Пневматический привод тормозов


Пневматический привод тормозов автомобиля

Пневматический привод колесных тормозов состоит из компрессора 1, воздушного баллона 7, манометра 6, тормозного крана 21, приводимого в действие педалью 26, тормозных камер 11, регулятора давления 28, предохранительного клапана 5 и трубопроводов 4, 27 и 9 с гибкими шлангами 10.

Привод тормозов колес осуществляется непосредственно тормозными камерами с помощью сжатого воздуха, запас которого содержится в воздушных баллонах.

Тормозная камера 11 состоит из корпуса с крышкой, между которыми зажата гибкая резино-тканевая диафрагма 17. Диафрагма опирается на шайбу, закрепленную на штоке 13. Шайба вместе с диафрагмой отжимается в исходное левое положение пружинами 12.

Шток диафрагмы соединен с рычагом 16 разжимного кулака. Тормозная камера через отверстие в крышке камеры, гибкий шланг 10 и трубопровод 9 соединяется с тормозным краном.

Тормозной кран служит для управления тормозами. В корпусе тормозного крана установлена гибкая металлическая диафрагма 20. Под диафрагмой размещается коромысло 19, посредством которого диафрагма воздействует своим штоком на впускной 25 и атмосферный 18 клапаны. Корпус крана закрыт крышкой, в которой установлен свободно толкатель 23, опирающийся через пружину 22 на диафрагму. Рычаг 24 установлен на оси. Рычаг коротким концом через регулировочный болт может воздействовать на толкатель 23.

Пневматический привод тормозов работает следующим образом.

При нажатии на педаль 26 ножного тормоза рычаг 24 поворачивается вокруг оси и через регулировочный болт нажимает на толкатель 23. Толкатель воздействует через пружину 22 на диафрагму 20 и прогибает ее вниз.

Коромысло 19 под воздействием диафрагмы перемещается вниз и приводит в действие клапаны. Атмосферный клапан 18 закрывается, а впускной 25 открывается и сообщает внутреннюю полость крана под диафрагмой с воздушным баллоном.

При этом сжатый воздух из баллона поступает через кран в тормозную камеру 11. В тормозной камере создается давление, под воздействием которого диафрагма 17, сжимая пружины 12, смещается вправо и через шток 13 и соединенный, с ним рычаг 16 поворачивает разжимной кулак. Разжимной кулак, поворачиваясь, раздвигает колодки, которые прижимаются к тормозному барабану, происходит торможение колеса.

Рис. Схема пневматического привода тормозов: 1 — компрессор; 2 — поршни компрессора; 3 — воздушный фильтр; 4, 9 и 27- трубопроводы; 5 — предохранительный клапан; 6 — манометр; 7 — воздушный баллон; 8 — кран для выпуска конденсатора; 10 — гибкий соединительный шланг; 11 — тормозная камера; 12 — пружина; 13 — шток диафрагмы; 14 — тормозные колодки; 15 — разжимной кулак; 16 — рычаг разжимного кулака; 17 — диафрагма; 18 — атмосферный клапан; 19 — коромысло; 20 — диафрагма тормозного крана; 21 — тормозной кран; 22 — пружина; 23 — толкатель; 24 — рычаг; 25 — впускной клапан; 26 — педаль ножного тормоза; 28 — регулятор давления

Тормозной кран является одновременно редуктором, поддерживающим определенное давление воздуха в тормозных камерах при торможении. Когда давление воздуха в полости под диафрагмой станет больше необходимой для нормального торможения величины, диафрагма, сжимая пружину. 22, приподнимется и впускной клапан прикроется, поступление воздуха из баллона прекратится.

Когда педаль тормоза отпущена, диафрагма тормозного крана поднимается и прекращается воздействие коромысла 19 на клапаны.

Под действием пружин впускной клапан 25 закроется, а атмосферный 18 — откроется. Полость тормозного крана разобщится с воздушным баллоном и сообщится с атмосферой.

Находящийся в тормозной камере сжатый воздух начнет выходить через тормозной кран в атмосферу.

Давление в тормозной камере резко снижается и диафрагма, возвращаясь под действием пружин 12 в первоначальное положение, повернет разжимной кулак в обратном направлении. Тормозные колодки под действием стяжной пружины отойдут от тормозного барабана, и торможение колес прекратится.

Необходимый для работы тормозного привода сжатый воздух нагнетается в баллоны пневматической системы автомобиля компрессором.

Компрессор представляет собой двухцилиндровый поршневой насос, устанавливаемый на кронштейне, прикрепленном к головке блока цилиндров двигателя.

Поршни 12, установленные в цилиндрах компрессора, через шатуны 15 соединены с коленчатым валом 17. Коленчатый вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей.

При вращении коленчатого вала поршни поочередно перемещаются вниз, создавая в цилиндрах разрежение. Когда поршень подойдет к нижней мертвой точке, он откроет впускные окна 13 в стенке цилиндра, соединив тем самым полость цилиндра с атмосферой, через воздушный фильтр 3 атмосферный воздух заполнит цилиндр.

При движении вверх поршень перекрывает впускные окна и сжимает воздух.

Рис. Компрессор: 1 — головка блока цилиндров компрессора; 2 — диафрагма; 3 — грибок; 4 — коромысло; 5 — спиральная пружина; 6 — разгрузочная камера; 7 — перепускная камера; 5 — регулировочный болт перепускного клапана; 9 — перепускной клапан; 10 — регулировочный болт нагнетательного клапана; 11 — нагнетательный клапан; 12— поршень; 13 — впускное окно; 14 — палец поршня; 15 — шатун; 16 — шарикоподшипник; 17 — коленчатый вал; 18 — блок цилиндров компрессора

Сжатый в цилиндрах воздух через нагнетательные клапаны 11 поступает по трубопроводу в воздушный баллон. Детали компрессора смазываются маслом, подаваемым из системы смазки двигателя по трубопроводу в торец коленчатого вала компрессора.

К шатунным подшипникам масло подводится по каналам, просверленным в коленчатом валу, а к поршневым пальцам — через каналы в шатунах.

Стенки цилиндров и коренные подшипники смазываются разбрызгиванием. Стекающее с деталей масло собирается в нижней части картера компрессора и по трубопроводу стекает в картер двигателя.

Головка 1 блока цилиндров компрессора охлаждается жидкостью, поступающей по трубопроводу из системы охлаждения двигателя.

Компрессор снабжен разгрузочным устройством, размещенным в головке блока его цилиндров, которое обеспечивает холостой ход компрессора при повышении давления в пневматической системе выше необходимого и регулирует количество и давление нагнетаемого в систему воздуха. В разгрузочной камере 6 помещена диафрагма 2, на которую опирается грибок 3. На стержень грибка в свою очередь опирается коромысло 4, которое своим вильчатым концом может воздействовать на два перепускных клапана, открывая их. При этом цилиндры компрессора сообщаются между собой.

Полость разгрузочной камеры под диафрагмой соединена трубопроводом с регулятором давления. Регулятор давления состоит из корпуса 9, шариковых клапанов 8 и пружины 3. Совместная работа разгрузочного устройства и регулятора давления заключается в следующем. Для обеспечения нормальной работы тормозов давление воздуха в системе пневматического привода должно поддержираться в пределах 6—7 кг/см2, что осуществляется с помощью регулятора давления и разгрузочного устройства компрессора.

