Принципиальная схема генератора


Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Схема генератора автомобиляПоэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

Принципиальная электрическая схема генератора авто

  1. Аккумуляторная батарея
  2. Выход генератора "+"
  3. Включатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

устройство генератора

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

принцип работы генератора

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

схема генератора

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
схема зарядки аккумуляторной батареи ВАЗ-2107 с генератором типа 37.3701

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметорм

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

схема проверки генератора

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

Принцип работы автомобильного генератора, схема

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — стальной элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлены втулки клювообразной формы. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Устройство генератора тока | У электрика.ру

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему  и рассмотреть устройство  генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Содержание:

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

Асинхронный генератор: схема, устройство, принцип работы

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

Устройство генератора постоянного тока

Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:

      • 0° — ЭДС =0
      • 90° — ЭДС достигает максимального значения со знаком «+»
      • 180° — ЭДС снова равна 0
      • 270° — ЭДС достигает пикового значения со знаком «-»

Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.

Схема генератора постоянного тока

Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.

С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:

Основные виды генераторов постоянного тока

В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.

По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:

  1. Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
  2. Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
  3. Зависимое возбуждение, которое делится на три типа:
    • Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
    • Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
    • Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы

Схема генератора независимого возбуждения

Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.

Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.

Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.

Генераторы с параллельным возбуждением: схема, устройство, принцип работы

Схема генератора параллельного возбуждения

У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.

Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.

В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.

Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.

Генераторы с последовательным возбуждением: схема, устройство, принцип работы

Схема генератора последовательного возбуждения

Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.

Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.

Генераторы со смешанным возбуждением: схема, устройство, принцип работы

Схема генератора со смешанным возбуждением

На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик  такого генератора, и мы по ним пройдемся.

График внешних характеристик генератора постоянного тока со смешанным возбуждением

Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.

Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.

Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.

Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.

К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.

Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.

Поделиться ссылкой:

Похожее

Устройство Генератора Переменного Тока и Принцип Действия

Мощный тяговый генератор переменного тока – строение

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Теоретическая часть

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

Строение простейшего электромагнитного генератора

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Различные схемы автомобильных генераторов - Схемы генераторов - - Каталог статей

Список всех статей

Устаревшие схемы генераторов 60 - 70х годов прошлого века. "Жигули", "Москвич", "Волга", "Зил", "ГАЗ", "УАЗ"

 

Схема автомобильного генератора, это схема самого генератора, схема соединенного с ним регулятора напряжения и схема цепи возбуждения генератора. Генератор с регулятором напряжения иногда называют – генераторная установка.

Автомобильный генератор - это трехфазная синхронная машина. Принцип действия основан на явлении электромагнитной индукции. Смысл явления состоит в том, что в обмотке индуктируется электродвижущая сила, если вокруг нее действует изменяющееся магнитное поле. Значит, генератор должен состоять из обмотки и вращающегося магнита. Обмотка наматывается на кольцевой сердечник, а внутри обмотки вращается ротор. Процесс намагничивания ротора, называется возбуждением генератора. Для намагничивания ротора в нем есть своя обмотка, в которую ток попадает через щетки. Ток, намагничивающий ротор, называется ток возбуждения, а обмотка ротора называется обмотка возбуждения.

По принципу действия синхронный генератор, создает переменное напряжение, а для зарядки аккумулятора и для работы всего электрооборудования, нужно постоянное напряжение, поэтому в любой автомобильный генератор, входит выпрямитель - трехфазный диодный мост. Переменный ток генератора выпрямляется диодным мостом и во внешних цепях действует постоянное напряжение и протекает постоянный ток.

Регулятор напряжения – обязательный элемент схемы, он поддерживает необходимый уровень выходного напряжения генератора.

Регулятор напряжения включается в цепь возбуждения. Его задача управлять током возбуждения. Он работает в режиме открыто – закрыто, то есть, он все время включает и выключает ток возбуждения. Напряжение генератора повышается, он отключает ток возбуждения - напряжение снижается, он снова включает ток возбуждения и напряжение повышается. Таким образом, он не дает напряжению вырасти выше заданного значения, которое должно быть 13,8 - 14,2 Вольта. Такое напряжение необходимо поддерживать для нормальной зарядки аккумулятора и нормальной работы всех приборов электрооборудования.

