Принцип работы акб


Автомобильный аккумулятор - устройство, схема, принцип работы и параметры АКБ

Аккумулятор или сокращённо (АКБ), очень важная деталь в любом автомобиле. Нет ни одной машины с двигателем внутреннего сгорания, где бы его не было.

Он отвечает за всё электрооборудование машины и без него она просто мертва. Далее рассмотрим, что же это такое и из чего он состоит.

Содержание статьи:

Что такое АКБ для автомобиля, предназначение

То, что аккумулятор отвечает за всё электрооборудование в машине, было указано выше, но тут не всё так просто и однозначно. Главная задача батареи обеспечить запуск силового агрегата.

Когда двигатель запущен вся бортовая сеть запитывается от генератора. В середине 20-го века и даже ближе к его концу были двигатели внутреннего сгорания без аккумуляторов, например, моторы мотоциклов. В них запуск осуществлялся за счёт мускульной силы, а дальше все системы работали уже от генератора.

Однако в последнее время, с насыщением автомобилей различными электроприборами, мультимедийными центрами или климатическими системами, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка идёт от АКБ.

Но вернёмся к основному предназначению батареи. Как бы там не было главная задача по-прежнему остаётся это обеспечение электроэнергией стартера двигателя.

Читайте также: Что делать если при зарядке аккумулятор начинает кипеть?

При запуске, особенно в холодное время года, батарея серьёзно разряжается. Однако генератор кроме питания электроэнергией бортовой сети машины ещё и обеспечивает зарядку батареи.

Поэтому если генератор вышел из строя, то АКБ очень быстро разряжается. Новой заряженной батареи хватает не более чем на 100 км пробега. Во всех остальных случаях машина с неисправным генератором пройдёт ещё меньше.

Из чего сделан и что внутри аккумулятора

Не смотря, на весь технический прогресс, до сих пор, в автомобилях, используются аккумуляторные батареи, изобретённые в середине 19-го века.

Изобретателем АКБ считается Гастон Планте, которые изобрёл его в 1860 году. Ну а современный вид батареи приобрели в 1878 году, после того как его усовершенствовал Камилл Фор.

С этого времени батареи принципиально не менялись, все изменения были только косметическими, касающиеся их внешнего вида и качества изготовления элементов конструкции.

Данные аккумуляторы называются свинцово-кислотными, и в названии заключается описание принципа действия этих устройств.

Рисунок 19 века, на котором показан один из первых аккумуляторов в разрезе.

Итак, аккумулятор состоит из следующих основных частей:

  • Корпуса;
  • Крышки;
  • Отрицательных электродов;
  • Положительных электродов;
  • Положительной клемы;
  • Отрицательной клемы;
  • Соединительных перемычек;
  • Заливных пробок;
  • Электролита

Далее рассмотрим каждый элемент конструкции.

Итак, корпус и крышка батареи состоит из нейтрального к кислоте пластика.

Отрицательные пластины, впрочем, как и положительные состоят из металлического свинца и выполнены в виде решётки.

В отрицательной пластине, промежутки свинцовой решётки заполнены металлическим свинцом, в виде спрессованного порошка. В положительной – спрессованным порошком диоксида свинца (PbO2).

В промежутке между пластинами располагаются сепараторы, которые представляют собой микропористые пластины, сделанные из эбонита или ревертекса. Оба материала можно считать неким вариантом резины, и делаются они из каучука.

Задача сепараторов заключается в том, чтобы разделять положительные и отрицательные электроды и препятствовать их короткому замыканию, которое может произойти в результате вибраций двигателя и всего автомобиля.

Обе клеммы сделаны из металлического свинца и через них происходит подсоединение батареи к бортовой сети машины.

Читайте также: Что делать если разрядился аккумулятор в машине — проверенные способы как вернуть жизнь АКБ

Соединительные перемычки, так же выполнены из свинца и служат для объединения разных банок в единую батарею.

Для чего нужна заливная пробка, легко догадаться из названия этой детали. Она служит для заливки электролита в банки АКБ.

Ну и последняя в списке, но при этом одна из самых главных деталей аккумулятора является электролит. Он состоит из 30 % раствора серной кислоты (h3SO4) и дистиллированной воды.

Принцип работы АКБ

Принцип работы аккумулятора основан на электрохимической реакции окисления свинца в растворе серной кислоты и воды.

При разрядке батареи на положительной пластине происходит окисление металлического свинца, при этом на отрицательной пластине восстанавливается уже диоксид свинца.

При зарядке происходит обратный процесс, количество диоксида свинца на отрицательной пластине уменьшается, а на положительной пластине увеличивается количество металла.

Так же при разрядке АКБ уменьшается количество серной кислоты в электролите и увеличивается количество воды. При зарядке так же происходит обратный процесс.

Особенности конструкции современных АКБ

Не смотря на то что, принципиально, аккумуляторы, за более чем 150 лет, не изменились, современность внесла серьёзные изменения в технологию их изготовления и в материалы, из которых они делаются.

Рассмотрим их по отдельности:

Сегодня на наиболее качественных батареях небольшие изменения претерпел материал пластин. Теперь пластины делают не из чистого свинца, а из его сплава с серебром. При этом появилась возможность снизить массу батареи на треть, а срок её службы увеличить на 20 %.

Кроме этого, изменилась сама технология их изготовления. Если первые пластины производились путём их литья, то сегодня их делают из тонкого свинцового листа, путём штамповки. Такой метод дешевле и при этом пластины получаются прочнее и тоньше.

Одной из причин выхода АКБ из строя является короткое замыкание положительных и отрицательных пластин.

Замыкание происходит из-за того, что из пластин осыпается активная зона и внизу банок она замыкает. Во избежание этого сепараторы делают в виде конвертов, запаянных снизу, под пластинами. Таким образом, когда активная зона осыпается она остаётся внутри конверта и не замыкает.

В материал же самих сепараторов сегодня добавляется стекловолокно. Это так же позволяет делать их тоньше и прочнее.

Как было указано выше, электролит представляет собой раствор серной кислоты и воды. Под действием низких температур, как известно вода замерзает, однако с электролитом этого не происходит.

Но он всё равно заметно загустевает и теряет свои свойства, из-за чего ёмкость батареи заметно снижается. Что бы избежать этого, сегодня, в электролит добавляют разнообразные присадки.

  • Гелевые электролиты

Аккумуляторы с гелиевыми электролитами можно считать вершиной эволюции кислотных батарей и именно поэтому для них, отведен отдельный раздел. Такие АКБ называются попросту, гелевыми. В этих устройствах электролит модифицирован настолько, что представляет собой нечто наподобие желе.

Такая модификация, в комплексе с другими вышеописанными инновациями дала поистине волшебные результаты. Батареи стали практически вечными, невосприимчивыми к переворачиванию, практически не теряющими свои свойства зимой и при этом на много легче по массе.

Читайте также: Как правильно менять Антифриз в машине

Правда цена по сравнению с аккумуляторами старого поколения возросла от 5 до 10 раз. Но это того стоит. И всё равно стоят они не запредельные деньги, где-то в пределах 100 – 200 условных единиц.

Параметры и характеристики аккумуляторной батареи

Параметры и характеристики аккумуляторов зашифрованы в их маркировке и сейчас мы разберём, что она обозначает.

Этот вопрос мы рассмотрим на примере самой распространённой АКБ 6СТ-55.

Итак, в названии аккумулятора, цифра 6 обозначает, что АКБ состоит из 6-и банок.

  • СТ – обозначает что батарея стартерная.
  • 55 – обозначает ёмкость батареи, которая составляет 55 Ампер*час.

Для того что бы понимать какой аккумулятор вам нужен, необходимо знать два параметра:

  • Тип ДВС;
  • Объём двигателя вашей машины;

Далее рассмотрим для каких двигателей, какие аккумуляторы подходят. Это таблица для бензиновых моторов:

  • Двигатели объёмом до 1,6 литра. Для них подходят АКБ 6СТ-45;
  • Двигатели объёмом от 1,6 до 2,5 литров. Для них подходит 6СТ-55;
  • Двигатели объёмом от 2,5 до 3 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 3 до 3,5 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом более 3,5 литров. Для них подходит 6СТ-90.

Для дизельных силовых агрегатов эти параметры несколько иные:

  • Двигатели объёмом до 1,5 литра. Для них подходит 6СТ-55;
  • Двигатели объёмом от 1,5 до 2,0 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 2-х до 2,7 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом от 2,7 до 3,5 литров. Для них подходит 6СТ-90;
  • Двигатели объёмом от 3,5 до 6,5 литров. Для них подходит 6СТ-132;
  • Двигатели объёмом более 6,5 литров. Для них подходит 6СТ-192 и больше.

Как можно увидеть, из-за разных принципов работы дизельных и бензиновых двигателей для них используются аккумуляторы разной ёмкости.

Для дизельных силовых агрегатов вам потребуются более ёмкие батареи.

Аккумуляторы будущего

Как уже упоминалось выше современные батареи по принципу действия точно такие же, как те, что были разработаны в середине 19-го века.

Однако технологии не стоят на месте и, судя по всему, в самое ближайшее время для двигателей внутреннего сгорания (ДВС) появятся АКБ, созданные на новых принципах. Далее они будут бегло перечислены.

  • Гелевые аккумуляторы

Об этих батареях достаточно подробно было рассказано выше. Эти батареи уже продаются, и их любой может купить.

Гелевая АКБ

  • Литий-ионные аккумуляторы

Эти батареи широко известны по мобильным телефонам и иным гаджетам. Однако, сегодня, существуют разработки и для автомобилей. Но, не смотря на все свои достоинства, в автотехнике данный вид АКБ не прижился из-за ряда принципиальных недостатков.

  • Во-первых, они резко теряют свою мощность из-за низкой температуры.
  • Во-вторых, для зарядки таких батарей требуется строгое соответствие зарядному току, что требует переделки электронной части генераторов.
  • Ну и самое главное, данные АКБ имеют стоимость в 15 раз дороже обычного кислотного аккумулятора.

Литий-ионная АКБ, чешской компании Варта

  • Графен-полимерные аккумуляторы

Это, пожалуй, самые перспективные батареи для использования, как в автомобилях, оснащённых ДВС, так и электрической силовой установкой. В производстве этих АКБ использованы нанотехнологии.

Эти аккумуляторы имеют поистине чудесные свойства. Они имеют ёмкость, практически в три раза больше литий-ионных и при этом на много меньшую стоимость, так как в их производстве не используется дорогостоящий литий. Кроме этого они не теряют своих свойств под действием низких температур.

Опытная графен-полимерная АКБ

Резюме: Выше перечислены только три самых раскрученных или правильней будет сказать, распиаренные технологии.

В мире ведутся работы над батареями, известно что в разработке более тридцати новых схем. Не исключено, что среди этих ещё испытывающихся аккумуляторов могут оказаться некоторые с ещё более интересными свойствами. Как говорится поживем — увидим.

устройство, виды и принцип работы АКБ, а также срок службы и характеристики батареи

Электрические аккумуляторные батареи применяются в любом автомобиле и представляют собой автономный источник питания. АКБ накапливает энергию, которая затем питает бортовую сеть, когда это необходимо, и подает ток на стартер для запуска двигателя.