Когда давление в пневматической системе станет выше 7 кг/см2, шариковые клапаны 8 регулятора давления, сжимая через шток 5 пружину 3, приподнимутся, открывая отверстие в нижнем гнезде и перекрывая отверстие в верхнем гнезде клапанов.

При этом воздух из баллона направится к компрессору, поступая в полость под диафрагмой 2 разгрузочного устройства. В разгрузочной камере 6 создается давление, под действием которого диафрагма 2 прогибается вверх и приподнимает грибок 3. Грибок своим стержнем воздействует через коромысло 4 на стержни перепускных клапанов. Клапаны открываются и сообщают между собой цилиндры. Воздух при сжатии переходит из одного цилиндра в другой. В результате давление в цилиндре оказывается недостаточным, чтобы открыть нагнетательный клапан, и воздух не подается в пневматическую систему автомобиля.

Рис. Регулятор давления: 1 — кожух; 2 — регулировочный колпак; 3 — пружина регулятора; 4 — упорный шарик пружины; 5 — шток клапана; 6 — гайка регулировочного колпака; 7 — седло регулятора; 8 — шариковые клапаны; 9 — корпус; 10 — фильтр; 11 — штуцер; 12 — канал

Когда давление в системе станет меньше 6 кг/см2, под действием пружины 3 регулятора давления шариковые клапаны 8 опустятся вниз, перекроют отверстие в нижнем гнезде и откроют — в верхнем. Поступление воздуха из баллона к компрессору прекратится, а находящийся в разгрузочной камере воздух через канал 12 в регуляторе давления выйдет в атмосферу.

Давление в разгрузочной камере снизится до атмосферного, и перепускные клапаны под действием пружин закроются. Компрессор начнет нагнетать воздух в баллоны.

Для предохранения от чрезмерного давления воздуха в случае неисправности регулятора давления в пневматической системе имеется предохранительный клапан. Он отрегулирован так, что при достижении давления воздуха в системе 9—10 кг/см2 шарик 6 приподнимается, сжимая пружину 4, и воздух из пневматической системы через отверстие в корпусе клапана выходит в атмосферу.

Рис. Предохранительный клапан: 1 — регулировочный винт; 2 — контргайка; 3 — стержень клапана; 4 — пружина; 5 — корпус; 6 — шарик клапана

Давление в пневматической системе контролируется манометром, установленным на приборном щитке в кабине автомобиля.

☰Принцип работы пневматической тормозной системы автомобиля

Пневматический тормозной привод - вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника - грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Тягач DAF XF105 - пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры - комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность - магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы - устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия - магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая - на задние. Поток энергоносителя контролируют два тормозных крана - по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная. Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность - сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Общий вид пневматической тормозной системы: 1 - двухсекционный тормозной кран, 2, 6 - тормозные камеры (силовые цилиндры), 3 - предохранительный клапан, 4 - регулятор давления, 5 - компрессор, 7 - кран отбора воздуха, 8 и 9 - разобщительный кран с соединительной головкой, 10 - ресиверы (воздушные баллоны), 11, 12 - тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами. Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата. Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран - связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы. К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая - в тормозных камерах. В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы - вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды - автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы - приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес. В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) - верхний цилиндр. Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес. В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль. Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы - это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух - нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой - цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

  • тормоза автомобиля не реагируют на нажим педали или реагируют с большим опозданием. Причины - сжатый воздух выходит через трещину в трубопроводе или ресивере, вышел из строя компрессор. Неисправности возникают в результате резкого удара, который повредил пневмосистему, постепенного износа привода, разрыва приводного ремня, который запускает компрессор. Выход - обратиться на диагностику  на станции техобслуживания;
  • увеличился тормозной путь автомобиля. Причины также могут быть разные. Например, разболталась педаль тормоза, износились тормозные колодки или барабаны, поврежден один из контуров магистрали. Неисправности возникают в результате естественного износа, резкого перепада давления или неправильной работы перепускных клапанов и тормозных кранов. Решение - посетите автосервис и пройдите диагностику пневмотормозов;
  • занос прицепа во время торможения. Проблема говорит о неисправности разобщительного клапана, который соединяет пневмосистему тягача и тормозные камеры прицепа. В результате, когда водитель тормозит, воздух поступает только в тормозные камеры, а прицеп продолжает движение. Выходит, что прицеп и тягач начинают двигаться навстречу друг другу, в результате чего прицеп как более длинный и менее устойчивый объект ведет в сторону. Чтобы устранить поломку, достаточно заменить разобщительный кран;
  • автомобиль ведет в сторону при торможении. Причина - тормоза работают несинхронно, колеса тормозят в разное время, и автомобиль может занести. Проблема возникает, когда неравномерно изнашиваются тормозные колодки и барабаны или одна из тормозных камер пропускает воздух.

Своевременный ремонт - залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек - на легковушке или тягаче с прицепом.

Устройство автомобилей



Пневматический привод широко используется в тормозной системе тягачей, грузовых автомобилей средней и большой грузоподъемности и автобусов. В тормозной системе с пневматическим приводом тормозные механизмы включаются за счет использования энергии сжатого воздуха.

Первая пневматическая тормозная система была запатентована американцем Д. Вестингаузом в 1872 году и предназначалась для использования в железнодорожном транспорте. Изобретение пневматического привода стало поистине революционным для железных дорог, обеспечивая надёжное торможение поездов в автоматическом режиме, что позволило существенно увеличить массу и скорость железнодорожных составов.

Для автомобилей пневмопривод тормозов впервые был предложен американским инженером Д. Стартевентом в 1904 г., но в серийном автомобильном производстве стал применяться лишь в сороковых годах прошлого столетия. Причиной, по которой инженеры-конструкторы обратили на пневмопривод более пристальных взор - стремительный рост мощности, производительности и грузоподъемности автотранспортных средств, передвигавшихся, к тому же, все более стремительно. Применявшиеся в те годы гидравлические и механические приводы не могли обеспечить надежное и эффективное торможение тяжелых автомобилей, и уж тем более - автопоездов.

В гидравлическом приводе без специальных усилителей величина тормозных усилий на исполнительных элементах тормозных механизмов лимитируется физическими возможностями человека, а с использованием гидровакуумных и вакуумных усилителей – размерами вакуумной диафрагмы, которая, при необходимости создания значительных усилий, разрасталась до огромных габаритов, негативно влияя на компоновку автомобиля. Кроме того, увеличение усилия, передаваемого гидроприводом, влечет за собой существенное повышение давления жидкости в нем, что создает дополнительную опасность разгерметизации системы, т. е. снижает ее надежность. И если незначительные утечки воздуха в пневмоприводе не влияют на его работоспособность, то для гидропривода они губительны, приводя к отказу системы.

Увеличение интенсивности дорожного движения и возросшие скорости ужесточают требования к тормозным системам автомобилей и автопоездов. Они регламентируются международными требованиями, государственными стандартами и отраслевыми нормативными документами.