Автомобильный генератор первоначально возбуждается от аккумулятора. Как только включается зажигание, выходной транзистор регулятора открывается, через него идет ток возбуждения и ротор намагничивается. Когда завелся двигатель и генератор заработал, возбуждение происходит уже от самого генератора. ЭДС генератора становится выше, поэтому генератор становится источником, а аккумулятор начинает заряжаться.

Применяются два принципа подачи тока возбуждения от генератора на собственную обмотку возбуждения.

  1. Схема возбуждения от выхода генератора

Ток возбуждения идет от выхода генератора, через замок зажигания, выход генератора всегда связан с аккумулятором.

  1. Схема возбуждения через дополнительные диоды

В этом случае, ток возбуждения выпрямляется отдельным выпрямителем, цепь возбуждения отключена от выхода генератора и, значит, от аккумулятора. Ток возбуждения идет только внутри генератора и не использует внешнюю цепь. Аккумулятор используется только для первоначального возбуждения.

 

Схемы генераторов с возбуждением от выхода генератора

Эти простые схемы применялись для автомобилей 60-х 70-х годов выпуска. «Жигули», «Москвичи», ЗиЛ, Газ, Уаз. Много таких автомобилей до сих пор остается в эксплуатации.

Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.

На выходе регулятора напряжения стоит мощный транзистор, это может быть биполярный, и может быть полевой транзистор. Он работает в ключевом режиме, то есть, открыт - закрыт. Открыт транзистор – ток возбуждения проходит, закрыт транзистор - ток не проходит.

Есть три варианта включения транзистора – с общим Эмиттером, общей Базой и с общим Коллектором. Поэтому ключи на транзисторах бывают с ОЭ, ОБ, ОК. Для каждого варианта транзисторного ключа есть свои особенности применения.

В регуляторах напряжения используются транзисторные ключи с ОЭ и ОК. Если заземлен транзистор, то это ключ с ОЭ, если заземлена щетка. то это ключ с ОК. Регуляторы выполненные по схеме с ОЭ называют A-Circuit, регуляторы выполненные по схеме с ОЭ называют В - Circuit.

В автомобильных схемах генераторов применяются обе схемы – и A-Circuit, и В-Circuit

 

Схемы с внешним регулятором напряжения

Такая схема применялась на автомобилях Жигули ранних выпусков 2101 - 2106

 

Такая схема применялась для автомобилей Волга, Газ, Зил, УАЗ. Генераторы Серий 16 3701 и 19.3771.

Эта схема применяется для автомобилей Крайслер и Додж. По этой схеме сделан генератор на двигатели Крайслер для автомобилей Волга и Газель.

 

Генераторы со встроенными регуляторами напряжения

Регулятор напряжения можно установить снаружи и внутри генератора. Такая конструкция получается более компактной и надежной, она позволяет отказаться то проводов для соединения генератора и регулятора напряжения.

При установке регулятора снаружи корпуса генератора, появляется возможность замены регулятора не снимая генератор.

 

 

Генераторы такой конструкции, со встроенным регулятором, установленном на корпусе, широко применяется для автомобилей выпускавшихся  в недавнее время и находящиеся в эксплуатации - Валдай, КАМАЗ, МАЗ, УАЗ

 

Все приведенные схемы используют принцип питания обмотки возбуждения от выхода генератора. Генератор часть своего выпрямленного тока отдает на собственное возбуждение. 

Путь тока возбуждения: Плюс генератора, плюс аккумулятора, контакты замка зажигания, вход регулятора напряжения, обмотка (или наоборот), обмотка возбуждения, минус - масса.

 

Недостаток  Схемы с питанием обмотки возбуждения от выхода генератора.

Почему отказались от такой схемы и стали применять схему с дополнительными диодами, (тоже устаревшую)

В настоящее время снова используется схема без доп. диодов, в таких генераторах применяют регуляторы напряжения с микроконтроллерами. 

