита при обратимом обмене Li + / H + в водных растворах. Angew. Chem. Int. Эд. 54, 129–133. DOI: 10.1002 / anie.201410930

CrossRef Полный текст | Google Scholar

Мюллер, Д.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., et al. (2008). Химическое изображение состава и связи в атомном масштабе с помощью микроскопии с коррекцией аберраций. Наука 319, 1073–1076. DOI: 10.1126 / science.1148820

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Муруган, Р., Тангадурай, В., и Веппнер, В. (2007). Быстрая ионная проводимость лития в гранатах типа Li 7 La 3 Zr 2 O 12 . Angew. Chem. Int. Эд. 46, 7778–7781. DOI: 10.1002 / anie.200701144

CrossRef Полный текст | Google Scholar

Пенникук, С. Дж. (1992). Z-контрастная просвечивающая электронная микроскопия - прямая атомная визуализация материалов. Ann. Rev. Mater. Sci. 22, 171–195. DOI: 10.1146 / annurev.ms.22.080192.001131

CrossRef Полный текст | Google Scholar

Цянь Д., Ма, К., Мор, К. Л., Мэн, Ю. С. и Чи, М. (2015). Расширенная аналитическая электронная микроскопия для литий-ионных аккумуляторов. NPG Asia Mater. 7, е193. DOI: 10.1038 / am.2015.50

CrossRef Полный текст | Google Scholar

Quartarone, E., and Mustarelli, P. (2011). Электролиты для твердотельных литиевых аккумуляторных батарей: последние достижения и перспективы. Chem. Soc. Ред. 40, 2525–2540. DOI: 10.1039 / c0cs00081g

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ричардс, У. Д., Миара, Л. Дж., Ван, Ю., Ким, Дж. К., и Седер, Г.(2016). Стабильность интерфейса в твердотельных аккумуляторах. Chem. Mater. 28, 266–273. DOI: 10.1021 / acs.chemmater.5b04082

CrossRef Полный текст | Google Scholar

Сакуда А., Хаяси А. и Тацумисаго М. (2009). Наблюдение на границе раздела между электродом LiCoO 2 и твердыми электролитами Li 2 S-P 2 S 5 полностью твердотельных литиевых вторичных батарей с использованием просвечивающей электронной микроскопии. Chem. Mater. 22, 949–956. DOI: 10,1021 / см

9c

CrossRef Полный текст | Google Scholar

Stramare, S., Thangadurai, V., and Weppner, W. (2003). Титанаты лития-лантана: обзор. Chem. Mater. 15, 3974–3990. DOI: 10,1021 / см0300516

CrossRef Полный текст | Google Scholar

Такада, К. (2013). Развитие и перспективы твердотельных литиевых батарей. Acta Mater. 61, 759–770. DOI: 10.1016 / j.actamat.2012.10.034

CrossRef Полный текст | Google Scholar

Wang, Y., Richards, W. D., Ong, S. P., Miara, L. J., Kim, J. C., Mo, Y., et al. (2015). Принципы проектирования твердотельных литиевых суперионных проводников. Nat. Mater. 14, 1026–1031. DOI: 10.1038 / nmat4369

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Венцель, С., Лейхтвайс, Т., Крюгер, Д., Санн, Дж., И Янек, Дж. (2015). Межфазное образование на литиевых твердых электролитах - подход in situ к изучению межфазных реакций с помощью фотоэлектронной спектроскопии. Ионика твердого тела 278, 98–105. DOI: 10.1016 / j.ssi.2015.06.001

CrossRef Полный текст | Google Scholar

Венцель, С., Вебер, Д. А., Лейхтвайс, Т., Буше, М. Р., Санн, Дж., И Янек, Дж. (2016). Межфазное образование и деградация кинетики переноса заряда между анодом из металлического лития и высококристаллическим твердым электролитом Li 7 P 3 S 11 . Ионика твердого тела 286, 24–33. DOI: 10.1016 / j.ssi.2015.11.034

CrossRef Полный текст | Google Scholar

Вольфенстин, Дж., Сакамото, Дж., И Аллен, Дж. Л. (2012). Электронно-микроскопические исследования горячепрессованного замещенного алюминия Li 7 La 3 Zr 2 O 12 . J. Sci. Mater. 47, 4428–4431. DOI: 10.1007 / s10853-012-6300-y

CrossRef Полный текст | Google Scholar

Ву, Ю., Ма, К., Ян, Дж. Х., Ли, З. К., Аллард, Л. Ф., Лян, К. Д., и другие. (2015). Исследование инициирования спада напряжения в слоистых катодных материалах с высоким содержанием лития на атомном уровне. J. Mater. Chem. А 3, 5385–5391. DOI: 10.1039 / C4TA06856D

CrossRef Полный текст | Google Scholar

Ябуучи, Н., Йоши, К., Мён, С. Т., Накаи, И., и Комаба, С. (2011). Детальные исследования материала электродов большой емкости для аккумуляторных батарей, Li 2 MnO 3 -LiCo 1 / 3Ni 1 / 3Mn 1 / 3O 2 . J. Am. Chem. Soc. 133, 4404–4419. DOI: 10.1021 / ja108588y