Назначение аккумулятора в автомобиле

Автомобильный аккумулятор принято обозначать аббревиатурой АКБ, что значит аккумуляторная кислотная батарея. Не все батареи относятся к этому типу, но в автомобилях наиболее распространены именно они.

Автомобильный аккумулятор

Аккумулятор является важным компонентом в работе любого транспортного средства. Он выполняет следующие основные функции:

  1. Подача электроэнергии на стартер для запуска двигателя. Аккумулятор способен в течение 30 секунд подавать пусковой ток или ток холодной прокрутки на стартер, который, в свою очередь, запускает двигатель.
  2. Питание бортовой сети в случае недостаточной мощности (производительности) генератора.
  3. Автономное питание бортовой сети автомобиля.

Каждый аккумулятор имеет определенную емкость и заряд. При работе двигателя всю нагрузку на электропитание берет на себя генератор. Он же заряжает аккумулятор во время движения. Если мощности не хватает, подключается батарея. Определенное время АКБ может обеспечить автономное питание.

Генератор выходит на оптимальный режим производительности при достижении двигателем частоты вращен

Как работает аккумулятор - принцип работы АКБ простыми словами

Аккумулятор или сокращённо (АКБ), это основное и необходимое устройство в любом автомобиле. Каждый водитель знает, что серце его машины — это конечно же аккумулятор, и нет таких машин с двигателем внутреннего сгорания, где бы его не было. Как бы это устройство не менялось за 150 лет с момента его изобретения, принцип работы аккумуляторной батареи остался низменным. Однако, современность внесла серьёзные коррективы в технологические процессы их изготовления. В этой статье вы ознакомитесь с и используемыми материалами, из чего состоит аккумулятор и как он работает. Итак, как работает аккумулятор (АКБ)?

Как работает аккумулятор (АКБ)

Понятие аккумулятор и его устройство

В общем понимании этого слова в технике под термином «Аккумулятор» подразумевается устройство, позволяющие при разных условиях эксплуатации накапливать определенный вид энергии, либо же — расходовать ее для человеческих нужд.

Хотите узнать, как построить энергосберегающий дом? Смотрите секреты строительства  дома , который сам экономит

Применимы в тех ситуациях, когда необходимо собрать энергию за определенное время, после чего использовать ее для совершения больших трудоемких процессов. Так — гидравлические аккумуляторы, используемые в шлюзах, позволяют поднимать корабли на новый уровень русла реки.

Электрические аккумуляторы работают с электроэнергией по такому же принципу: когда вначале накапливают (аккумулируют) электричество от внешнего источника заряда, а после отдают его подключенным приборам для совершения дальнейшей работы. По своей природе они относятся к химическим источникам тока, способным совершать много раз периодические циклы разряда и заряда.

В процессе работы постоянно происходят химические реакции между компонентами электродных пластин с заполняющим их веществом — электролитом.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

На рисунке ниже изображена схема устройства аккумулятора. Изображен тот вид, когда в корпус сосуда вставлены две пластины из разнородных металлов с выводами для обеспечения электрических контактов. Между пластинами залит электролит.

Устройство аккумулятора

Как работает аккумулятор (АКБ) при разряде

В момент, когда к электродам подключена нагрузка в виде лампочки, создается замкнутая электрическая цепь, через которую протекает ток разряда. Его формированию способствует движение электронов в металлических частях и анионов с катионами в электролите.

Этот процесс условно показан на схеме с никель-кадмиевой конструкцией электродов.

Заряд и разряд аккумулятора

В данном примере в качестве материала положительного электрода используют окислы никеля с добавками графита, которые повышают электрическую проводимость. Металлом отрицательного электрода работает губчатый кадмий.

Во время разряда частицы активного кислорода из окислов никеля выделяются в электролит и направляются на отрицательные пластины, где окисляют кадмий.

Общее устройство и маркировка аккумуляторных батарей

Работа аккумулятора при заряде

Беря за основу отключенную нагрузку на клеммы пластин, подаем постоянное (в определенных ситуациях пульсирующее) напряжение большей величины, чем у заряжаемого аккумулятора с той же полярностью, когда плюсовые и минусовые клеммы источника и потребителя совпадают.

Таким образом мощность зарядного устройства всегда больше, чем та, которая «подавляет» оставшуюся в аккумуляторе энергию и создает электрический ток с направлением, противоположным разряду. Это приводит к изменениям внутренних химических процессов между электродами и электролитом. К примеру на банке с никель кадмиевыми пластинами положительный электрод обогащается кислородом, а отрицательный — восстанавливается до состояния чистого кадмия.

При разряде и заряде аккумулятора происходит изменение химического состава материала пластин (электродов), а электролита не меняется.

Способы соединения аккумуляторов (как работает аккумулятор)

Параллельное соединение (как работает аккумулятор)

Величина разряда тока, зависит от многих факторов, хотя в первую очередь от конструкции, примененных материалов и их габаритов. Чем значительнее площадь пластин у электродов, тем больший ток они могут выдерживать.

Этот принцип используется для параллельного подключения однотипных банок у аккумуляторов при необходимости увеличения тока на нагрузку. Чтобы зарядить такую конструкцию потребуется поднять мощность источника. Этот способ используется редко для готовых конструкций, в настоящее время куда проще сразу приобрести необходимый аккумулятор. Но им пользуются производители кислотных АКБ, соединяя различные пластины в единые блоки.

Последовательное соединение (как работает аккумулятор)

В зависимости от применяемых материалов, между двумя электродными пластинами распространенных в быту аккумуляторов может быть выработано напряжение 1,2/1,5 или 2,0 вольта. На самом деле этот диапазон гораздо шире. И многим электрическим приборов его явно недостаточно. Поэтому однотипные аккумуляторы подключают последовательно, делают это зачастую в едином корпусе.

Примером подобной конструкции служит широко распространенная автомобильная разработка на основе серной кислоты и свинцовых пластин-электродов.

Часто среди водителей транспорта, под понятием «аккумулятор» принято понимать любое устройство, независящее от количества его составных элементов — банок. Это не является правильным. Собранная из нескольких последовательно подключенных банок конструкция считается уже батареей, за которой закрепилось сокращенное название «АКБ». Ее внутреннее устройство показано на рисунке.

Устройство кислотной аккумуляторной батареи (АКБ)

Любая банка состоит из двух блоков с набором пластин для положительного и отрицательного электродов. Блоки входят друг в друга без металлического контакта с возможностью надежной гальванической связи через электролит.

При этом контактные пластины имеют дополнительную решетку и отдалены между собой разделительной пластиной — сепаратором.

Благодаря соединению пластин в блоки увеличивается их рабочая площадь. Это снижает общее удельное сопротивление всей конструкции, позволяет повышать мощность подключаемой нагрузки.

Компоновка АКБ

С внешней стороны корпуса такая АКБ имеет элементы, показанные на рисунке ниже.

Компоновка кислотной аккумуляторной батареи (АКБ)

Из него видно, что прочный пластмассовый корпус закрыт герметично крышкой и сверху оборудован двумя клеммами. Они обычно имеют конусную форму, для подключения к электрической схеме автомобиля. На их выводах выбита маркировка полярности: «+» и «-». При этом есть одно правило: во избежании ошибок при подключении, диаметр положительной клеммы немного больше, чем у отрицательной.

У обслуживаемых аккумуляторных батарей сверху каждой банки помещена заливная горловина, чтобы контролировать уровень электролита либо доливки дистиллированной воды при эксплуатации. В нее вворачиваются пробка, предохраняющая внутренние полости банки от попадания загрязнений и одновременно не дает выливаться электролиту при наклонах АКБ.

Для того, чтобы предотвратить бурное выделение газов из электролита, который возможен при интенсивной езде, в пробках делаются отверстия для предотвращения повышения давления внутри банки. И через эти отверстия выходят кислород и водород, а также пары электролита. Такие ситуации, связанные с чрезмерными токами заряда, желательно избегать.

На том же рисунке выше показано соединение элементов между банками и расположение пластин-электродов.

Стартерные автомобильные АКБ (свинцово-кислотные) работают по принципу двойной сульфатации. На них во время разряда/заряда происходит электрохимический процесс, что сопровождается изменением химического состава активной массы электродов с выделением или поглощением в электролит (серную кислоту) воды.

Этим явлением можно объяснить повышение удельной плотности электролита при заряде, а так же снижение при разряде батареи. Иными словами, величина плотности дает возможность оценивать электрическое состояние АКБ. Для ее замера используют специальный прибор — автомобильный ареометр.

В состав электролита кислотных батарей входит дистиллированная вода. Она же при отрицательной температуре переходит в твердое состояние — лед. Поэтому, чтобы автомобильные аккумуляторы не замерзали в холодное время, необходимо применять специальные меры, предусмотренные правилами эксплуатации.

Виды аккумуляторов

Классификация АКБ по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Таким образом, возникала необходимость по улучшению качества работы АКБ. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, характерной чертой которых является более редкий процесс долива воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт нуждались в постоянном доливе, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов и использовать герметичный, неразборной корпус.

Виды АКБ

  • Сурьмянистые батареи. Этот вид относится к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • АКБ со свинцом. В малосурьмянистых АКБ материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • Калициевые источники. При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. При их производстве, две объединенные основные технологии имеют конструктивные отличия: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая платина закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Суть такой технологии в том, что она позволяет снизить текучесть электролита, который содержит агрессивную серную кислоту.
  • В литиевых АКБ используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • AGM имеет отличительную особенность в электролите, где с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными и щелочными.

Щелочные растворы применяются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости этот такие жидкости, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Составы этого типа легко можно приобрести в специализированных магазинах либо, при желании, приготовить самостоятельно на дому. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке его приготовление так же возможно при соблюдении обязательных пропорций и правил техники безопасности. Для этого нужно смешать кислоту с дистиллированной водой.

Как работает аккумулятор — АКБ

Как работает аккумулятор (АКБ)

Принцип работы аккумулятора основан на электрохимической реакции окисления свинца в растворе серной кислоты и воды.

При разрядке батареи на положительной пластине происходит окисление металлического свинца, в то время, как на отрицательной пластине восстанавливается уже диоксид свинца.

При зарядке происходит обратный процесс, количество диоксида свинца на отрицательной пластине уменьшается, а на положительной пластине увеличивается количество металла.

Так же при разрядке АКБ уменьшается количество серной кислоты в электролите и увеличивается количество воды. А при зарядке происходит обратный процесс.

Материалы АКБ

Пластины

На данный момент наиболее качественные батареи потерпели небольшие изменения. И связаны эти изменения с материалом пластин. Теперь пластины делают не из чистого свинца, а из его сплава с серебром. При этом удалось снизить массу батареи на треть, а срок её службы увеличить на 20 %.

Кроме этого, изменилась сама технология их изготовления. Если первые пластины производились путём их литья, то сегодня их делают из тонкого свинцового листа, путём штамповки. Такой метод дешевле и при этом пластины получаются прочнее и тоньше.

Сепараторы

Одной из причин выхода АКБ из строя является короткое замыкание положительных и отрицательных пластин.

Когда из пластин осыпается активная зона внизу банок происходит замыкание. Чтобы этого не случилось на помощь приходят сепараторы, которые делают в виде конвертов, запаянных снизу, под пластинами. Таким образом, когда активная зона осыпается она остаётся внутри конверта и не замыкает.