В генераторах с питанием обмотки возбуждения от выхода генератора, весь ток возбуждения проходит через контакты замка зажигания. Этот ток для получения достаточной мощности генератора должен быть быть 3 - 5 Ампер. Такой ток  требует качественного зажима всех контактов и достаточно толстого провода,  при размыкании контактов дает сильную искру и изнашивает контакты, снижая надежность системы зарядки и системы зажигания, которая питается через эти же контакты.

Аккумулятор в любой схеме всегда подключен к плюсовому выводу генератора, это необходимо для того, чтобы генератор и аккумулятор могли работать как источники заменяя друг друга - двигатель не работает - источник аккумулятор, двигатель заработал - источник генератор. Когда генератор не работает, аккумулятор, прямо подключенный к нему, не может разрядиться через генератор, потому, что диодный мост не пропускает ток в обратном направлении, но, через обмотку возбуждения, аккумулятор может разрядиться.

Если двигатель не завелся,  генератор не заработал, а зажигание осталось включено, то через обмотку ротора идет ток  от аккумулятора (а это 3 – 5 Ампер). По разным причинам такие ситуации иногда возникают и тогда, через несколько часов, двигатель не заведется. То есть, в схемах, в которых обмотка возбуждения запитана от выхода генератора и, значит, подключена непосредственно к аккумулятору, может неожиданно разрядиться аккумулятор.

 

Схема с дополнительными диодами несколько сложнее, но она обеспечивает питание обмотки возбуждения, прямо внутри генератора минуя замок зажигания, обмотка возбуждения не имеет прямой связи с аккумулятором, поэтому  такая схема исключает случайную разрядку аккумулятора при невыключенном зажигании.

 

В схемах с дополнительными диодами, первоначальное возбуждение также происходит от аккумулятора, но очень маленьким током чрез ограничительные сопротивления или через специальную лампочку. После запуска генератора ток возбуждения идет уже по отдельной цепи, не связанной с аккумулятором, через дополнительный выпрямитель. (доп диоды)

Схемы автомобильных генераторов с дополнительными диодами.

Основное электрооборудование и принципиальные схемы ДЭС



Синхронные генераторы

Генераторы с машинной системой возбуждения в качестве возбудителя имеют генератор постоянного тока, связанный с валом генератора текстропной (ременной) передачей или фланцем. Обычно возбудитель имеет мощность, равную 1,5-2,5% номинальной мощности генератора ДЭС.

Рис.1. Принципиальная схема генератора с машинной системой возбуждения.

На рис.1 изображена принципиальная электрическая схема генератора с машинной системой возбуждения. Схема состоит из генератора 1, возбудителя 2 и реостатов регулирования напряжения 3.

В станине статора в специальных пазах уложена обмотка статора 4, концы которой 20 выведены в коробку выводов генератора. Ротор генератора состоит из железного сердечника с намотанной на нем обмоткой возбуждения 5. Концы обмотки 5 выведены на контактные кольца 7 и через щеточную систему и провода 6 - в коробку выводов возбудителя 8.

Полюсы возбудителя представляют собой сердечники с намотанной на них обмоткой возбуждения 11 и имеют слабое остаточное намагничивание. Поэтому в межполюсном пространстве всегда имеется магнитное поле. Концы 10 и 12 обмотки 11 заведены в коробку выводов 8. При помощи токосъемных щеток с коллектора 21 снимается постоянное напряжение (выводы 9 и 13 возбудителя). При пуске двигатель (дизель) вращает вал генератора 1 с ротором и соединенный с ними якорь возбудителя. При этом обмотки якоря возбудителя пересекают магнитное поле, создаваемое полюсами возбудителя в межполюсном пространстве, и в них индуктируется переменная электродвижущая сила (ЭДС).

С помощью коллектора ЭДС преобразуется в напряжение постоянного тока, и по обмотке возбуждения возбудителя 11 пройдет ток, что вызовет в свою очередь усиление магнитного поля в межполюсном пространстве, и, следовательно, в обмотке якоря возбудителя начнет индуктироваться большая ЭДС. Этот процесс будет продолжаться до получения на зажимах возбудителя напряжения, обусловленного сопротивлением 14 в цепи обмотки возбуждения возбудителя. Обмотка возбуждения генератора 5, соединенная с обмоткой якоря возбудителя, является ее нагрузкой. При протекании тока по обмотке возбуждения генератора 5 создается магнитное поле, которое замыкается через сердечник (станину) статора. Ротор генератора вращается, магнитное поле пересекает неподвижную статорную обмотку 4 и индуктирует в ней переменную ЭДС, которая снимается с концов 20 в коробке выводов генератора.