CrossRef Полный текст | Google Scholar

Zeng, Z. Y., Zhang, X. W., Bustillo, K., Niu, K. Y., Gammer, C., Xu, J., et al. (2015). In situ Исследование литирования и делитирования нанолистов MoS 2 с помощью просвечивающей электронной микроскопии электрохимических жидких ячеек. Nano Lett. 15, 5214–5220. DOI: 10.1021 / acs.nanolett.5b02483

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжу, Ю., Он, X., и Мо, Y. (2015). Источник выдающейся стабильности литиевых твердых электролитов: выводы термодинамического анализа, основанные на расчетах из первых принципов. ACS Appl. Mater. Интерфейсы 7, 23685–23693. DOI: 10.1021 / acsami.5b07517

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжу, Ю., Хэ, X., и Мо, Ю. (2016). Изучение первых принципов электрохимической и химической стабильности границ раздела твердый электролит-электрод в полностью твердотельных литий-ионных батареях. J. Mater. Chem. А . 4, 3253–3266. DOI: 10.1039 / C5TA08574H

CrossRef Полный текст | Google Scholar

.

Новое исследование показывает, что теперь возможно использование твердотельных батарей с самой высокой плотностью энергии

Полностью твердотельный литий-металлический аккумулятор с высокой плотностью энергии, в котором используются сложные гидриды. Предоставлено: Сангрюн Ким и Шин-ичи Оримо.

Ученые из Университета Тохоку и Исследовательской организации по высокоэнергетическим ускорителям разработали новый комплексный гидридный литиевый суперионный проводник, который может привести к созданию полностью твердотельных батарей с самой высокой плотностью энергии на сегодняшний день.Исследователи говорят, что новый материал, полученный путем создания структур кластеров водорода (комплексных анионов), демонстрирует заметно высокую стабильность по отношению к металлическому литию, что делает его идеальным анодным материалом для полностью твердотельных батарей.

Полностью твердотельные батареи с литий-металлическим анодом могут решить проблемы плотности энергии обычных литий-ионных батарей.Но до сих пор их использование в практических элементах ограничивалось высоким сопротивлением переносу ионов лития, вызванным в основном нестабильностью твердого электролита по отношению к металлическому литию. Этот новый твердый электролит, обладающий высокой ионной проводимостью и высокой стабильностью по отношению к металлическому литию, представляет собой настоящий прорыв для полностью твердотельных батарей, в которых используется анод из металлического лития.

«Мы ожидаем, что эта разработка не только вдохновит будущие усилия по поиску литиевых суперионных проводников на основе сложных гидридов, но также откроет новую тенденцию в области материалов с твердыми электролитами, которая может привести к развитию электрохимических материалов с высокой плотностью энергии. устройств », - сказал Сангрюн Ким из исследовательской группы Шинити Оримо в Университете Тохоку.

Справочная информация:

Полностью твердотельные батареи являются многообещающими кандидатами для устранения внутренних недостатков существующих литий-ионных батарей, таких как утечка электролита, воспламеняемость и ограниченная плотность энергии. Широко распространено мнение, что металлический литий является лучшим анодным материалом для полностью твердотельных батарей, потому что он имеет самую высокую теоретическую емкость (3860 мАч g -1 ) и самый низкий потенциал (-3,04 В по сравнению со стандартным водородным электродом) среди известных. анодные материалы.

Литий-ионные твердые электролиты являются ключевым компонентом полностью твердотельных батарей, поскольку ионная проводимость и стабильность твердого электролита определяют характеристики батареи. Проблема в том, что большинство существующих твердых электролитов имеют химическую / электрохимическую нестабильность и / или плохой физический контакт с металлическим литием, что неизбежно вызывает нежелательные побочные реакции на границе раздела. Эти побочные реакции приводят к увеличению межфазного сопротивления, что значительно снижает производительность аккумулятора во время повторяющихся циклов.

Как показали предыдущие исследования, в которых предлагались такие стратегии, как легирование металлического лития и модификация границы раздела, этот процесс деградации очень трудно решить, поскольку его источником является высокая термодинамическая реакционная способность анода из металлического лития с электролитом. Основными проблемами при использовании анода из металлического лития являются высокая стабильность и высокая проводимость твердого электролита по ионам лития.

«Комплексным гидридам уделялось много внимания при решении проблем, связанных с анодом из металлического лития, из-за их выдающейся химической и электрохимической стабильности по отношению к аноду из металлического лития», - сказал Ким.«Но из-за их низкой ионной проводимости использование сложных гидридов с металлическим литиевым анодом никогда не применялось в практических батареях. Поэтому мы были очень заинтересованы в том, чтобы увидеть, может ли разработка сложного гидрида, который демонстрирует литиевую суперионную проводимость при комнатной температуре, позволить использовать литий. металлический анод. И это сработало ".