Литий-ионные аккумуляторы

Эти батареи получили широкое распостранение благодаря мобильным телефонам и иным гаджетам. Сегодня же, существуют разработки и для автомобилей. Однако, невзирая на все свои достоинства, в автотехнике данный вид АКБ не прижился из-за ряда принципиальных недостатков.

Литий-ионные аккумуляторы
  1. Они резко теряют свою мощность из-за низкой температуры.
  2. Для зарядки таких батарей требуется строгое соответствие зарядному току, а это требует переделки электронной части генераторов.
  3. И самое главное, данные АКБ имеют стоимость в 15 раз дороже обычного кислотного аккумулятора.

Электролит

Как было указано выше, электролит представляет собой раствор серной кислоты и воды. Под действием низких температур, известно, что вода замерзает, однако с электролитом этого не происходит.

Но тем не менее она заметно загустевает и теряет свои свойства, из-за чего ёмкость батареи заметно снижается. Что бы избежать этого, сегодня, в электролит добавляют разнообразные присадки.

Гелевые электролиты

Их по праву можно считать вершиной эволюции кислотных батарей. Такие АКБ называются попросту, гелевыми. В этих устройствах электролит модифицирован настолько, что представляет собой нечто наподобие желе.

Такая модификация, в комплексе с другими вышеописанными инновациями дала поистине волшебные результаты. В итоге батареи стали практически вечными, невосприимчивыми к переворачиванию, практически не теряющими свои свойства зимой и при этом на много легче по массе.

Графен-полимерные аккумуляторы

Это, пожалуй, самые перспективные батареи для использования, как в автомобилях, оснащённых ДВС, так и электрической силовой установкой. В производстве этих АКБ использованы нанотехнологии.

Графен-полимерные аккумуляторы

Принцип работы этих поистине чудесных аккумуляторов заключается в следующем: их ёмкость, практически в три раза больше литий-ионных и при этом имеет меньшую стоимость, поскольку в их производстве не используется дорогостоящий литий. Кроме этого они не теряют своих свойств под действием низких температур.

Основные технические характеристики аккумуляторов

Технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Важно! Полностью емкость не характеризует энергию аккумулятора, то есть энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.

Емкость всегда указывается на корпусе АКБ, а также на упаковке. Именно по этому критерию, большинство пользователей выбирают нужную модель.

Пусковой ток

Это величину, характеризующая параметр тока, который протекает в стартере автомобиля в момент пуска силового узла. Пусковой или стартерный ток возникает в тот момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Тот же ток холодной прокрутки является показателем поведения аккумулятора в морозную погоду и сможет запускать двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Имеет два полюса – положительный и отрицательный и варианты расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Дла ее определения нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что АКБ с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Прямая и обратная полярность АКБ

Устройство корпуса

У большинства аккумуляторов корпус состоит из ударопрочного полипропилена. Он характеризуется как легкий материал, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен имеет весьма хорошую стойкость к перепадам температур, возникающих под капотом автомобиля, где нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Известными типами аккумуляторов, обладающих спросом являются: американский, европейский, азиатский и российский типы корпусов.

Европейский тип корпуса характерен тем, что АКБ клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. В некоторых случаях клеммы дополнительно защищаются от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке. Верхний край клемм является самой высокой точкой аккумулятора.

Российский стандарт АКБ

ОбозначениеОписание букв
ААКБ имеет общую крышку для всего корпуса
ЗКорпус батареи залит и она является полностью заряженной изначально
ЭКорпус-моноблок АКБ выполнен из эбонита
ТКорпус-моноблок АБК выполнен из термопластика
МВ корпусе использованы сепараторы типа минпласта из ПВХ
ПВ конструкции использованы полиэтиленовые сепараторы-конверты
Аккумулятор (АКБ) ALPHALINE 60 Ач

Тип крепления аккумулятора

Особое внимание при выборе АКБ следует уделять типу крепления АКБ, при котором батарея может крепиться снизу или сверху. С помощью специальной монтажной рамки, которая охватывает аккумулятор, элемент крепится вверху. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще всего такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.

Тип крепления на АКБ

Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса АКБ находится выступ. За этот выступ аккумулятор прижимается к платформе с помощью пластины и винта.

Выступ для фиксации АКБ

Заключение

Теперь вы знаете, как работает аккумулятор. Его роль в работе приборов трудно оспорить. Данный источник энергии применяться почти во всех отраслях. Что доказывает его значимость и необходимость знаний о принципе работы АКБ. А также ее внутреннем содержимом. Аккумуляторы широко используются в автомобилях, разнообразных электроприборах, кондиционерах, мультимедийных центрах. Там, где, генераторы не всегда справляются с обеспечением их энергией. И тогда в «игру» вступает АКБ, которая кроме подпитки энергией еще и выполняет основную функцию, обеспечивая электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор. Ведь в нужное время придется устранять сбои в работе источника энергии. К тому же, важно иметь представление о назначении и видах аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю.

Как работает аккумулятор (АКБ)

принцип работы, из чего состоит, назначение и схема акб

Автор Aluarius На чтение 10 мин. Просмотров 2.4k. Опубликовано

Принципиально устройство аккумулятора больше чем за 150 лет с момента его изобретения не изменилось, хотя современность внесла серьёзные новшества в технологические процессы их изготовления и используемые материалы, из чего состоит аккумулятор.

Автономный источник энергии

 

Что такое аккумулятор

Аккумулятор – автономный источник электричества, который накапливает, сохраняет и отдает энергию. Аккумуляторная батарея – важный элемент электрооборудования транспортного средства. Назначение акб определяется в запуске двигателя и обеспечении подачи электричества в бортовую сеть. Все электроприборы, когда выключен мотор, и не работает генератор, работают от батареи. Накопитель помогает в пробке, когда энергии генератора не хватает.

 

Устройство и принцип работы аккумулятора

Для того, чтобы разобраться, как работает аккумулятор, необходимо знать устройство акб, что внутри аккумулятора обеспечивает работу прибора. Основной принцип работы аккумулятора заключается в разности потенциалов при погружении двух пластин в электролит. В 12-ти вольтовой батарее объединены шесть аккумуляторов, каждый из которых вырабатывает 2 вольта. Все они объединены совместным корпусом, который образует единое целое конструкции.

Аккумулятор в разрезе

При работе этой конструкции, пластинки из-за действия серной кислоты выделяют сульфат свинца, в результате чего образуется электрический ток. Также выделяется вода, и поэтому концентрация электролита становится менее плотной. Во время зарядки АКБ процесс осуществляется в обратном порядке, свинец снова обретает металлическую форму, электролит становится более концентрированным. Принцип работы аккумулятора основан на методе двойной сульфатации, который позволяет полностью восстанавливать первоначальные свойства батареи. Срок службы аккумулятора зависит от качества используемых материалов, из чего состоит акб.

 

Схема строения

 

Схема строения

Виды аккумуляторов

Классификация акб по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.

  • Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
  • В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.

Важно! вода при минусовых температурах превращается в лед. Всегда при морозе нужно применять меры, необходимые для предотвращения замерзания аккумулятора.

 

Основные технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Важно! Емкость не характеризует полностью энергию аккумулятора, т.е. энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.

Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.

Пусковой ток

Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Прямая, обратная полярность

Исполнение корпуса

Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.

Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов. Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова.

У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь. 

Важно! При приобретении акб нужно знать, что европейские производители указывают габаритные размеры аккумулятора по корпусу. На азиатских корпусах могут указывать высоту батареи с учетом клемм или без них.

Российский стандарт акб

Обозначение Описание букв
А АКБ имеет общую крышку для всего корпуса
З Корпус батареи залит и она является полностью заряженной изначально
Э Корпус-моноблок АКБ выполнен из эбонита
Т Корпус-моноблок АБК выполнен из термопластика
М В корпусе использованы сепараторы типа минпласта из ПВХ
П В конструкции использованы полиэтиленовые сепараторы-конверты

 

Европейские корпусы и американские имеют идентичные габариты

Тип и размер клемм

Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.

Американский стандарт

Тип крепления

При выборе акб особое внимание следует обращать на тип крепления АКБ, при котором батарея может крепиться снизу или сверху. Вверху крепится элемент с помощью специальной монтажной рамки, которая охватывает аккумулятор. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.

Тип крепления встречается на «азиатах»

 

Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса акб находится выступ, за который аккумулятор прижимается к платформе с помощью пластины и винта.

Нижнее крепление

Назначение аккумуляторных батарей

Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.

Важно! Перед проверкой системы электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в заряженном состоянии и готова к эксплуатации.

В каких сферах используется

Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:

  • автомобильная промышленность;
  • освещение в аварийном состоянии;
  • переносное электрооборудование;
  • медицинское оборудование;
  • игрушки;
  • сигнализация в разных сферах применения;
  • телекоммуникационное оборудование.

 

Применение батареи в игрушках

Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай тут.

Принцип работы и устройство аккумулятора автомобиля

Несмотря на то, что основной движущей силой автомобиля является двигатель внутреннего сгорания, без автономного источника питания было бы невозможно обеспечить его нормальное функционирование, и прежде всего – пуск силового агрегата. Накопление энергии, необходимой для прокручивания стартера, происходит во время движения транспортного средства, что избавляет водителя от необходимости частой подзарядки АКБ от внешних источников.

Назначение автомобильного аккумулятора

Наверняка вам знакома аббревиатура АКБ, но далеко не все знают, что обозначает буква «К». Так вот, расшифровывается это буквенное сочетание как «автомобильная кислотная батарея», и хотя современные аккумуляторы далеко не все кислотные, применительно к автомобилям это преобладающий тип аккумуляторов.

Функции автомобильного аккумулятора:

  • питание стартера с целью пуска ДВС. АКБ способна на протяжении 30 секунд обеспечивать электроэнергией стартер. Последний, являясь электродвигателем, осуществляет холодный пуск основного силового агрегата;
  • аккумулятор может обеспечивать питание бор

устройство, принцип работы, характеристики автомобильного аккумулятора

Знаете ли вы, что первые автомобили были именно электрическими и использовали свинцово-кислотные аккумуляторы? То, что мы привыкли считать машинами будущего – электромобили – появились до изобретения двигателя внутреннего сгорания (ДВС). С тех пор прошло больше 100 лет, но современный АКБ автомобильный изменился только качественно, оставшись принципиально таким же, как и столетие назад.

Сегодня аккумулятор в автомобиле считается расходником, требующим периодической замены. Сколько именно проработает АКБ – вопрос к качеству изготовления, режиму работы, даже к состоянию дорог, но рано или поздно его меняют на «свежий». Какие функции он выполняет, какие характеристики может иметь, как выбирать и как продлить жизнь аккумулятору – читайте в этой статье.

Что такое аккумулятор (АКБ) и для чего он нужен?

Современные автомобили всё больше становятся похожи на сложные электронные гаджеты: умное управление, всевозможные «помощники», автоматическая парковка и даже автопилот – это только небольшая часть той цифровой «начинки», которой богат автомобиль. И всё это счастье постоянно нуждается в электроэнергии, которую нужно постоянно откуда-то добывать. Именно хранилищем энергии, откуда ее можно взять в любой момент, и выступает АКБ. Да, он выполняет свою четкую функцию: накапливает заряд, затем отдает и дальше снова накапливает. Отличный вариант!