По этим причинам на автомобилях полной массой более 9 тонн применяют пневматический привод тормозных механизмов, который может создавать практически неограниченное приводное усилие со стороны тормозных механизмов, обеспечивая эффективное торможение автотранспортных средств любой массы и на любой скорости.

Следует отметить, что пневматические тормозные системы отечественных автомобилей не уступают, а по некоторым показателям даже превосходят аналоги ведущих зарубежных фирм.

***

Преимущества и недостатки пневматического привода

Широкое распространение пневматического привода транспортных средств объясняется целым рядом преимуществ:

  • возможность создания больших разжимных сил на тормозных колодках при малом усилии на педали управления;
  • доступность, дешевизна и безопасность рабочего тела для работы пневмопривода (обычный атмосферный воздух);
  • возможность накопления большого количества потенциальной энергии сжатого воздуха в специальных баллонах-аккумуляторах (ресиверах), позволяющей долго и эффективно тормозить даже при отказе основного источника энергии (компрессора);
  • допустимость незначительных естественных утечек сжатого воздуха из-за негерметичности (незначительные утечки компенсируются запасом сжатого воздуха и компрессором);
  • простота и удобство соединения магистралей при составлении автопоезда;
  • достаточно высокий КПД (0,8...0,85);
  • возможность использования энергии сжатого воздуха для привода различных вспомогательных устройств и оборудования автомобиля (пневматический звуковой сигнал, стеклоочистители, привод дверей автобуса, привод переключения КПП, усилитель сцепления, подкачка шин и т. п.).

Недостатками пневматического привода являются:

  • большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, а также из-за свойства сжимаемости воздуха (как и любого газа);
  • сложность конструкции и высокая стоимость (особенно многоконтурного привода);
  • большие масса и габариты приборов пневмопривода по сравнению с гидроприводом;
  • существенные затраты мощности на привод компрессора;
  • возможность выхода пневмопривода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Обеспечивая высокое усилие, пневматический привод имеет массу, значительно превышающую массу эквивалентного по эффективности гидравлического привода, а также заметно дороже его. Так, например, на одиночном автомобиле марки «КамАЗ» пневмопривод содержит до 25 приборов и аппаратов, до шести ресиверов и примерно 70 м трубопроводов. Очевидно, что стоимость такого привода достаточно высокая.

Время срабатывания пневматического привода весьма продолжительное – у одиночных автомобилей оно составляет 0,4…0,7 сек, а у автопоездов может достигать 1,5 сек. Время растормаживания достигает 1,2 сек. Исходя из этого, можно сделать вывод, что по быстродействию пневматический привод в 5…10 раз медленнее гидравлического привода.

***

Общее устройство пневматического привода тормозов

На рис. 1 изображена схема пневматического привода тормозов автомобиля ЗИЛ-433100. Для детального ознакомления со схемой необходимо щелкнуть мышкой по рисунку 1. Увеличенное изображение схемы с пояснениями к номерам позиций откроется в отдельном окне браузера.

Основными элементами пневматического привода являются компрессор 1, ресиверы (воздушные баллоны) 9, 10, 11, 22, 23, хранящие запас сжатого воздуха, кран управления 18, магистрали и исполнительные элементы, воздействующие на разжимные устройства тормозных механизмов. В качестве таких исполнительных устройств обычно используют тормозные камеры 2, 29 диафрагменного типа.

Кроме основных элементов, пневматический привод современного автотранспортного средства включает различные дополнительные приборы и устройства, обеспечивающие его надежное функционирование, как в одиночном автомобиле, так и в составе автопоезда.



Все приборы пневматического тормозного привода делятся на следующие группы: питающие, приборы управления, регулирующие, исполнительные.

Питающие приборы подготавливают энергоноситель (сжатый воздух) к работе и распределяют его по контурам. Сюда относятся компрессор с регулятором давления воздуха, устройство, предохраняющее конденсат от замерзания, трубопроводы и различные соединительные элементы, в том числе и для присоединения пневмопривода тягача к пневмоприводу прицепа (полуприцепа).

К приборам управления относятся тормозные краны всех систем (рабочей, стояночной, запасной, вспомогательной), а также краны и клапаны управления тормозными системами прицепа или полуприцепа.

К регулирующим приборам относятся регуляторы тормозных сил, ускорительные клапаны, клапаны быстрого растормаживания.

К исполнительным приборам относятся тормозные камеры и пружинные энергоаккумуляторы.

Принцип действия пневматического привода тормозных механизмов достаточно прост – при торможении автомобиля (нажатие на тормозную педаль) кран соединяет ресиверы с магистралями, устанавливая в них давление воздуха, пропорционально силе, приложенной водителем к тормозной педали. При снятии усилия с тормозной педали кран отсоединяет магистрали от ресиверов и соединяет их с окружающей средой, выпуская сжатый воздух из системы. Подобно гидравлическому, пневматический привод разделяется на контуры, причем каждый отдельный контур оснащается своим ресивером с запасом сжатого воздуха и управляется отдельной секцией крана. Это необходимо для повышения надежности привода и сохранения управляемости автомобилем в случае разгерметизации или отказа одного из контуров.

Одноконтурный пневматический привод прост по конструкции, но современные требования к безопасности движения исключают его использование на автомобилях из-за низкой надежности. Поэтому на современных автомобилях применяются многоконтурные приводы, и помимо двух обязательных контуров рабочей тормозной системы применяют несколько независимых контуров других тормозных систем. Так, пневматический тормозной привод автомобиля КамАЗ-4310 имеет шесть независимых контуров:

  • контур питания потребителей сжатым воздухом;
  • контур привода тормозных механизмов передних колес;
  • контур привода тормозных механизмов задних колес;
  • контур привода стояночной тормозной системы;
  • контур привода вспомогательной тормозной системы;
  • контур аварийного растормаживания стояночной тормозной системы.

Кроме того, имеется целый ряд приборов, обеспечивающих работу привода тормозных механизмов прицепа и осуществляющих контроль над состоянием элементов тормозного привода. Аналогичной тормозной системой осуществляются современные модели автомобилей ЗиЛ, МАЗ, КрАЗ и др.

***

Особенно удобен пневматический привод для использования на автопоездах. Исполнительные механизмы привода тормозной системы прицепа (или полуприцепа) питаются от установленных на них отдельных ресиверов посредством дополнительного крана, который называется воздухораспределителем.

Соединение тормозных систем тягача и прицепа может быть однопроводным или двухпроводным. При однопроводном приводе прицеп соединен с тягачом с помощью одной магистрали, через которую осуществляется как наполнение ресиверов прицепа сжатым воздухом, так и передача на прицеп команд на торможение с заданной водителем интенсивностью. Преимуществом однопроводного тормозного привода прицепных автотранспортных средств является его простота, а также то, что при отрыве прицепа от тягача он автоматически, без применения дополнительных устройств, затормаживает прицеп вследствие того, что давление в разорвавшейся соединительной магистрали падает до нуля.