Новая технология направлена ​​на увеличение срока службы литий-металлических батарей, безопасность
Дополнительная информация: Сангрюн Ким и др., Сложный гидридный литиевый суперионный проводник для твердотельных литий-металлических батарей с высокой плотностью энергии, Nature Communications (2019).DOI: 10.1038 / s41467-019-09061-9 Предоставлено Университет Тохоку

Ссылка : Новое исследование показывает, что теперь возможно использование твердотельных батарей с самой высокой плотностью энергии (2019, 25 марта) получено 4 декабря 2020 с https: // физ.org / news / 2019-03-high-energy-density-all-solid-state-battery.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Преимущества и ограничения различных типов батарей

Нас часто озадачивают объявления о новых батареях, которые, как говорят, обладают очень высокой плотностью энергии, обеспечивают 1000 циклов заряда / разряда и являются тонкими как бумага. Они настоящие? Возможно - но не в одном аккумуляторе. Хотя один тип батарей может быть рассчитан на небольшой размер и длительную работу, этот аккумулятор не прослужит долго и преждевременно изнашивается. Другой аккумулятор может быть рассчитан на долгий срок службы, но его размер большой и громоздкий.Третья батарея может обеспечить все желаемые характеристики, но цена будет слишком высокой для коммерческого использования.

Производители аккумуляторов хорошо осведомлены о потребностях клиентов и отреагировали, предложив пакеты, которые лучше всего подходят для конкретных приложений. Индустрия мобильных телефонов - пример умной адаптации. Акцент делается на небольшие размеры, высокую удельную энергию и невысокую цену. На втором месте - долголетие.

Надпись NiMH на батарейном блоке не гарантирует автоматически высокую плотность энергии.Например, призматический никель-металлогидридный аккумулятор для мобильного телефона имеет тонкую форму. Такой пакет обеспечивает плотность энергии около 60 Втч / кг, а количество циклов составляет около 300. Для сравнения, цилиндрический NiMH обеспечивает плотность энергии 80 Втч / кг и выше. Тем не менее, количество циклов этой батареи от умеренного до низкого. Высокопрочные NiMH аккумуляторы, выдерживающие 1000 разрядов, обычно упаковываются в громоздкие цилиндрические элементы. Плотность энергии этих элементов составляет скромные 70 Втч / кг.

Компромиссы существуют и в отношении литиевых батарей.Литий-ионные блоки производятся для оборонных приложений, которые намного превышают плотность энергии коммерческого эквивалента. К сожалению, эти литий-ионные батареи сверхвысокой емкости считаются небезопасными в руках населения, а высокая цена делает их недоступными для коммерческого рынка.

В этой статье мы рассмотрим преимущества и ограничения серийного аккумулятора. Так называемые чудо-батареи, которые просто живут в контролируемой среде, исключаются. Мы тщательно изучаем батареи не только с точки зрения плотности энергии, но и с точки зрения долговечности, характеристик нагрузки, требований к техническому обслуживанию, саморазряда и эксплуатационных расходов.Поскольку никель-кадмиевые батареи остаются стандартом, с которым сравниваются другие батареи, мы сравниваем альтернативные химические составы с этим классическим типом батарей.

Никель-кадмий (NiCd) - зрелый и хорошо изученный, но с относительно низкой плотностью энергии. NiCd используется там, где важны длительный срок службы, высокая скорость разряда и экономичная цена. Основные области применения - двусторонняя радиосвязь, биомедицинское оборудование, профессиональные видеокамеры и электроинструменты. NiCd содержит токсичные металлы и не наносит вреда окружающей среде.

Никель-металлогидрид (NiMH) - имеет более высокую плотность энергии по сравнению с NiCd за счет сокращения срока службы. NiMH не содержит токсичных металлов. Приложения включают мобильные телефоны и портативные компьютеры.

Свинцово-кислотный - наиболее экономичный для мощных систем, где вес не имеет значения. Свинцово-кислотные батареи являются предпочтительным выбором для больничного оборудования, инвалидных колясок, аварийного освещения и систем ИБП.

Lithium Ion (Li ‑ ion) - самая быстрорастущая аккумуляторная система.Литий-ионный используется там, где первостепенное значение имеют высокая плотность энергии и легкий вес. Технология хрупкая, и для обеспечения безопасности требуется схема защиты. Приложения включают портативные компьютеры и сотовые телефоны.

Литий-ионный полимер (литий-ионный полимер) - предлагает атрибуты литий-ионного аккумулятора в сверхтонкой геометрии и упрощенной упаковке. Основное применение - мобильные телефоны.

На рисунке 1 сравниваются характеристики шести наиболее часто используемых систем аккумуляторных батарей с точки зрения плотности энергии, срока службы, требований к упражнениям и стоимости.Цифры основаны на средних номиналах имеющихся в продаже батарей на момент публикации.

никель-кадмиевый NiMH Свинцово-кислотный Литий-ионный Литий-ионный полимерный Многоразовые
Щелочные
.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследование
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

Смотрите также