Само понятие аккумулятора нам уже настолько привычно, что глупо спрашивать, зачем он нужен. Однако на удивление мало людей могут точно сказать, для чего именно служит аккумуляторная батарея в автомобиле.

Ее назначение можно описать в трех пунктах.

  1. Аккумулятор обеспечивает энергию для запуска двигателя на старте.
  2. Аккумулятор служит резервным источником энергии, когда она требуется сверх того, что может дать генератор (например, при включении автомобильного кондиционера).
  3. Аккумулятор питает электроприборы, когда двигатель выключен и генератор не работает. Например, видеорегистратор, сигнализацию, свет и т.д.

Устройство и принцип работы АКБ

Устройство автомобильного аккумулятора

Тот, кто хоть раз держал в руках аккумулятор автомобиля, знает, как много весит это устройство. Причина в том, что корпус его плотно заполнен элементами, содержащими свинец.

Устройство аккумулятора.

Для легковых автомобилей, требующих 12-вольтных АКБ, используется стандартная схема компоновки.

  1. Шесть элементов по 2 вольта (их обычно называют банками) объединены в общий корпус.
  2. Каждый из элементов состоит из положительных и отрицательных электродов: свинцовых решеток, в которые «впечатано» активное вещество. Электроды разделены между собой сепараторами, так что не соприкасаются друг с другом.
  3. И всё это залито электролитом – смесью воды и серной кислоты.

Активное вещество на решетках отличается по составу: для анода (положительного электрода) используется диоксид свинца, для катода (это отрицательный электрод) – губчатый свинец. В обоих случаях к свинцовым компонентам добавлены вспомогательные вещества (лигатуры), улучшающие работу аккумулятора.

Принцип работы.

Принцип работы АКБ

В том виде, который описан выше, аккумулятор считается «заряженным». При подключении к выводам батареи любого устройства, требующего энергии, начинается реакция свинцовых компонентов с оксидом серы и водой. Сера и свинец вступают в реакцию и преобразуются в сульфат свинца и воду. Кислоты в электролите становится меньше, воды – больше, плотность электролита снижается и через некоторое время концентрации серы не хватает на то, чтобы реагировать со свинцовыми компонентами. Аккумулятор разряжается.

Процессы разряда и заряда АКБ

При подаче электроэнергии для зарядки АКБ происходит обратный процесс — сульфат свинца, осевший на пластинах, разлагается на оксид свинца и серную кислоту, которая выделяется обратно в электролит. Восстанавливается изначальная плотность электролита, а на пластинах остается активное вещество – батарея заряжена. Ниже представлен короткий и понятный видео-урок по устройству и принцип работы аккумуляторной батареи.

Виды аккумуляторов

В попытке улучшить характеристики автомобильных аккумуляторов инженеры перепробовали множество способов. В итоге сегодня мы имеем различные типы АКБ, которые различаются по химическому составу активных компонентов и конструкции.

Классификация по составу активного вещества

В первых аккумуляторах использовались свинцовые пластины, однако такая конструкция довольно быстро перестала устраивать инженеров и потребителей: тяжелая, малоэффективная, недолговечная.

  1. Первым улучшением стало добавление сурьмы к свинцу, что серьезно продлило срок службы батареи.
  2. Следующий этап – уменьшение процентного содержания сурьмы до оптимальной концентрации. Такой подход позволил создать малообслуживаемые аккумуляторы: в них уже намного реже требовался долив воды.
  3. Затем для покрытия пластин начал использоваться металлический кальций – так появились кальциевые АКБ (они же Са-Са). Кальций серьезно изменил параметры эксплуатации батарей: в прежних моделях потери воды из-за электролиза на 12 В требовали постоянного долива, а кальциевые лигатуры позволили повысить этот порог до 16 В. Благодаря этому появилась возможность делать необслуживаемые аккумуляторы в полностью герметичном, неразборном корпусе.

Но кальциевые батареи имеют и огромный минус: чувствительность к полному разряду. Сульфат кальция, который оседает на электродах, не разлагается полностью при зарядке, а это значит, что один глубокий разряд батареи способен ее «убить».

Самым современным решением стали гибридные аккумуляторы (они же Са+): кальциевые добавки есть только на положительном электроде (поскольку именно на нём происходит разложение воды при электролизе), а отрицательный покрыт малосурьмянистым свинцом.

Классификация по типу электролита

Обычная жидкостная технология, при которой в аккумулятор заливался раствор кислоты и воды, вызывала много нареканий. Например, чувствительность к наклонам и вибрации. Необходимость обслуживать аккумулятор тоже не добавляла удовольствия от его эксплуатации. В общем, этой технологии было, куда расти.

На смену пришла AGM технология. В AGM аккумуляторе электролит «связывается» волокнистыми прослойками-сепараторами. Таким образом аккумулятор получает дополнительные преимущества: сепараторы сжимают активный слой и не дают ему отставать от пластин, имеют большую проводимость, чем жидкость и способствуют выдаче более мощного тока.

Технические (рабочие) характеристики автомобильных аккумуляторов

У АКБ для автомобиля довольно много рабочих параметров, которые важны при выборе батареи. Ошибешься хоть в одном из них – и аккумулятор нельзя будет использовать. Основные характеристики.

  • Емкость, Ач (ампер*час).
  • Пусковой ток, А (ампер).
  • Полярность.
  • Исполнение корпуса.
  • Тип клемм.
  • Тип крепления.

Номинальная емкость аккумулятора

Емкостью батареи называют количество электроэнергии, которую аккумулятор может отдавать в течение определенного времени. Измеряется в Ач (ампер в час). Это один из основных параметров не только автомобильного, а вообще любого аккумулятора. Чем выше этот показатель, тем дольше батарея сможет поддерживать работу электроприборов автомобиля во время стоянки.

Для обычного легкового автомобиля с двигателем до 2 л. обычно нужна батарея 60 Ач, и чем больше оборудования в машине, тем более емким должен быть аккумулятор. При выборе лучше ориентироваться на рекомендации автопроизводителя, и если хочется взять АКБ с большей емкостью, то превышать рекомендуемую не более, чем на 5 Ач.

Пусковой ток

Он же ток холодной прокрутки – показатель того, как аккумулятор справится с самой сложной задачей: запуском двигателя на морозе. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре «-18» градусов. Чем выше этот показатель, тем больше шансов завести свою машину зимним утром.

Например, для запуска бензинового двигателя понадобится минимум 255А, для дизельного – не менее 300А. Именно за увеличение мощности пускового тока сражаются конструкторы аккумуляторов, и именно за более высокую пусковую мощность автолюбители ценят AGM аккумуляторы. Можно даже сказать, что чем выше пусковой ток батареи – тем выше ее качество вообще.

Полярность

Полярность называют расположение клемм на корпусе аккумулятора. Это важная характеристика, поскольку неправильно выбранный АКБ просто невозможно будет подключить.

Чтобы определить полярность, нужно поставить аккумулятор так, чтобы нормально читались надписи на крышке («лицом» к себе), и посмотреть, с какой стороны находится плюсовая клемма.

  • Плюсовая клемма справа – полярность обратная, она же европейская, она же маркируется как «R» или «0».
  • Плюсовая клемма слева – полярность прямая, она же российская, она же «L» или «1».

Есть аккумуляторы с универсальной полярностью, то есть клеммы располагаются посредине коротких сторон корпуса или по диагонали. Однако такие модели встречаются редко. Чаще всего на автомобили российского производства нужны аккумуляторы с прямой полярностью, а на европейского и азиатского – с обратной.

Исполнение корпуса

Конструкторы, создавая автомобили, разрабатывали и все комплектующие к ним. В итоге традиционно появились два типа корпусов аккумуляторов: европейский и азиатский.

  1. У АКБ с европейским типом корпуса клеммы находятся в углублении, так что их верхний край не выступает над плоскостью крышки. Иногда клеммы даже прикрыты специальными крышечками, так что дополнительно защищены от внешних факторов.
  2. Азиатский тип корпуса – это коробка, у которой клеммы «растут» из верхней крышки. То есть, именно верхний край клемм является самой высокой точкой аккумулятора.

Важен ли этот фактор? Конечно, удобней использовать такой АКБ, который предусмотрен производителем. Но в крайнем случае исполнением корпуса можно пренебречь, если остальные характеристики совпадают.

Нужно только помнить, что европейские производители указывают габаритные размеры аккумулятора по корпусу, а вот азиатские могут указывать высоту батареи с учетом клемм или без них.

Тип и размер клемм

Еще одна характеристика, с которой нужно свериться при выборе аккумулятора – толщина клемм для подключения. Они бывают двух типов: стандартные и тонкие.

  1. Стандартные клеммы, они же европейские, более толстые: плюсовая 19,5 мм, минусовая 17,9 мм в диаметре;
  2. Тонкие клеммы, они же азиатские: плюсовая 12,7 мм, минусовая 11,1 мм в диаметре.

В обоих стандартах плюсовая клемма всегда толще, чтобы не перепутать полярность подключения.

Тип крепления

И, наконец, днищевое крепление, оно же «юбка» аккумулятора – это планки с отверстиями под крепеж, расположенные в нижней части корпуса.

Каким бы тяжелым ни был аккумулятор, крепить его надо. Поэтому тип крепления важен при выборе, ведь он влияет на общие габариты корпуса. Существует 3 типа крепления.

  1. Верхнее крепление специальной прижимной скобой, без фиксации за днище, маркируется В00.
  2. Крепление по двум сторонам, когда ланки есть только на широких сторонах корпуса, а на торцевых отсутствует, маркируется В01.
  3. Крепление по периметру, когда «юбка» идет по всем четырем сторонам, маркируется В13.

В принципе, если в автомобиле предусмотрено только верхнее крепление, поставить ему можно любую батарею, лишь бы вошла по размеру, если нет другого выхода. А вот в обратную сторону эта лазейка не работает, придется подбирать подходящее днищевое крепление.

Рейтинг ТОП аккумуляторов

Много брендов, много советов, трудный выбор – с такими проблемами сталкиваются покупатели. Предлагаем небольшой, наш, субъективный рейтинг торговых марок АКБ.

  1. Первое место по уровню качества и долговечности по праву занимают ОЕМ аккумуляторы. ОЕМ – это аналог детали, которая была установлена с завода. Конечно, за аккумулятор, на котором гордо красуется логотип Mercedes или Honda, придется выложить намного больше, чем за любой другой бренд, но результат того стоит. Самые популярные на рынке бренды аккумуляторов – Varta и Bosch. Они заслужили репутацию надежных безотказных батарей, добросовестно отрабатывающих каждую вложенную копейку.
  2. Среди любителей заплатить поменьше, а получить побольше особо ценится бренд Topla. Это, конечно, не Бош, но вполне может порадовать долгой службой.
  3. А замыкают наш хит-парад бюджетные бренды Sada, Styer, Bi-Power и Ista. Они хоть и не дорогие, но вполне способны порадовать стабильной работой. Можно вспомнить о них, когда аккумулятор нужен срочно, а денег мало.

Советы по эксплуатации и обслуживанию АКБ

Чтобы аккумулятор проработал как можно дольше, нужно уделять ему совсем немного внимания. Вот несколько советов по эксплуатации автомобильного АКБ.