В двухпроводном приводе посредством одной магистрали, связывающей тягач с прицепом (полуприцепом), постоянно пополняется запас сжатого воздуха в ресиверах прицепа. Эта магистраль называется питающей. Другая магистраль (управляющая) управляет воздухораспределителем прицепа. Давление воздуха в управляющей магистрали изменяется пропорционально изменению давления в тормозных магистралях тягача.

Двухпроводный привод обладает рядом преимуществ по сравнению с однопроводным:

  • обеспечение лучшего согласования торможения тягача и прицепа благодаря одинаковому давлению сжатого воздуха в ресиверах тягача и прицепа:
  • повышение эффективности работы тормозов прицепа и уменьшение времени их срабатывания;
  • при частых торможениях тормозная система прицепа с двухпроводным приводом эффективно пополняет запас сжатого воздуха в ресивере, поддерживая постоянство рабочего давления.

Автомобильные фирмы США, а также большинства европейских стран применяют на прицепах двухпроводный привод тормозных систем. В Германии получил распространение комбинированный привод (одно- и двухпроводный), а отдельные фирмы Великобритании и Франции используют трехпроводной привод управления тормозами прицепа. При этом третий контур используется в качестве запасного контура тормозной системы прицепа.

Клапаны управления тормозными системами прицепов с двухпроводным приводом и с однопроводным приводом являются аппаратами управления тормозными системами прицепов. Они устанавливаются на автомобилях-тягачах.

***

Комбинации тормозных приводов

На длиннобазовых автомобилях и тягачах большегрузных автопоездов часто используются комбинированный гидропневматический привод тормозных механизмов. В таком приводе для увеличения тормозных усилий используется энергия сжатого воздуха, а передача их к тормозному механизму осуществляется жидкостью. Использование гидропневматического привода позволяет увеличить скорость его срабатывания, но приводит к усложнению конструкции тормозной системы.

Некоторые прицепы могут снабжаться электромагнитным клапаном, который служит для управления подачей сжатого воздуха к тормозным камерам, выполняя функцию крана-распределителя, а также для включения тормозной системы прицепа при торможении автомобиля вспомогательной тормозной системой (моторным или специальным тормозом-замедлителем). При подаче электрического сигнала электромагнитному клапану от тягача он обеспечивает поступление сжатого воздуха из ресивера к тормозным камерам, а при прекращении управляющего сигнала открывает доступ магистрали к внешней среде, сбрасывая давление в ней. Такая конструкция относится к электропневматическим комбинированным тормозным приводам.

***

Комбинированный тормозной привод Многоконтурный пневматический тормозной привод


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Пневматический привод тормозной системы

Пневматический привод представляет собой источник энергии, который используется для торможения и работает на сжатом воздухе. Рассматриваемое устройство дает возможность создавать существенную тормозную силу при минимальном участии водителя или оператора. Подобная система широко используется в обустройстве тягачей, автобусов и грузовых автомобилей. Конструкция состоит из компрессора, воздушных резервуаров, крана, колесных отсеков, разобщительного регулятора, сосуда для слива отработанных рабочих жидкостей.

Компрессор

Данный элемент пневматического привода подает в систему сжатый воздух. Он обрабатывается в очистителе, после чего транспортируется в резервуары. Выход воздушной смеси из баллонов предотвращает обратный клапан. Показатель давления определяется по манометру. После активации педали тормоза воздух через открывшийся кран попадает в тормозные отсеки, вследствие чего срабатывает сжатие колодок. Обратный процесс происходит при помощи стяжных пружин.

В состав конструкции компрессора входит блок цилиндров, его головка, картер, стопорные крышки. Коленчатый вал механизма вращается в подшипниках шарикового типа, взаимодействует с поршнями при помощи пальцев и шатунов. Передняя часть коленвала оснащена клиновидным ремнем, сальником и шпонкой. В качестве охладителя предусмотрен вентилятор. В головке блока цилиндров над каждым рабочим элементом имеется пробка с пружиной и нагнетательным клапаном. Нижние шатунные головки оснащены регулировочными прокладками.

Пневматический тормозной привод имеет комбинированную систему смазки. Масло подается из главной магистрали по трубе во внутреннюю часть коленчатого вала. Шатунные подшипники помещены в антифрикционный раствор и смазываются принудительно. Остальные элементы получают масло способом разбрызгивания. Отработка из картера отправляется в емкость двигателя через специальный отвод.

Система охлаждения компрессора пневматического привода – жидкостного типа. Она связана с аналогичным узлом силового агрегата. Когда один из поршней опускается в нижнее положение, создается разряжение и воздух поступает в него путем очистителя и впускного клапана. После подъема поршня происходит сжатие воздушной смеси, далее она поступает через клапан в баллоны и основную систему. Затем весь процесс повторяется.

Показатель давления воздуха ограничивается специальным регулятором, который снижает затраты мощности мотора на привод компрессора, что увеличивает рабочий ресурс узла. Конструкция с регулятором размещена под клапанами, содержит пару плунжеров и уплотнителей с толкателями. Плунжерное коромысло соединяется пружиной, полость под впускными клапанами агрегирует с трубопроводом очистителя, а плунжерный канал с контроллером давления.

Воздушные баллоны предназначены для хранения охлажденного запаса сжиженного воздуха. В их конструкции предусмотрены краны для удаления конденсата, а также предохранительный клапан. От засорения устройство защищает гайка колпачкового типа.

Корпус регулятора давления закрыт кожухом, имеет штуцер со штоком клапанов. На шток воздействует пружинный механизм, который оснащен регулирующим колпаком. В центральной консоли корпуса расположен впускной и выпускной клапан. Канал соединяется через фильтр и впускное отверстие с баллонами, а также разгрузочным устройством. В нижней части корпуса предусмотрена пробка.

Если давление в магистрали достигает показателя ниже 560 кН/кв.м, воздушная масса выходит в атмосферу. Плунжеры при этом освобождают впускные клапаны, компрессор начинает нагнетать воздух в систему.

Управление системой

Гидравлический пневматический привод для управления оснащается краном. Он позволяет регулировать подачу сжатого воздуха к рабочим камерам. Также при его помощи обеспечивается стабильная тормозная сила и быстрое растормаживание.

Корпус данной детали зафиксирован на раме. Диафрагма изготовлена из прорезиненного тканевого материала, помещена между крышкой и остовом. В ее центре имеется седло выпускного клапана, опирающееся на стакан контрольной пружины. Рабочая полость сообщается с атмосферой через впускное окно и клапан. Пружина возвратного типа стабильно воздействует на диафрагму и впускной клапан. Седло последнего элемента зажато в крышке штуцером. Благодаря прижатию клапана воздух из баллонов не поступает к тормозным камерам.

Работа пневматического привода

Двуплечий рычаг агрегирует с педалью тормоза, при этом опираясь на стакан. После нажатия педали тяга, помещенная внутри гофрированного защитного чехла, поворачивает рычаг. Стакан с пружиной подается вправо, диафрагма прогибается, после чего закрывается выпускной клапан, а его впускной аналог открывается. Диафрагма с пружинным механизмом и клапанами образует следящий узел. Он имеет три позиции.

В первом положении педаль тормоза отпущена, оба клапана становятся в крайнюю левую позицию. Впускной клапан активен, тормозные отсеки через него, а также рабочие камеры соединены с атмосферой.