С помощью реостатов 14, 15, 17 (в неавтоматическом режиме, контакт 18 замкнут) или, изменяя сопротивление угольного столба 19 (в автоматическом режиме, контакт 16 замкнут), можно регулировать напряжение на якоре возбудителя и тем самым изменять напряжение на выводах статорной обмотки генератора.

Генераторы имеют встроенные (ДГС) или выносные возбудители (ПС-93-4 и СГД). Машинный возбудитель усложняет конструкцию генератора, увеличивает его размеры и массу, кроме того, коллектор и щетки имеют повышенную повреждаемость, поэтому генераторы с машинным возбуждением заменяют генераторами со статической системой возбуждения.

Техническая характеристика генераторов с машинной системой возбуждения приведена в табл.1.

Таблица 1

Технические характеристики генераторов ДЭС с машинной системой возбуждения

Серия ДГС состоит из четырех типоразмеров: 81-4; 82-4; 91-4, 92-4. Первая цифра обозначает габарит (ВОСЬмой или девятый), вторая - длину (первая или вторая), третья — количество полюсов (четыре). Генераторы имеют две формы исполнения: М101 - на лапах с двумя одинаковыми подшипниковыми щитами, соединение с двигателем при помощи эластичной муфты или ременной передачи и М202 - на лапах с двумя подшипниковыми щитами, один из которых имеет фланец, соединение с двигателем только эластичной муфтой.

Все типоразмеры ДГС имеют одинаковое устройство, но отличаются размерами статора, ротора, диаметром корпуса, сечением и количеством витков провода, размерами пазов. Возбудители применяются типов ВС-13/7 и ВС-13/11, они отличаются длиной активных частей.

Статор 2 генератора ДГС-82-4/М201 (рис.2) состоит из чугунной литой станины, сердечника, набранного из листов электротехнической стали, и обмотки. В полузакрытые овальной формы пазы статора уложена катушечная двухслойная обмотка из круглого обмоточного провода. Обмотка удерживается в пазах клиньями.

Ротор генератора 3 состоит из цельнокованого вала, к средней часта которого привернуты полюсы, набранные из листовой стали. На изолированные полюсы намотаны катушки медного изолированного провода прямоугольного сечения. Концы обмотки ротора присоединены к двум контактным кольцам 10, расположенным внутри подшипникового щита. Контактные кольца изготовлены из меди и надеты на изолированную миканитом чугунную втулку. Узел контактных колец посажен на вал ротора.

Рис.2. Синхронный генератор ДГС-82-4/М201.

Подшипниковые щиты 1 и 4 чугунные. Для прохождения охлаждающего воздуха в щитах имеются окна, защищенные с боков и снизу предохранительными решетками Подшипники генератора закрыты крышками. Наружные крышки чугунные, внутренние стальные. Наружное кольцо роликоподшипника заключено в ступицу щита.

Для добавления смазки роликоподшипника у генератора исполнения М201 имеется маслоход, ввинченный в ступицу щита, у генератора исполнения М101 - два болта, ввинченных в наружную крышку щита. Смазку добавляют в подшипники через маслоход, ввинченный в капсулу подшипника, или отодвинув наружную крышку при снятом возбудителе.

Траверса контактных колец 10 укреплена на внутренней стороне капсулы и имеет на каждом пальце два латунных щеткодержателя с щетками ЭГ-4Э.

Для охлаждения отдельных узлов генератора предусмотрена аксиальная система вентиляции Центробежный вентилятор 11 укреплен на валу со стороны привода. Поток охлаждающего воздуха засасывается вентилятором по двум параллельным путям: окна переднего щита каналы между пакетом железа статора и станиной - пространство между лобовой частью обмотки статора и диском вентилятора, возбудитель - окна капсулы шарикоподшипника - междуполюсное пространство ротора.