  1. Глубокий разряд – враг батареи. Каждый раз, когда аккумулятор разряжается «в ноль», происходит необратимая сульфатация электродов, особенно от этого страдают кальциевые батареи. Периодически желательно полностью заряжать бат специальным зарядным устройством и ни в коем случае не допускать полной разрядки.
  2. Второй враг – вибрация. От сильной тряски и регулярных ударов с пластин осыпается активный слой. AGM аккумуляторы меньше от этого страдают, жидкостные – больше.
  3. Клеммы аккумулятора склонны к окислению, что ухудшает контакт. Периодически нужно обращать внимание на состояние клемм и при необходимости очищать их от окислов.
  4. Обращайте внимание на корпус батареи. Грязь, масло, влага способствуют утечке тока и саморазряду.
  5. Неполадки в электросети могут вывести из строя и батарею. Особенно проблемы со стартером и генератором – смежными элементами.
  6. Вздутый корпус со следами электролита говорит о том, что пора покупать новый АКБ. Поврежденным аккумулятором пользоваться нельзя!

Заключение

Нормально работающий автомобильный аккумулятор избавляет от множества проблем и нервотрёпки. Работоспособность батареи особенно важна зимой, когда нагрузки возрастают в несколько раз. Именно поэтому автовладельцы стараются менять «уставший» АКБ во время осеннего ТО: и спокойней, и дешевле, не придется лишний раз этим заниматься. А вы давно проверяли свой аккумулятор?

Что такое аккумулятор? Принцип действия.

Аккумулятор - важный компонент электромобиля. Он служит для обеспечения запуска двигателя. Кроме того, аккумулятор является поставщиком электроэнергии в бортовую сеть автомобиля.

Обычно аккумулятор состоит из контейнера, который разделен перегородками на элементы. В этих ячейках, называемых банками, есть несколько связанных между собой специальных единиц. 12-вольтовый автомобильный аккумулятор имеет 6 таких ячеек.Каждый из этих блоков содержит набор положительных и отрицательных электродов. Между разнополюсными электродами, состоящими из свинцовых сеток, смазанных активным веществом, установлены сепараторы из непроводящего материала.

При отливке АКБ в рабочем состоянии внутрь канистр заливают электролит (смесь серной кислоты и воды), после чего заряжают с помощью специального зарядного устройства. В процессе увеличения плотности заряда электролита внутри аккумулятора происходят определенные химические реакции, в результате которых происходит накопление энергии.

Принцип действия АКБ

Принцип действия свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислой среде.

Энергия образуется в результате окисления свинца серной кислотой до сульфата. Электродом из оксида свинца может быть графит с выделением водорода. Оксид свинца нужен только для предотвращения выделения водорода на электроде. Водород реагирует с кислородом оксида и образует воду, восстанавливая оксид металла и, возможно, обеспечивает дополнительный выход энергии за счет окисления водорода.

Во время разряда происходит восстановление диоксида свинца на катоде и окисление на анодном свинце. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном. В результате получается, что при разряде аккумулятора серная кислота с одновременным образованием воды (и плотность электролита падает) расходуется, а при заряде наоборот вода «расходуется» на образование серной кислоты (плотность электролит растет).По окончании заряда при некоторых критических значениях концентрации сульфата свинца на электродах начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород, на аноде - кислород. При зарядке нельзя допускать электролиза воды, иначе ее необходимо добавить.

.Схема и принцип работы зарядного устройства для мобильных аккумуляторов

Схема зарядного устройства для мобильных аккумуляторов - это устройство, которое может автоматически заряжать аккумулятор мобильного телефона при низком уровне заряда. В настоящее время мобильные телефоны стали неотъемлемой частью жизни каждого человека и, следовательно, требуют частой зарядки аккумулятора из-за более длительного использования.

Зарядные устройства для аккумуляторов бывают простыми, непрерывными, с таймером, интеллектуальными, универсальными зарядными устройствами-анализаторами, быстрыми, импульсными, индуктивными, USB-зарядными устройствами, зарядными устройствами на солнечных батареях и зарядными устройствами с подвижным приводом.Эти зарядные устройства также различаются в зависимости от приложений, таких как зарядное устройство для мобильных телефонов, зарядное устройство для транспортных средств, зарядные устройства для аккумуляторов электромобилей и зарядные станции.

Способы зарядки подразделяются на две категории: метод быстрой зарядки и метод медленной зарядки. Быстрая зарядка - это система, используемая для зарядки аккумулятора примерно за два часа или меньше, а медленная зарядка - это система, используемая для подзарядки аккумулятора в течение ночи. Медленная зарядка выгодна, поскольку не требует какой-либо схемы обнаружения заряда.Кроме того, это дешево. Единственным недостатком этой системы зарядки является то, что для зарядки аккумулятора требуется максимальное время.

Зарядное устройство с автоматическим отключением батареи

Этот проект направлен на автоматическое отключение батареи от сети, когда она полностью заряжена. Эта система также может использоваться для зарядки частично разряженных элементов. Схема проста и состоит из преобразователя переменного тока в постоянный, драйверов реле и зарядных станций.

Схема зарядного устройства для мобильных аккумуляторов
Описание схемы

В секции преобразователя переменного тока в постоянный трансформатор понижает доступное напряжение переменного тока до 9 В переменного тока при 75 мА, которое выпрямляется с помощью двухполупериодного выпрямителя и затем фильтруется конденсатором .Зарядное напряжение 12 В постоянного тока обеспечивается регулятором, и при нажатии переключателя S1 зарядное устройство начинает работать, а светодиод включения питания светится, показывая, что зарядное устройство «включено».

Секция драйвера реле состоит из транзисторов PNP для включения электромагнитного реле. Это реле подключено к коллектору первого транзистора, и оно управляется вторым транзистором PNP, который, в свою очередь, управляется транзистором PNP.

В секции зарядки микросхема регулятора смещена примерно на 7.35V. Для регулировки напряжения смещения используется предустановка VR1. Диод D6 подключен между выходом микросхемы, и для зарядки аккумулятора используется ограничивающее выходное напряжение аккумулятора до 6,7 В.

При нажатии переключателя происходит защелка реле и начинается зарядка аккумулятора. Когда напряжение на ячейку превышает 1,3 В, падение напряжения начинает уменьшаться на R4. Когда напряжение падает ниже 650 мВ, транзистор T3 отключается и переходит на транзистор T2 и, в свою очередь, отключает транзистор T3.В результате реле RL1 обесточивается, чтобы отключить зарядное устройство, и красный светодиод LED1 гаснет.

Зарядное напряжение в зависимости от никель-кадмиевого элемента может быть определено с помощью технических характеристик, предоставленных производителем. Зарядное напряжение установлено на 7,35 В для четырех ячеек по 1,5 В. В настоящее время на рынке доступны элементы емкостью 700 мАч, которые можно заряжать от 70 мА в течение десяти часов. Напряжение холостого хода около 1,3В.

Точка напряжения отключения определяется путем полной зарядки четырех ячеек (при 70 мА в течение четырнадцати часов) и добавления падения диода (до 0.65 В) после измерения напряжения и смещения LM317 соответственно.

В дополнение к вышеупомянутой простой схеме ниже обсуждается реализация этой схемы в реальном времени на основе проектов солнечной энергетики.

Контроллер заряда солнечной энергии

Основная цель этого проекта контроллера заряда солнечной энергии - заряжать аккумулятор с помощью солнечных батарей. В этом проекте рассматривается механизм контроля заряда, который также обеспечивает защиту аккумулятора от перезаряда, глубокой разрядки и пониженного напряжения.В этой системе с помощью фотоэлектрических элементов солнечная энергия преобразуется в электрическую.

Контроллер заряда солнечной энергии

Этот проект включает в себя такие аппаратные компоненты, как солнечная панель, операционные усилители, MOSFET, диоды, светодиоды, потенциометр и аккумулятор. Солнечные панели используются для преобразования энергии солнечного света в электрическую. Эта энергия накапливается в аккумуляторе в дневное время и используется в ночное время. Набор OP-AMPS используется в качестве компараторов для непрерывного контроля напряжения панели и тока в проводе.

Светодиоды используются в качестве индикаторов и горят зеленым цветом, показывая, что аккумулятор полностью заряжен. Точно так же, если аккумулятор недостаточно заряжен или перегружен, они светятся красным светом. Контроллер заряда использует MOSFET - силовой полупроводниковый переключатель для отключения нагрузки, когда батарея разряжена или находится в состоянии перегрузки. Транзистор используется для передачи солнечной энергии в фиктивную нагрузку, когда батарея полностью заряжена, и защищает батарею от чрезмерного заряда.

Фотовольтаический MPPT контроллер заряда на основе микроконтроллера

Этот проект направлен на разработку контроллера заряда с отслеживанием точки максимальной мощности на основе микроконтроллера.

Фотогальванический контроллер заряда MPPT

Основными компонентами, используемыми в этом проекте, являются солнечная панель, аккумулятор, инвертор, беспроводной приемопередатчик, ЖК-дисплей, датчик тока и датчик температуры. Электроэнергия от солнечных панелей поступает на контроллер заряда, который затем выдается в батарею и используется для хранения энергии. Выход батареи подключен к инвертору, который предоставляет пользователю выходы для доступа к накопленной энергии.

Солнечная панель, аккумулятор и инвертор покупаются отдельно, а контроллер заряда MPPT спроектирован и изготовлен солнечными рыцарями.ЖК-экран предназначен для отображения заряда аккумулятора и других предупреждающих сообщений. Выходное напряжение изменяется с помощью широтно-импульсной модуляции от микроконтроллера к драйверам MOSFET. Способ отслеживания точки максимальной мощности с использованием реализации алгоритма MPPT в контроллере гарантирует, что аккумулятор заряжается на максимальной мощности от солнечной панели.

Так можно сделать зарядное устройство для мобильных телефонов. Два упомянутых здесь примера могут облегчить вам процесс. Более того, если у вас есть какие-либо сомнения и вам нужна помощь в реализации проектов в реальном времени и схем промышленных зарядных устройств, вы можете оставить комментарий в разделе комментариев ниже.

Фото:

  • Схема зарядного устройства для мобильных аккумуляторов от ggpht
  • Фотогальванический контроллер заряда MPPT от eecs
.

Практические соображения - Аккумуляторы | Аккумуляторы и системы питания

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google
      • LinkedIn
      • GitHub

0:00 / 0:00

  • Подкаст
  • Самый последний
  • Подписывайся
    • Google
    • Spotify
    • Яблоко
.

проблем со здоровьем, связанных с аккумуляторами - Battery University

Узнайте, что можно и чего нельзя делать при обращении с аккумуляторами.

Батареи безопасны, но необходимо соблюдать осторожность при прикосновении к поврежденным элементам и при работе со свинцово-кислотными системами, имеющими доступ к свинцу и серной кислоте. В некоторых странах свинцовую кислоту называют опасным материалом, и это правильно. Свинец может быть опасен для здоровья при неправильном обращении.

Свинец

Свинец - это токсичный металл, который может попасть в организм при вдыхании свинцовой пыли или проглатывании при прикосновении к рту руками, загрязненными свинцом.При попадании на землю частицы кислоты и свинца загрязняют почву и при высыхании переносятся по воздуху. Дети и зародыши беременных женщин наиболее уязвимы для воздействия свинца, поскольку их организм развивается. Избыточный уровень свинца может повлиять на рост ребенка, вызвать повреждение мозга, почек, ухудшить слух и вызвать поведенческие проблемы. У взрослых свинец может вызвать потерю памяти и снизить способность к концентрации внимания, а также нанести вред репродуктивной системе. Также известно, что свинец вызывает высокое кровяное давление, нервные расстройства, боли в мышцах и суставах.Исследователи предполагают, что Людвиг ван Бетховен заболел и умер из-за отравления свинцом.