Вторая позиция соответствует нажатию на педаль, усилие трансформируется на рычаге, стакане и диафрагме. Седло перекрывает клапан, разобщая соединение с атмосферой. Открытию клапана дополнительно препятствует давление воздуха и усилие пружины.

В третьем положении после дополнительного нажатия на педаль открывается впускной клапан, сжатая воздушная смесь поступает к тормозным камерам, осуществляется процесс торможения. Диафрагма под воздухом прогибается, а пружина сжимается. После уравновешивания воздействующих сил диафрагма становится во вторую позицию, оба клапана закрываются, обеспечивая постоянное тормозное усилие.

Особенности

Пневматический привод тормозов при усилении нажатия на педаль получает дополнительное количество воздуха. Это обуславливает увеличение показателя давления в рабочих отсеках. При растормаживании процессы идут в пропорционально обратном порядке. Сжатая воздушная смесь выходит через клапан. Режим холостого хода регулируется посредством специального болта.

Для работы пневматического привода клапанов на прицепах монтируется кран комбинированного типа. Он представляет собой элемент с двумя секциями, верхняя из которых отвечает за работу прицепного приспособления, а нижняя часть – за тягач. Правые отделы отсеков идентичны, в седло выпускного клапана упирается шток, помещенный в механизм с втулкой и пружиной. На оси штока имеется рычаг, агрегирующий с малым аналогом.

Плюсы

Использование рассматриваемого устройства обусловлено рядом преимуществ, а именно:

  • Пневматический привод дает возможность создавать значительное прижимное усилие на колодках при малом воздействии на педали управления.
  • Доступность, безопасность и простота работы на обычном воздухе.
  • Возможность накопления значительного объема потенциальной энергии воздуха в специальных резервуарах, что позволяет обеспечивать длительное и эффективное торможение даже при выходе из строя компрессора.
  • Допускаются незначительные утечки воздушной смеси, которые частично компенсируются запасом сжатого воздуха.
  • Простота и удобство соединительных и проводящих деталей.
  • Высокий коэффициент полезного действия.
  • Возможность применения конструкции для работы различного дополнительного автомобильного оборудования.

Теперь рассмотрим минусы устройства:

  • Относительно медленное срабатывание по причине особенностей сжимаемого воздуха.
  • Ремонт пневматического привода требует полной или частичной замены элементов.
  • Сложность конструкции и высокая стоимость многоконтурной модификации.
  • Большие вес и размеры, по сравнению с гидравлическим аналогом.
  • Значительные затраты мощности на компрессорный привод.
  • Возможность поломки узла при замерзании конденсата зимой.

Тормозной пневмопривод обеспечивает высокое усилие, при этом содержит массу элементов. Например, на КамАЗе эта часть включает в себя порядка 25 приборов, 6 ресиверов, около 70 метров трубопроводов.

В заключение

Конструкция одноконтурного пневматического привода проста. Однако современные стандарты безопасности движения не приемлют его эксплуатации по причине низкой надежности. На автомобили устанавливают многоконтурные аналоги, которые оснащаются несколькими автономными приводами. В современной системе предусмотрено два обязательных минимальных контура, а также до шести схем других систем.

Кроме того, в конструкцию узла входит масса приборов, предназначенных для обеспечения нормальной работы тормозных элементов. Также они выполняют контроль состояния привода на тягаче и прицепе. Рассматриваемой системой оснащаются популярные отечественные грузовики. Особенно актуален данный механизм на автопоездах. На машинах с удлиненной базой часто применяют комплексный гидропневматический привод тормозов. В нем для придания необходимого усилия используется сжатый воздух, а передача к механизму осуществляется посредством рабочей жидкости. Подобная система увеличивает скорость срабатывания конструкции, однако существенно ее усложняет.

Пневматический привод тормозов автомобиля

Пневматический тормозной привод применяют на автомобилях большой грузоподъемности, автобусах большой вместимости и колесных тягачах, работающих с прицепами и полуприцепами.

Схемы пневматического тормозного привода различаются между собой по числу трубопроводов (одно-или двухпроводные), связывающих автомобиль-тягач с прицепом. В остальном между ними много общего.

На автомобилях КамАЗ, МАЗ, ЗИЛ и их модификациях устанавливается пневматический привод тормозов (рис. 17.11). В него входят компрессор, регулятор давления, предохранительный клапан, баллоны, тормозной кран, колесные тормозные камеры, педаль тормозов, соединительная головка и разобщительный кран, кран отбора воздуха, сливной кран и манометр.

Рекламные предложения на основе ваших интересов:

Компрессор нагнетает воздух в баллоны и обеспечивает систему сжатым воздухом. Давление воздуха в системе контролируется по манометру. При нажатии на педаль тормозной кран открывает доступ сжатого воздуха из баллонов в тормозные камеры передних и задних колес, механизмы которых раздвигают тормозные колодки. Рас-тормаживание происходит при помощи стяжных пружин колодок. От воздушной системы тормозов при помощи головки крана управления приводится в действие механизм стеклоочистителя.

Компрессор (рис. 17.12, а) установленный на автомобилях ЗИЛ, КамАЗ, МАЗ и др. поршневого типа, двухцилиндровый одноступенчатого сжатия, приводится в действие клиновидным ремнем от шкива вентилятора. Компрессор состоит из блока цилиндров, головки блока цилиндров, картера, передней, нижней и задней крыше.к. Коленчатый вал компрессора вращается в шарикоподшипниках и шатунами через поршневые пальцы плавающего типа соединен с поршнями. На переднем конце вала установлен шкив, который крепится шпонкой и гайкой. На заднем конце коленчатого вала имеются уплотнитель и гайка для затяжки шарикоподшипника. В стенке блока цилиндров выполнено окно для прохода воздуха, поступающего внутрь цилиндров из полости В (рис. 17.12, б, в), в которой установлены два впускных клапана с седлами, а над каждым цилиндром в головке (см. рис. 17.12, а) расположены выпускные клапаны. Под впускными клапанами находится разгрузочное устройство компрессора, состоящее из плунжера (см. рис. 17.12, б, в) со штоком, коромысла, пружины и их направляющие. Канал разгрузочного устройства соединен с регулятором давления.

Рис. 17.11. Пневматический привод тормозов автомобиля ЗИЛ-130

Рис. 17.12. Компрессор пневматического привода тормозных механизмов автомобилей ЗИЛ-130, МАЗ-5335 и др.: а — продольный разрез; б — поперечный разрез; в — разгрузочное устройство

Система смазки компрессора принудительная, масло подается под давлением из главной масляной магистрали двигателя через отверстие (см. рис. 17.12, а) в задней крышке. Залитые баббитом шатунные подшипники и поршневые пальцы компрессора соединены каналами, выполненными в шатунах, и смазываются принудительно, а остальные детали — разбрызгиванием. Из картера компрессора отработавшее масло при помощи специальной трубки отводится в картер двигателя.

Компрессор имеет жидкостную систему охлаждения. Жидкость поступает в полость Б блока цилиндров компрессора из системы охлаждения двигателя.