К 2017 году члены Международной ассоциации свинца (ILA) хотят поддерживать уровень свинца в крови рабочих горнодобывающих, плавильных, нефтеперерабатывающих и перерабатывающих предприятий на уровне ниже 30 микрограммов на децилитр (30 мкг / дл). В 2014 г. средний участвующий сотрудник приходил на прием при 15,6 мкг / дл, но 4,8% были выше 30 мкг / дл. (Source Batteries & Energy Storage Technology, лето 2015.)

В 2019 году Университет Южной Калифорнии опубликовал данные об обнаружении свинца в зубах детей, живущих рядом с заводом по переработке батарей Exide Technologies в Верноне, штат Калифорния.


Рисунок 1: Свинец обнаружен в зубах младенцев возле завода по переработке аккумуляторов.


Свинец содержится в почве в естественных условиях на уровне 15–40 мг / кг. Этот уровень может многократно увеличиваться вблизи заводов по производству и переработке свинцовых аккумуляторов.Уровни загрязнения почвы свинцом в развивающихся странах, в том числе на африканском континенте, составляют 40–140 000 мг / кг. (См. BU-705: Как утилизировать батареи.)

Серная кислота

Серная кислота в свинцово-кислотных аккумуляторах очень агрессивна и более вредна, чем кислоты, используемые в большинстве других аккумуляторных систем. Попадание в глаза может вызвать необратимую слепоту; глотание повреждает внутренние органы, что может привести к летальному исходу. При оказании первой помощи необходимо промывать кожу в течение 10–15 минут большим количеством воды, чтобы охладить пораженные ткани и предотвратить вторичное повреждение.Немедленно снимите загрязненную одежду и тщательно промойте подлежащую кожу. При обращении с серной кислотой всегда надевайте защитное снаряжение.


Кадмий

Кадмий, используемый в никель-кадмиевых батареях, при попадании внутрь считается более вредным, чем свинец. Рабочие на заводах по производству никель-кадмиевых аккумуляторов в Японии испытывают проблемы со здоровьем из-за длительного воздействия металла, и правительства запретили утилизацию никель-кадмиевых батарей на свалках. Мягкий беловатый металл, который естественным образом встречается в почве, может повредить почки.Кадмий может проникнуть через кожу при прикосновении к разлитой батарее. Поскольку большинство никель-кадмиевых батарей герметично, обращение с неповрежденными элементами не представляет опасности для здоровья; осторожность требуется при работе с открытым аккумулятором.

Металлогидрид никеля считается нетоксичным, и единственное беспокойство вызывает электролит. Хотя никель токсичен для растений, он не опасен для человека.

Литий-ионный тоже безвреден - аккумулятор содержит мало токсичного материала. Тем не менее, при работе с поврежденным аккумулятором соблюдать осторожность.При обращении с разлитой батареей не касайтесь рта, носа или глаз. Тщательно вымойте руки.

Храните маленькие батарейки в недоступном для детей месте. Дети младше четырех лет чаще всего проглатывают батарейки, и чаще всего попадают внутрь батарейки. Ежегодно только в Соединенных Штатах более 2800 детей проходят лечение в отделениях неотложной помощи по поводу проглатывания батарейки. Согласно отчету за 2015 год, серьезных травм и смертей от проглатывания теста

.

% PDF-1.4 % 262 0 объект > endobj xref 262 41 0000000017 00000 н. 0000001292 00000 н. 0000002480 00000 н. 0000002866 00000 н. 0000002931 00000 н. 0000003123 00000 п. 0000003396 00000 н. 0000003756 00000 н. 0000003926 00000 н. 0000003958 00000 н. 0000004161 00000 п. 0000004244 00000 п. 0000004549 00000 н. 0000023454 00000 п. 0000024077 00000 п. 0000024525 00000 п. 0000024722 00000 п. 0000025000 00000 н. 0000025322 00000 п. 0000025514 00000 п. 0000025795 00000 п. 0000028076 00000 п. 0000028104 00000 п. 0000028276 00000 п. 0000028308 00000 п. 0000028513 00000 п. 0000028824 00000 п. 0000056587 00000 п. 0000057200 00000 п. 0000057734 00000 п. 0000057933 00000 п. 0000058217 00000 п. 0000058502 00000 п. 0000058667 00000 п. 0000058699 00000 п. 0000058897 00000 п. 0000059197 00000 п. 0000105193 00000 п. 0000106011 00000 п. 0000106563 00000 н. 0000001385 00000 н. трейлер ] >> startxref 0 %% EOF 263 0 объект > endobj 302 0 объект > ручей xc``b``d`c`X Ȁ

.Принцип работы усилителя

и схема

Теплые советы: эта статья содержит около 6000 слов, а время чтения составляет около 22 минут.

Введение

Операционный усилитель называется операционным усилителем. Он был назван «Операционным усилителем», потому что в первые дни он использовался в аналоговых компьютерах для реализации математических операций. В основном используется в аналоговых схемах, таких как усилители, компараторы, аналоговые операторы, это устройство, которое часто используют инженеры-электронщики.Операционный усилитель - это блок схемы с очень высоким коэффициентом усиления. В реальной схеме функция обратной связи обычно сочетается с сетью обратной связи для формирования определенного функционального модуля. Это усилитель со специальной схемой связи и обратной связью. Выходной сигнал может быть результатом математических операций, таких как сложение, вычитание или дифференцирование входного сигнала, интегрирование и т.п. Операционный усилитель - это функциональный блок, названный с функциональной точки зрения, который может быть реализован в дискретных устройствах или в полупроводниковых микросхемах.Чтобы узнать, как работает операционный усилитель? Лучше знать принцип его работы и схему.

Операционный усилитель

: как он работает?

Каталог


Ⅰ W orking P Принцип O perational A Усилитель

1.1 Терминология

С развитием полупроводниковой технологии большая часть оптических усилителей существует в форме одного чипа.Есть много типов операционных усилителей, которые широко используются в электронной промышленности. Для лучшего использования операционного усилителя необходимо полное понимание принципа работы операционного усилителя.

Операционный усилитель ( OP, OPA, OPAMP для краткости) представляет собой дифференциальный (дифференциальный) вход, связанный по постоянному току, обычно несимметричный выходной (усиленный) усилитель напряжения, потому что вначале он был в основном используется в арифметических схемах, таких как сложение и умножение, отсюда и название.Идеальный операционный усилитель должен иметь следующие характеристики: бесконечный входной импеданс, выходной импеданс, равный нулю, бесконечный коэффициент усиления без обратной связи, бесконечную часть коэффициента подавления синфазного сигнала и бесконечную полосу пропускания. Самый простой операционный усилитель показан на рисунке 1-1. Модуль операционного усилителя обычно включает в себя положительный вход (OP_P), отрицательный вход (OP_N) и выход (OP_O).

Рисунок 1-1 Самый простой операционный усилитель

Когда обычно используется операционный усилитель, его выход подключается к его инвертирующему входному узлу, чтобы сформировать конфигурацию отрицательной обратной связи.Причина в том, что коэффициент усиления по напряжению операционного усилителя очень велик, от сотен до десятков тысяч раз, при использовании отрицательной обратной связи для обеспечения стабильной работы схемы. Однако это не означает, что операционный усилитель нельзя подключать к положительной обратной связи. И наоборот, во многих системах, которым необходимо генерировать колебательный сигнал, очень распространенным компонентом является операционный усилитель с положительной обратной связью.

Рисунок 1-2 Операционный усилитель с разомкнутым контуром

Операционные усилители

с разомкнутым контуром показаны на Рисунке 1-2.Когда идеальный операционный усилитель работает в режиме без обратной связи, соотношение между его выходным и входным напряжением будет следующим:

Vout = (V + -V-) * Aog

Aog - дифференциальный гаи операционного усилителя без обратной связи.

Поскольку коэффициент усиления разомкнутого контура операционного усилителя очень высок, даже если дифференциальный сигнал на входе невелик, выходной сигнал все равно будет насыщенным, что приведет к нелинейным искажениям. Поэтому операционные усилители редко появляются в схемных системах с разомкнутыми контурами.Несколько исключений - использование операционных усилителей в качестве компараторов. Выход компаратора обычно равен «0» и «1» логического уровня.

1.2 Отрицательная обратная связь с обратной связью

При подключении инвертирующего входа операционного усилителя к выходу, схема усилителя находится в конфигурации с отрицательной обратной связью, и эту схему часто можно назвать просто замкнутой обратной связью усилитель мощности. Усилитель с обратной связью входит в конец усилителя в соответствии с входным сигналом и может быть разделен на два типа: инвертирующий усилитель и неинвертирующий усилитель.

Инвертирующий усилитель с обратной связью показан на Рисунке 1-3. Предполагая, что в усилителе с обратной связью используется идеальный операционный усилитель, коэффициент усиления без обратной связи бесконечен, поэтому два входа операционного усилителя являются виртуальной землей, а соотношение между выходным и входным напряжением выглядит следующим образом:

Vout = - (Rf / Rin) * Vin

Рисунок 1-3 Усилитель с обратной связью

Неинвертированные усилители с обратной связью показаны на рис. 1-4. Предполагая, что в усилителе с обратной связью используется идеальный операционный усилитель, коэффициент усиления без обратной связи для операционного усилителя бесконечен, поэтому разница напряжений между двумя входами операционный усилитель почти нулевой.Соотношение между выходным и входным напряжением следующее:

Vout = ((R2 / R1) + 1) * Vin

Рисунок 1-4 Неинвертирующий усилитель с замкнутым контуром

1.3 Положительная обратная связь с замкнутым контуром

Положительный вход и выход операционного усилителя соединены, и схема усилителя находится в состоянии положительной обратной связи. Поскольку конфигурация положительной обратной связи работает в очень нестабильном состоянии, она в основном используется в приложениях, которым необходимо генерировать колебательный сигнал.

Ⅱ Основные параметры рабочего усилителя

2.1 Типовые параметры

  • Входное сопротивление синфазного сигнала (RINCM)

Этот параметр указывает отношение диапазона входного синфазного напряжения к величине изменения тока смещения в диапазоне, когда операционный усилитель работает в линейной области.

  • Подавление синфазного сигнала постоянного тока (CMRDC)

Этот параметр используется для измерения способности операционного усилителя отклонять один и тот же сигнал постоянного тока, подаваемый на оба входа.

  • Подавление синфазного сигнала переменного тока (CMRAC)

CMRAC - это мера способности операционного усилителя отклонять один и тот же сигнал переменного тока, действующий на оба входа, в зависимости от коэффициента усиления разомкнутого контура в дифференциальном режиме, деленного на усиление разомкнутого контура в синфазном режиме.

  • Продукт усиления полосы пропускания (GBW)

Произведение коэффициента усиления и ширины полосы пропускания AOL * ƒ является константой, определенной в области, где коэффициент усиления без обратной связи изменяется в зависимости от частоты и падения -20 дБ / декаду.