При движении поршня вниз в цилиндре создается разрежение, воздух поступает в полость В и через открытые впускные клапаны происходит заполнение цилиндра. При движении поршня вверх давлением сжимаемого воздуха открываются выпускные клапаны 6 и через камеру А воздух поступает к воздушным баллонам, откуда он подается в пневматическую систему.

Давление сжатого воздуха в баллонах ограничивается специальным разгрузочным устройством, которое уменьшает затрату мощности двигателя на привод компрессора и повышает долговечность последнего. Это устройство работает вместе с регулятором давления.

Регулятор давления (рис. 17.13, а) автоматически поддерживает необходимое давление сжатого воздуха в системе, впуская воздух в разгрузочное устройство компрессора и выпуская воздух из него. При достижении давления 0,7—0,74 МПа регулятор отключает подачу воздуха, а при давлении 0,56—0,6 МПа снова включает ее. В корпусе регулятора под кожухом помещены штуцер, впускной и выпускной шариковые клапаны, нагруженные через стержень пружиной, и центрирующие шарики. В регуляторе имеются сетчатый фильтр, установленный в месте выхода воздуха из регулятора в разгрузочное устройство компрессора и металлокерамический фильтр, прижатый пробкой в месте входа воздуха в регулятор из пневматической системы.

Рис. 17.13. Регулятор давления (а) и предохранительный клапан (б)

При давлении в системе до 0,7— 0,74 МПа сжатый воздух, преодолевая сопротивление пружины, открывает впускной клапан и поступает в разгрузочное устройство компрессора.

В разгрузочном устройстве (см. рис. 17.12, б, в) сжатый воздух давит на плунжер, который открывает впускной клапан. Компрессор в этом случае перекачивает воздух из одного цилиндра в другой, т. е. работает вхолостую.

При снижении давления до 0,56— 0,6 МПа впускной клапан 10 (см. рис. 17.13, а) закрывается и выпускной клапан, опустившись вниз под действием пружины, сообщает разгрузочное устройство компрессора с атмосферой. Впускные клапаны (см. рис. 17.12, б, в) разгрузочного устройства закрываются, и компрессор начинает нагнетать сжатый воздух в пневматическую систему. Регулировка давления (см. рис. 17.13, а) осуществляется вращением колпачковой гайки, фиксируемой контргайкой.

Регуляторы давления шарикового типа применяют на автомобилях ЗИЛ-130, КрАЗ-257 и др. На автомобилях MA3-5335 применяют регулятор давления диафрагменного типа.

Предохранительный клапан (рис. 17.13, б) служит для предохранения пневматической системы от чрезмерного повышения давления при неисправности автоматического регулятора давления. В его корпус ввернуто седло, в которое упирается шарик, прижимаемый к седлу стержнем под действием пружины. Для регулировки клапана на заданное давление установлен винт с контргайкой.

Клапан установлен на правом воздушном баллоне и отрегулирован на давление воздуха в системе, равное 0,9—0,95 МПа. При этом давлении шарик, преодолевая сопротивление пружины, открывает выход воздуха в атмосферу через отверстие в боковой стенке корпуса.

Воздушные баллоны (см. рис. 17.11) служат для хранения запаса сжатого воздуха, поступающего из компрессора. В них имеются краны для слива конденсата воды и масла и предохранительный клапан. Для накачки сжатым воздухом шин используется кран 8 отбора воздуха, отверстие которого закрывается колпачковой гайкой.

Тормозной кран служит для управления тормозами автомобиля в результате регулировки подачи сжатого воздуха из баллонов к тормозным камерам. Тормозной кран также обеспечивает постоянное тормозное усилие при неизменном положении тормозной педали и быстрое рас-тормаживание при прекращении нажатия на педаль.

Тормозные краны бывают прямого и обратного действия. В кранах прямого действия при нажатии на педаль происходит подача сжатого воздуха из баллона через магистраль в тормозные камеры колес.

В кранах обратного действия при торможении воздух из магистрали выпускается в атмосферу, а тормозные камеры колес заполняются воздухом из баллона через специальный распределитель. Краны первого типа применяют для управления тормозами автомобиля, а второго — для управления тормозами прицепа. По конструкции тормозные краны бывают диафрагмен-ные и поршневые. У автомобилей и автобусов новых моделей устанавливают тормозные краны поршневого типа. На автомобилях, предназначенных для работы с прицепом, устанавливают комбинированные (двойные) краны с двумя цилиндрами, один, из которых служит для управления тормозами автомобиля-тягача, а другой — для управления тормозами прицепа.

На автомобиле ЗИЛ-130 и его модификациях установлен комбинированный тормозной кран (рис. 17.14), который имеет диафрагмы из прорезиненного полотна и сдвоенные конические резиновые клапаны: выпускные и впускные.

При нажатии на педаль тормоза тяга привода поворачивает рычаг, который, опираясь на вилку рычага, выдвигает шток, сжимая уравновешивающую пружину. Диафрагма под давлением сжатого воздуха прогибается влево, а седло 8 открывает выпускной клапан. Через отверстие в седле и выпускное отверстие на корпусе крана сжатый воздух из магистрали прицепа выходит в атмосферу. Из-за снижения давления воздуха в магистрали прицепа вступает в действие его воздухораспределитель, обеспечивая поступление сжатого воздуха в тормозные камеры колес и их торможение.

Далее под действием рычага и пальца поворачивается вокруг оси рычаг. Этот рычаг давит на стакан и пружину. Диафрагма прогибается вправо, седло закрывает выпускной клапан и открывает впускной клапан. Сжатый воздух из баллонов поступает к диафрагме и далее (по стрелке А) к тормозным камерам автомобиля-тягача. Колеса автомо-биля-тягача затормаживаются на 0,2—0,3 с позднее колес прицепа.

При затормаживании автомобиля стояночным тормозом поворачивается валик приводного рычага, на конце которого насажен кулачок. Кулачок выдвигает шток, вызывая срабатывание верхней полости тормозного крана (как описано выше) и торможение колес прицепа. Нижняя полость крана при этом не выключается.

Рис. 17.14. Комбинированный тормозной кран автомобиля ЗИЛ-130 и его модификаций

В расторможенном положении тормозной кран обеспечивает поступление воздуха под давлением 0,48—0,53 МПа из воздушных баллонов автомобиля в пневматическую систему тормозов прицепа (верхние стрелки А и Б). Выпускной клапан прижат к седлу, а впускной клапан при этом открыт.

Давление воздуха, подаваемого от тормозного крана в магистраль прицепа, регулируют затяжкой пружины поворотом направляющей втулки после ослабления контргайки. Открытие впускных клапанов регулируют прокладками. Свободный ход рычага регулируют болтом, а рабочий ход штока — болтом. Аварийное давление в системе пневмопривода определяется сигнализатором.

Тормозной механизм при пневматическом приводе тормозов имеет один разжимной кулак на обе колодки. Вал разжимного кулака связан со штоком тормозной камеры рычагом с регулировочным червячным механизмом.

Тормозная камера (рис. 17.15) на автомобилях ЗИЛ-130 и его модификациях состоит из корпуса и крышки, между которыми зажата диафрагма, выполненная из прорезиненной ткани. В центре диафрагмы установлена стальная тарелка, на которую опирается шток. Противоположный конец штока имеет резьбу для крепления вилки, соединяющей его с рычагом 6. Установленный в рычаге червяк находится в зацеплении с червячной шестерней, сидящей на валу разжимного кулака.