Этот параметр относится к среднему току, протекающему на входе, когда операционный усилитель работает в линейной области.

  • Температурный дрейф входного тока смещения (TCIB)

Этот параметр представляет величину изменения входного тока смещения при изменении температуры. TCIB обычно выражается в единицах pA / ° C.

  • Входной ток смещения (IOS)

Этот параметр указывает на разницу в токе, протекающем на два входа.

  • Текущий температурный дрейф входного смещения (TCIOS)

Этот параметр представляет величину изменения входного тока смещения при изменении температуры. TCIOS обычно выражается в единицах pA / ° C.

  • Входное сопротивление дифференциального режима (RIN)

Этот параметр указывает отношение величины изменения входного напряжения к величине изменения соответствующего входного тока.Изменение напряжения вызывает изменение тока. При измерении на одном входе другой вход подключается к фиксированному синфазному напряжению.

Этот параметр относится к внутреннему эквивалентному сопротивлению малого сигнала на выходе операционного усилителя при работе в линейной области.

  • Размах выходного напряжения (VO)

Этот параметр относится к размаху максимального размаха напряжения, который может быть достигнут без ограничения выходного сигнала.VO обычно определяется при определенном сопротивлении нагрузки и напряжении питания.

Указывает статическую мощность, потребляемую устройством при заданном напряжении питания. Pd обычно определяется в условиях холостого хода.

  • Коэффициент отклонения блока питания (PSRR)

Этот параметр используется для измерения способности операционного усилителя поддерживать свой выходной сигнал при изменении напряжения питания. PSRR обычно выражается как величина изменения входного напряжения смещения, вызванного изменением напряжения питания.

  • Скорость преобразования / скорость нарастания (SR)

Этот параметр относится к максимальному значению отношения величины изменения выходного напряжения ко времени, необходимому для того, чтобы это изменение произошло. SR обычно выражается в единицах В / мкс и иногда выражается как положительное изменение и отрицательное изменение соответственно.

  • Ток источника питания (ICC, IDD)

Этот параметр представляет собой ток покоя, потребляемый устройством при указанном напряжении питания.Эти параметры обычно определяются в условиях холостого хода.

  • Полоса пропускания (BW) Unity Gain

Этот параметр относится к максимальной рабочей частоте операционного усилителя, когда коэффициент усиления разомкнутого контура больше единицы.

  • Входное напряжение смещения (VOS)

Этот параметр указывает разность напряжений, которая должна быть приложена на входе, когда выходное напряжение равно нулю.

  • Дрейф входного смещения напряжения (TCVOS)

Этот параметр относится к изменению входного напряжения смещения, вызванному изменениями температуры, обычно выражается в единицах мкВ / ° C.

CIN представляет собой эквивалентную емкость любого входа, когда операционный усилитель работает в линейной области (другой вход заземлен).

  • Диапазон входного напряжения (VIN)

Этот параметр относится к диапазону входных напряжений, разрешенных при нормальной работе операционного усилителя (получен ожидаемый результат), а VIN обычно определяется при указанном напряжении питания.

  • Плотность шума входного напряжения (eN)

Для операционных усилителей шум входного напряжения можно рассматривать как последовательный источник шумового напряжения, подключенный к любому из входов, а eN обычно выражается в нВ / Гц, определяемых на указанной частоте.

  • Плотность шума на входе (iN)

Для операционных усилителей шум входного тока можно рассматривать как два источника шумового тока, подключенных к каждому входу и общий, обычно выражаемый в пА / корень Гц, определенных на указанной частоте.

2.2 Важные индикаторы

Идеальный интегрированный операционный усилитель, когда входное напряжение равно нулю, выходное напряжение также должно быть нулевым (без устройства обнуления). Однако на практике дифференциальный входной каскад интегрированного операционного усилителя сложно добиться полной симметрии.Обычно, когда входное напряжение равно нулю, есть определенное выходное напряжение. Входное напряжение смещения - это компенсационное напряжение, приложенное ко входу для обнуления выходного напряжения. Фактически, когда входное напряжение равно нулю, выходное напряжение делится на коэффициент усиления напряжения, и значение, преобразованное на входной терминал, называется входным напряжением смещения, то есть

Размер UIO отражает степень симметрии и согласования потенциалов операционного усилителя. Чем меньше UIO, тем лучше величина между 2 мВ и 20 мВ.UIO операционных усилителей со сверхмалым смещением и малым дрейфом обычно составляет от 1 мкВ до 20 мкВ.

Когда выходное напряжение равно нулю, разница между током покоя дифференциальной пары и базой дифференциального входного каскада называется входным током смещения IIO, то есть: из-за внутреннего сопротивления источника сигнала изменение IIO вызовет изменение входного напряжения, в результате чего выходное напряжение операционного усилителя не равно нулю. Чем меньше IIO, тем лучше симметрия лампы дифференциальной пары входного каскада, которая обычно составляет около 1 нА ~ 0.1 мкА.

Когда выходное напряжение интегрированного операционного усилителя равно нулю, среднее значение статического тока смещения двух входов операционного усилителя определяется как входной ток смещения:

С точки зрения использования ток смещения невелик, а изменение выходного напряжения из-за изменения внутреннего сопротивления источника сигнала меньше, поэтому входной ток смещения является важным техническим показателем. Обычно IIB составляет от 1 нА до 0,1 мкА.

  • Температурный дрейф входного напряжения смещения △ UIO / △ T

Входное напряжение смещения Температурный дрейф - это отношение величины изменения входного напряжения смещения в зависимости от температуры к величине изменения температуры в указанном диапазоне рабочих температур. Это важный индикатор для измерения температурного дрейфа цепи, и его нельзя компенсировать методом внешнего устройства регулировки нуля. Температурный дрейф входного напряжения смещения минимален.Входное напряжение смещения обычного операционного усилителя дрейфует от ± 1 мВ / ° C до ± 20 мВ / ° C.

  • Входное смещение текущего температурного дрейфа △ IIO / △ T

В указанном диапазоне рабочих температур отношение величины изменения входного тока смещения в зависимости от температуры к величине изменения температуры называется температурным дрейфом входного смещения тока. Температурный дрейф входного тока смещения является мерой дрейфа тока схемы усилителя и не может быть компенсирован внешним устройством регулировки нуля.Высококачественные операционные усилители - несколько пА на градус.

  • Максимальное входное напряжение дифференциального режима Uidmax

Максимальное входное напряжение дифференциального режима Uidmax - это максимальное входное напряжение дифференциального режима, которое могут выдержать два входа операционного усилителя. При превышении этого напряжения входной каскад операционного усилителя войдет в нелинейную область, что приведет к значительному ухудшению характеристик операционного усилителя или даже к повреждению. Uidmax составляет около ± 5 В ~ ± 30 В в зависимости от процесса.

  • Максимальное входное напряжение синфазного сигнала Uicmax

Максимальное входное синфазное напряжение Uicmax относится к максимальному синфазному входному напряжению, которое операционный усилитель может выдержать в нормальных условиях работы операционного усилителя. Когда синфазное напряжение превышает это значение, рабочая точка входной дифференциальной пары лампы попадает в нелинейную область, усилитель теряет способность подавления синфазного сигнала, и коэффициент подавления синфазного сигнала значительно падает.

Максимальное входное напряжение синфазного сигнала Uicmax определяется как значение входного напряжения синфазного сигнала, при котором выходное напряжение вызывает ошибку рассогласования 1%, когда операционный усилитель подключен к повторителю напряжения при номинальном напряжении питания; или определяется как общий режим, добавляемый при падении усилителя на 6 дБ. Введите значение напряжения.

Коэффициент усиления напряжения в дифференциальном режиме с разомкнутым контуром Aud относится к отношению изменения выходного напряжения к изменению входного напряжения на входном порту операционного усилителя, когда интегрированный операционный усилитель работает в линейной области, имеет доступ к указанная нагрузка.Aud операционного усилителя составляет от 60 до 120 дБ. Разные функции операционного усилителя, Aud очень разные.

Входное сопротивление дифференциального режима Rid - это входное сопротивление операционного усилителя, когда на вход подается сигнал дифференциального режима. Чем больше Rid, тем меньше влияние на источник сигнала, а входное сопротивление Rid операционного усилителя обычно составляет несколько сотен кОм или более.

Определение коэффициента подавления синфазного сигнала операционного усилителя KCMR такое же, как определено в схеме дифференциального усилителя.Это отношение коэффициента усиления дифференциального напряжения к коэффициенту усиления синфазного напряжения, которое обычно выражается в децибелах. Различные функции операционного усилителя, KCMR также различаются, некоторые составляют от 60 до 70 дБ, а некоторые - до 180 дБ. Чем больше KCMR, тем сильнее подавление синфазных помех.

Полоса пропускания разомкнутого контура, также известная как полоса пропускания -3 дБ, относится к частоте fH коэффициента усиления дифференциального напряжения операционного усилителя Aud, которая падает на 3 дБ в высокочастотной полосе.

Ширина полосы единичного усиления BWG относится к частоте fT, соответствующей увеличению частоты сигнала и уменьшению Aud до 1, то есть к частоте сигнала fT, когда Aud составляет 0 дБ. Это важный параметр для интегрированных операционных усилителей. Частота fT = 7 Гц ОУ 741 относительно низкая.

  • Скорость нарастания SR (скорость поворота)

Скорость нарастания SR - это максимальная скорость изменения выходного напряжения схемы усиления относительно времени, когда на вход подается большой сигнал (например, ступенчатый сигнал) при условии, что коэффициент усиления напряжения равен 1, как показано на Рисунке 7-1-1.Он отражает способность операционного усилителя реагировать на быстро меняющиеся входные сигналы. Выражение коэффициента конверсии SR:

Скорость нарастания SR является важным показателем при работе с большими сигналами и высокочастотными сигналами. В настоящее время скорость нарастания нарастания ОУ общего назначения составляет около 1 ~ 10 В / мкс.

Операционный усилитель, представленный выше, имеет два входа a, b и один выход o. Также известен как обратный вход (инвертирующий вход), неинвертирующий вход (синфазный вход) и выход.При добавлении напряжения - добавляется между терминалом и общей клеммой (общий терминалом является нулем напряжения, которое эквивалентно опорным узел в цепи), и фактическое направление выходного напряжения U является от терминал к общему терминалу. Общие конечные точки указывают на конец o, то есть направление двух противоположно. Когда входное напряжение U + добавляется между концом b и общим концом, фактическое направление U и U + точно такое же, как и общий конец.Ради различия, а-конец и б Терминалы помечены символом «-» и «+» соответственно, но не принимают их за положительную и отрицательную полярность опорного напряжения направления. Положительная и отрицательная полярности напряжения должны быть отмечены или обозначены стрелками. Инвертирующие усилители и нереверсивные усилители Повороты показаны ниже:

Операционный усилитель обычно можно рассматривать просто как усилитель напряжения с прямой связью и высоким коэффициентом усиления с одним выходным сигнальным портом (Out) и двумя синфазными инвертирующими входами с высоким импедансом, поэтому операционные усилители могут использоваться для -фазные, инвертирующие и дифференциальные усилители..

Режим питания операционного усилителя разделен на два источника питания и один источник питания. Для операционных усилителей с двойным питанием выходной сигнал может изменяться при нулевом напряжении, а выход может быть установлен на ноль, когда дифференциальное входное напряжение равно нулю. В операционном усилителе с однополярным питанием выходная мощность изменяется в диапазоне мощности и заземления.