Торможение вызывается впуском воздуха через шланг в пространство между крышкой и диафрагмой. Диафрагма прогибается, перемещая шток и поворачивая рычаг разжимного кулака. При растор-маживании в исходное положение диафрагма возвращается пружинами тормозной камеры.

Рис. 17.15. Тормозная камера с регулировочным рычагом

На задние колеса грузового автомобиля приходится большая часть массы, чем на переднюю, поэтому для увеличения их тормозной силы тормозные камеры задних колес имеют больший диаметр, чем камеры передних колес.

На тяжелых грузовых автомобилях распространены поршневые колесные тормозные камеры, которые более надежны и долговечны.

Соединительная головка устанавливается на задней поперечине рамы и служит для соединения воздухопроводов между автомобилем и прицепом и между отдельными прицепами. Головка состоит из корпуса, резинового кольца, обратного клапана и крышки; последняя должна быть закрыта, если соединительная головка не соединена с головкой прицепа.

Разобщительный кран служит для отключения магистрали от прицепа и устанавливается перед соединительной головкой. Кран открывают после присоединения пневматической системы прицепа.

Кран отбора воздуха служит для накачивания шин и для других целей. Его устанавливают на воздушном баллоне.

Манометр позволяет проверять давление воздуха как в воздушных баллонах, так и в тормозных камерах системы пневматического привода. Для этого он имеет две стрелки и две шкалы. По нижней шкале проверяют давление в тормозных камерах, по верхней — в воздушных баллонах.

Рекламные предложения:
Читать далее: Многоконтурный пневматический привод тормозов автомобиля

Категория: - Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум

Пневматическая тормозная система тягачей и прицепов. Конструкция

Большинство современных грузовых автомобилей, прицепов к ним и автобусов оснащено пневматической тормозной системой, работа которой связана со взаимодействием большого количества управляющих и исполнительных элементов. Проведение проверки технического состояния и инструментального контроля указанной системы требует от диагностов хорошего понимания общих принципов ее построения и функционирования. Поэтому целесообразно остановиться на конструктивных особенностях данной системы более подробно.

Пневматическая тормозная система — это тормозная система, привод которой осуществляется посредством использования энергии сжатого воздуха. При этом под тормозным приводом подразумевается совокупность элементов, находящихся между органом управления и тормозом и обеспечивающих их функциональную взаимосвязь. В тех случаях, когда торможение осуществляется целиком или частично с помощью источника энергии, не зависящего от водителя, содержащийся в устройстве запас энергии также считается частью привода.

Рис. Пневматическая одноконтурная тормозная система

Привод, как правило, подразделяется на две функциональные части:

  • привод управления
  • энергетический привод

При этом управляющие и питающие магистрали, соединяющие буксирующие транспортные средства и прицепы, не рассматриваются в качестве частей привода.

Привод управления — это совокупность элементов привода, которые управляют функционированием тормозов, включая функцию управления необходимым запасом энергии.

Энергетический привод — совокупность элементов, которые обеспечивают подачу на тормоза энергии, необходимой для их функционирования, включая запас энергии, используемой для работы тормозных механизмов.

Тормоз — это устройство, в котором возникают силы, противодействующие движению транспортного средства. Тормоз может быть фрикционным (когда эти силы возникают в результате трения двух движущихся относительно друг друга частей транспортного средства), электрическим (когда эти силы возникают в результате электромагнитного взаимодействия двух движущихся относительно друг друга, но не соприкасающихся частей транспортного средства), гидравлическим (когда силы возникают в результате действия жидкости, находящейся между двумя движущимися относительно друг друга элементами транспортного средства), моторным (когда эти силы возникают в результате искусственного увеличения тормозящего действия двигателя, передаваемого на колеса).

Рис. Схема простейшего пневмотормоза автомобиля: 1 — ресивер; 2 — педаль; 3 — кран; 4 — тормозной цилиндр; 5 — пружина; 6 — шток тормозного механизма; 7 — тормозная колодка

Элементы системы фрикционного тормоза называются тормозными механизмами.

В пневматических тормозных системах приводом управления являются элементы пневмопривода, с помощью которых подаются сигналы на автоматическое или регулируемое срабатывание элементов энергетического привода. На управляющих элементах пневмопривода (тормозных кранах, клапанах, регуляторах и т.п.) вход управляющего пневмосигнала всегда обозначается цифрой 4. Такое же обозначение данного сигнала имеет место на функциональных и структурных схемах.

Энергетическим приводом в пневматических тормозных системах являются элементы, с помощью которых осуществляется питание сжатым воздухом элементов привода управления или исполнительных элементов энергетического привода (тормозных камер, энергоаккумуляторов, пневмоцилиндров и т.п.). Науправляющих элементах пневмопривода вход питающей магистрали всегда обозначается цифрой 1. Следует отметить, что в ряде случаев управляющий сигнал может одновременно выполнять функции питающего. В этом случае на элементах и схемах пневмопривода вход такого сигнала все равно обозначается цифрой 1.

Любой выходной пневматический сигнал или воздействие обозначается на элементах управления или схемах цифрой 2.

В случае, когда какие-либо элементы управления имеют несколько входов или выходов, относящихся к различным контурам тормозной системы, они маркируются цифрами (в порядке возрастания), следующими после обозначения, указанного выше (например, 11, 12, 21, 22 и т.п.).

Цифрой 3 на элементах тормозного привода обозначается связь с атмосферой.

Рассмотрим функционирование пневмопривода тормозной системы и отдельных ее элементов на примере системы грузового автомобиля, предназначенного для буксирования прицепа и, соответственно, прицепа, буксируемого таким тягачом.

В целях обеспечения надежности работы пневматический привод разделяется на несколько контуров, относительно независимых друг от друга. Первый из них называется питающим и выполняет функцию подготовки сжатого воздуха к применению в пневмосистеме в качестве рабочего тела.

Компрессор — это воздушный насос, который нагнетает воздух в питающий контур и, как правило, осуществляет первичную регулировку его давления. Регулятор давления управляет подачей сжатого воздуха компрессором с целью поддержания его давления в заданных пределах. Осушитель воздуха производит подготовку сжатого воздуха для использования в пневмосистеме. Основная его задача — отделение от воздуха паров воды и от- фильтровывание различных примесей (в основном паров масла). В современных системах осушитель совмещает функции отделения от примесей и регулировки давления, поэтому в таких системах регулятор давления как отдельный узел отсутствует. Поскольку большинство осушителей работает по принципу регенерации, они имеют отдельный ресивер, с помощью которого обеспечивается регенеративная функция. В некоторых видах пневмосистем может применяться предохранитель от замерзания, смешивающий со сжатым воздухом летучую низкозамерзающую жидкость для предотвращения замерзания воды, конденсирующейся на элементах тормозного привода при низких температурах. Однако эти устройства в настоящее время применяются редко, так как современные модели осушителей обеспечивают подготовку сжатого воздуха с достаточной эффективностью.