Входной потенциал операционного усилителя обычно должен быть выше определенного значения отрицательного источника питания и ниже определенного значения положительного источника питания.Специально разработанный операционный усилитель позволяет изменять входной потенциал от отрицательного к положительному, даже немного выше положительного или немного ниже отрицательного. Операционный усилитель такого типа называется операционным усилителем с железнодорожным входом.

Выходной сигнал операционного усилителя пропорционален разности сигнальных напряжений двух входов. В аудиосегменте: выходное напряжение = A0 (E1-E2), где A0 - низкочастотное усиление разомкнутого контура операционного усилителя (например, 100 дБ, то есть 100000 раз), E1 - напряжение входного сигнала неинвертирующего клемма, а E2 - напряжение входного сигнала инвертирующей клеммы.

Ⅲ Анализ общей схемы рабочего усилителя

3.1 Инверторный усилитель

Увеличение Av = R2 / R1, но необходимо учитывать значение Gain-Bandwidth спецификации.

R3 = R4 обеспечивает смещение 1/2 мощности

C3 - фильтр развязки блока питания

C1, C2 вход и выход разделены DC

В этот момент фаза выходного сигнала противоположна входному.

3,2 Неинверторный усилитель

Увеличение Av = R2 / R1

R3 = R4 обеспечивает смещение питания 1/2

C1, C2, C3 блокируют постоянный ток

На этом этапе фаза выходного сигнала совпадает с фазой входного.

3.3 Повторитель напряжения

Потенциал выхода O / P такой же, как потенциал входа I / P. Доступны как одиночные, так и двойные блоки питания.

3.4 Компаратор

Выход O / P имеет низкий логический уровень, когда напряжение I / P выше, чем Ref.

Выход O / P имеет высокий логический уровень, когда напряжение I / P ниже, чем Ref.

R2 = 100 * R1 используется для устранения состояния гистерезиса, которое должно усилить выход O / P, логическую высокую и низкую разность потенциалов для повышения чувствительности компаратора.

(R1 = 10 K, R2 = 1 M) доступны как одиночные, так и двойные источники питания.

  • Виртуальные краткие и мнимые значения в операционных усилителях

Когда идеальный операционный усилитель работает в линейной области, можно сделать два важных вывода:

Поскольку коэффициент усиления идеального операционного усилителя очень велик, а операционный усилитель работает в линейной области, это схема линейного усиления, и выходное напряжение не превышает линейного диапазона (т. Е. Конечного значения). Следовательно, потенциал неинвертирующего входного терминала и инвертирующего входного терминала операционного усилителя очень близок к равному.Когда напряжение питания операционного усилителя составляет ± 15 В, максимальный выход обычно составляет 10 ~ 13 В. Следовательно, разница напряжений между двумя входными клеммами операционного усилителя ниже 1 мВ, и две входные клеммы закорочены. Эта функция называется виртуальным короткометражкой. Очевидно, что это не настоящее короткое замыкание, а разумное приближение в пределах допустимого диапазона ошибок при анализе схемы.

Поскольку входное сопротивление операционного усилителя обычно составляет несколько сотен кОм или более, ток, протекающий через неинвертирующий вход и инвертирующий вход операционного усилителя, очень мал, на несколько порядков меньше, чем ток во внешнем цепи, а ток, протекающий в операционный усилитель, часто можно игнорировать, это довольно обрыв цепи на входе операционного усилителя.Эта функция называется виртуальным перерывом. Очевидно, что вход операционного усилителя не может открыть путь.

Используя две концепции «виртуального короткого замыкания» и «виртуального разрыва», можно упростить процесс анализа прикладной схемы при анализе линейной прикладной схемы операционного усилителя. Все рабочие схемы, образованные операционными усилителями, требуют определенного функционального соотношения между входом и выходом, поэтому можно применять оба вывода. Если операционный усилитель не работает в линейной области, нет функции «виртуального короткого замыкания» или «виртуального разрыва».Если потенциал двух входов операционного усилителя измеряется и достигает нескольких милливольт или более, операционный усилитель часто не работает в линейной области или выходит из строя.

Ⅳ Классификация операционных усилителей

По параметрам интегрированного операционного усилителя интегрированный операционный усилитель можно разделить на следующие категории.

4.1 Операционный усилитель общего назначения

Операционные усилители общего назначения предназначены для общего использования.Основными особенностями этого типа устройств являются невысокая цена, широкий ассортимент, а его рабочие показатели могут быть пригодны для общего использования. Примеры μA741 (одиночный операционный усилитель), LM358 (двойной операционный усилитель), LM324 (четыре операционных усилителя) и LF356 с полевым транзистором в качестве входного каскада попадают в эту категорию. В настоящее время они являются наиболее широко используемыми интегрированными операционными усилителями.

4.2 Высокоимпедансный операционный усилитель

Характеристики этого типа интегрированного операционного усилителя заключаются в том, что входное сопротивление дифференциального режима очень велико, а входной ток смещения очень мал.Как правило, rid> 1ГОм ~ 1ТОм, IB составляет от нескольких пикоампер до нескольких десятков пикоампер. Основная мера для достижения этих показателей - использование высокого входного сопротивления полевого транзистора и использование полевого транзистора для формирования дифференциального входного каскада операционного усилителя. Используя полевой транзистор в качестве входного каскада, не только высокий входной импеданс, низкий ток входного смещения, но также есть преимущества высокой скорости, широкой полосы пропускания и низкого шума, но входное напряжение смещения велико. Распространенными интегрированными устройствами являются LF355, LF347 (четыре операционных усилителя) и CA3130, CA3140 с более высоким входным сопротивлением.

4.3 Операционный усилитель с низкотемпературным дрейфом

В приборах автоматического управления, таких как прецизионные приборы и средства обнаружения слабого сигнала, всегда желательно, чтобы напряжение смещения операционного усилителя было небольшим и не изменялось с температурой. Для этого предназначены операционные усилители с низким температурным дрейфом. В настоящее время широко используемые высокоточные операционные усилители с низким дрейфом включают OP07, OP27, AD508 и устройство ICL7650 со стабилизированным прерыванием и малым дрейфом, состоящее из полевых МОП-транзисторов.

4.4 Высокоскоростной операционный усилитель

В быстрых аналого-цифровых и цифро-аналоговых преобразователях и видеоусилителях коэффициент преобразования SR интегрированного операционного усилителя должен быть высоким, а ширина полосы единичного усиления BWG должна быть большой. достаточно, как и интегральный операционный усилитель общего назначения не подходит для высокоскоростных приложений. Иногда. Основными особенностями высокоскоростных операционных усилителей являются высокая скорость нарастания и широкий частотный диапазон. Общие операционные усилители включают LM318, μA715 и т. Д., SR = 50 ~ 70 В / мкс, BWG> 20 МГц.

4.5 Операционный усилитель малой мощности

Поскольку самым большим преимуществом интеграции электронных схем является то, что с ее помощью можно делать сложные схемы небольшими и легкими, с расширением области применения портативных инструментов необходимо использовать операционный усилитель с низкое напряжение питания и низкое энергопотребление. Обычно используются операционные усилители TL-022C, TL-060C и т. Д., Их рабочее напряжение составляет ± 2 В ~ ± 18 В, а потребление тока составляет 50 ~ 250 мкА.В настоящее время некоторые продукты достигли уровня энергопотребления в мкВт. Например, питание ICL7600 составляет 1,5 В, а потребляемая мощность - 10 мВт. Может питаться от одной батареи.

4.6 Высоковольтный и высокомощный операционный усилитель

Выходное напряжение операционного усилителя в первую очередь ограничивается источником питания. В обычном операционном усилителе максимальное значение выходного напряжения обычно составляет всего несколько десятков вольт, а выходной ток - всего несколько десятков миллиампер.Для увеличения выходного напряжения или увеличения выходного тока необходимо добавить вспомогательную цепь снаружи интегрированного операционного усилителя. Высоковольтные сильноточные интегрированные операционные усилители могут выдавать высокие напряжения и большие токи без каких-либо дополнительных схем. Например, интегрированный операционный усилитель D41 имеет напряжение питания ± 150 В, а интегрированный операционный усилитель μA791 имеет выходной ток 1 А.

4.7 Операционный усилитель с программируемым управлением

В процессе использования прибора задействуется диапазон.Чтобы получить на выходе фиксированное напряжение, необходимо изменить увеличение усилителя. Например, если операционный усилитель имеет увеличение в 10 раз, а входной сигнал составляет 1 мВ, выходное напряжение. Для 10 мВ, когда входное напряжение 0,1 мВ, на выходе всего 1 мВ. Чтобы получить 10 мВ, необходимо изменить увеличение на 100. Программируемый операционный усилитель создан для решения этой проблемы. Например, PGA103A, управляя уровнем 1 и 2 фута, чтобы изменить коэффициент усиления.

Ⅴ Идеальный рабочий усилитель и идеальные условия работы усилителя

Идеальные параметры операционного усилителя: усиление в дифференциальном режиме, входное сопротивление дифференциального режима, коэффициент подавления синфазного сигнала, верхний предел частоты бесконечен; входное напряжение смещения и его температурный дрейф, входной ток смещения и его температурный дрейф, а также шум равны нулю.

При анализе и интеграции прикладных схем операционного усилителя, интегрированный операционный усилитель может считаться идеальным операционным усилителем в большинстве случаев.В идеале идеальный операционный усилитель идеально подходит по техническим показателям интегрированного операционного усилителя. Поскольку технические характеристики реального операционного усилителя ближе к идеальному операционному усилителю, ошибка, вызванная идеализацией, очень мала, и ее можно игнорировать в общих инженерных расчетах.

Технические показатели идеального ОУ следующие:

1. Коэффициент усиления напряжения в дифференциальном режиме без обратной связи Aod = ∞;

2.Входное сопротивление Выходное сопротивление Rod = 0

3. Входной ток смещения IB1 = IB2 = 0;

4. Напряжение смещения UIO, ток смещения IIO, дрейф напряжения смещения, дрейф тока смещения равны нулю;

5. Коэффициент подавления синфазного сигнала CMRR = ∞ ;;

6. Полоса пропускания -3 дБ fH = ∞;

7. Отсутствие внутренних помех и шумов.

Фактические параметры операционного усилителя можно рассматривать как идеальные со следующими уровнями:

Коэффициент усиления по напряжению 104-105 раз; входное сопротивление достигает 105 Ом; выходное сопротивление менее нескольких сотен Ом; ток во внешней цепи намного больше тока смещения; напряжение смещения, ток смещения и его температурный дрейф малы, что приводит к дрейфу схемы, чтобы позволить В пределах объема стабильность схемы может соответствовать требованиям; при вводе минимального сигнала существует определенное отношение сигнал / шум, а коэффициент подавления синфазного сигнала больше или равен 60 дБ; полоса пропускания может соответствовать требованиям полосы пропускания канала.

Рекомендуемая литература

Основные характеристики и классификации операционных усилителей
Типы операционных усилителей и их сравнение
Базовый анализ неинвертирующих и инвертирующих усилителей
Основные сведения об операционных усилителях в электронике Обзор
Применение операционных усилителей, основы операционных усилителей

.

Смотрите также