Рис. Схема пневмопривода тормозной системы: а — грузового автомобиля-тягача; б — прицепа; 1 — компрессор; 2 — регулятор давления; 3 — осушитель воздуха; 4 — регенерационный ресивер; 5 — четырехконтурный защитный клапан; 6-8 — ресиверы контуров пневмопривода; 9 — дополнительные потребители воздуха; 10 — манометр; 11 — контрольные и аварийные сигнализаторы; 12 — ножной тормозной кран; 13 — модулятор АБС переднего колеса; 14 — тормозная камера переднего колеса; 15 — обратный клапан; 16 — ручной тормозной кран; 17 — ускорительный клапан; 18 — регулятор тормозных сил задней оси; 19 — модулятор АБС заднего колеса; 20 — тормозная камера с энергоаккумулятором; 21 — тормозной кран управления тормозной системой прицепа; 22, 29 — питающие соединительные головки; 23, 30 — соединительные головки управляющей магистрали; 24 — электронный блок управления АБС тягача; 25 — контрольные лампы АБС; 26 — датчик АБС переднего колеса; 27 — датчик АБС заднего колеса; 28, 44 — соединительная вилка АБС; 31, 32 — фильтры воздуха; 33 — тормозной кран прицепа; 34 — ресивер; 35 — кран растормаживания прицепа; 36 — клапан соотношения давлений; 37 — регулятор тормозных сил передней оси; 38 — модулятор АБС передней оси; 39 — тормозные камеры передней оси; 40 — регулятор тормозных сил задней оси; 41 — модуляторы АБС средней и задней оси; 42 — тормозные камеры средней оси; 43 — тормозные камеры задней оси; 45 — электронный блок управления АБС прицепа; 46 — диагностический разъем АБС прицепа; 47 — датчики АБС передних колес; 48 — датчики АБС задних колес

После прохождения через осушитель сжатый воздух поступает к четырехконтурному защитному клапану. Основные функции данного устройства:

  • разделение потока сжатого воздуха на независимые контуры
  • обеспечение последовательного заполнения контуров сжатым воздухом после возрастания давления в одном из контуров до установленного значения
  • обеспечение герметичности остальных контуров тормозной системы при разгерметизации или большом падении давления в одном из них

Четырехконтурный защитный клапан распределяет воздух по следующим контурам:

  • двум независимым контурам рабочей тормозной системы тягача (I и II)
  • контуру стояночной (аварийной) тормозной системы, а также питающему и управляющему контурам прицепа (III)
  • контуру питания пневмоподвески и прочих дополнительных потребителей воздуха (9 на рисунке), например пневмоподвески кабины, сиденья водителя, пневмогидроусилителя сцепления, привода вспомогательной тормозной системы (на рисунке представлен краном управления моторным тормозом)

Каждый из контуров имеет исполнительные элементы, которые и реализуют конечную функцию непосредственного воздействия на тормозной механизм, а контур тормозной системы прицепа имеет соединительные головки для подключения к управляющей и питающей магистралям тягача.

В контурах I и II рабочей тормозной системы сжатый воздух после ресиверов подается к ножному тормозному крану в верхнюю и нижнюю секции соответственно. Внутри данного элемента происходит формирование либо чисто управляющего, либо комбинированного (управляющего и одновременно питающего) сигнала, который поступает непосредственно (как показано на рисунке для тормозов передних колес) или через определенные управляющие элементы 18 (как показано на рисунке для тормозов задних колес) к исполнительным элементам тормозных систем (14, 20). В качестве дополнительных управляющих элементов могут выступать ускорительные (релейные) клапаны, регуляторы тормозных сил, обеспечивающие функцию ускорительных кранов, краны быстрого оттормаживания и т.п. В качестве исполнительных элементов могут служить простые диафрагменные тормозные камеры либо комбинированные тормозные камеры с энергоаккумулятором.

В контуре III сжатый воздух поступает к ручному тормозному крану аварийной и стояночной тормозных систем, где формируется, как правило, чисто управляющий сигнал, который при поступлении на ускорительный клапан 17 аварийной тормозной системы производит подачу или сброс давления воздуха из секции энергоаккумулятора комбинированной тормозной камеры. Воздухом этого же контура осуществляется питание тормозного крана управления тормозами прицепа. Через данный кран происходит питание тормозной системы прицепа посредством соединительной головки, а также формируется управляющий сигнал как результат воздействия сигналов от тормозных кранов рабочей, аварийной и стояночной систем. Этот сигнал подается на соединительную головку управляющей магистрали.

К контурам тормозной системы подсоединяются контрольно- измерительные приборы. Обычно это манометры, указывающие давление в контурах I и II, или один общий манометр. Кроме того, имеются контрольные лампочки, которые сигнализируют о падении давления в контурах пневмопривода.

К пневмосистеме тягача подключен ряд компонентов АБС, реализующих данную функцию для всего комбинированного транспортного средства. В их число входят датчики АБС, считывающие значения угловой скорости колес, электронный блок управления, суммирующий и анализирующий сигналы датчиков и формирующий сигнал для выходного воздействия, модуляторы АБС (электромагнитные клапаны), играющие роль исполнительных механизмов, соединительная вилка прицепа, а также контрольные и диагностические лампы, подающие сигналы о техническом состоянии системы.

Прицеп снабжается сжатым воздухом от тягача через питающую соединительную головку, окрашенную в красный цвет. Пройдя через фильтр и тормозной кран прицепа, воздух поступает в ресивер.

Управляющий пневматический сигнал проходит через соединительную головку управляющей магистрали, окрашенную в желтый цвет, и, пройдя через фильтр, подается на тормозной кран прицепа. Под воздействием этого сигнала в указанном кране формируется выходной управляющий сигнал, который корректируется регуляторами тормозных сил в зависимости от загрузки транспортного средства. На полуприцепах и прицепах, имеющих центральное расположение осей, устанавливается один регулятор тормозных сил. Прицепы с разнесенным положением осей в управляющей магистрали тормозной системы передней оси могут иметь дополнительный клапан согласования давлений, служащий для обеспечения благоприятного соотношения давления воздуха между данными осями. Скорректированный управляющий сигнал подается к модуляторам АБС, которые на прицепах могут играть, кроме того, роль ускорительных клапанов. В зависимости от исполнения системы, а также для соблюдения нормативных требований один модулятор на прицепах может питать исполнительные механизмы оси, отдельного колеса или нескольких колес по одному из бортов прицепа. В пневматической части модуляторов управляющий сигнал преобразуется в сигнал, приводящий в действие исполнительные элементы (тормозные камеры). В ряде случаев на прицепах используются в качестве исполнительных элементов тормозные камеры с энергоаккумуляторами. При этом имеется дополнительная пневматическая магистраль, осуществляющая подачу сжатого воздуха в секции энергоаккумулятора, и устройство приведения в действие стояночной тормозной системы, находящееся вне кабины водителя.

Элементы АБС прицепа включают следующие устройства:

  • колесные датчики
  • блок управления
  • модуляторы давления с функцией ускорительного клапана

Для проверки корректности работы системы служит диагностический разъем, а для электрического питания системы и поступления управляющих сигналов от тягача — соединительная вилка.


Смотрите также