Якорь 13 возбудителя ВС-13/7 5 посажен на выступающий конец вала генератора и закреплен болтом, коллектор 15 - на втулку якоря.

Волновая обмотка якоря 14 из круглого провода пропитывается изоляционным лаком лаком. Секции удерживаются в пазах при помощи бандажей из стальной проволоки или стеклобандажной ленты. Станина возбудителя 5 чугунная, а сердечники полюсов 12 собраны из листовой стали и изолированы.

Обмотки полюсов 17 из круглого провода намотаны на сердечник и пропитаны изоляционным лаком. Полюсы прикреплены к станине болтами.

Траверса коллектора 6 представляет собой металлическое кольцо, имеющее четыре пальца из пластмассы, на котором укреплено по два латунных щеткодержателя 16.

Генераторы имеют две коробки выводов: для выводов обмотки статора 8 и для выводов обмотки возбудителя и ротора 9. Клеммные коробки состоят из доски зажимов, чугунного корпуса и крышки.

В передвижных станциях применяется генератор ПС-93-4 мощностью 75 кВт (рис.3). Он имеет 9-й габарит, 3-ю габаритную длину и четыре полюса. Возбудитель размещается сверху, на корпусе генератора, что делает более удобной компоновку электростанции. Генератор соединяется с возбудителем типа ВС-13/9 с помощи клиновидных ремней.

Рис.3. Генератор ПС-93-4 с возбудителем ВС-13/9.
1 - задний подшипниковый щит; 2 - коробка выводов генератора;
3 - коробка выводов возбудителя; 4 - корпус возбудителя; 5 - корпус генератора;
6 - боковые плоскости с отверстиями для крепления генератора.

Стальная станина статора имеет боковые плоскости 6 с отверстиями для крепления генератора. Сердечник набран из листов электротехнической стали и покрыт специальным лаком. Крепление сердечника к ребрам станины аналогично креплению ДГС, а пазы имеют прямоугольную открытую форму. В пазах укладывается обмотка статора из неизолированного провода прямоугольного сечения, изолированная слоями миканита и пропитанная компаундом. Пазы закрываются специальными гетинаксовыми клиньями. Выводы обмотки статора заведены в коробку выводов генератора.

Ротор генератора выполнен из стального вала, на котором укреплены полюсы, набранные из листовой стали. На изолированные полюсы намотаны катушки из медного провода, выводы которых присоединены к контактным кольцам.

Генератор охлаждается с помощью воздуха, который аксиальным вентилятором прогоняется между полюсам ротора и лобовыми частями статорной обмотки и выбрасывается наружу через окна в заднем подшипниковом щите.

Серия СГД имеет три типоразмера: 11, 12, 13 и обозначается СГД-13-42-12. Первые две цифры обозначают габарит генератора (11, 12, 13) , вторая группа цифр - длину активной части статора в сантиметрах (24, 36, 46 и т. д.), третья группа - число полюсов генератора (4, 10, 12). Генераторы большой мощности имеют обозначение, например, СГД-625-1500, где первая группа цифр обозначает мощность генератора в киловольт-амперах, а вторая - число оборотов генератора минуту.

Генераторы имеют одинаковое устройство и различаются только размерами, сечением проводов и количеством витков. С генераторами этой серии применяют возбудители серий ВС, П-70 (71, 72) и ВСМ-21/12. Возбудитель, установленный на корпусе генератора, соединяется с генератором текстропной передачей.

Рис.4. Синхронный генератор СГД-400-1000.

Статор генератора СГД-400-1000 (рис.4) имеет сварную стальную станину 8 с окнами для входа и выхода воздуха, рамы для подъема машины и два бруска для установки возбудителя. Сердечник статора 9 набран в пакеты из лакированных с обеих сторон колец, штампованных из листовой электротехнической стали толщиной 0,5 мм и имеющих прямоугольные пазы.

В пазы заложены двухслойная обмотка 6 из прямоугольной обмоточной меди. Витковая и корпусная изоляции выполнены из стекломикаленты. Закрывают пазы стеклотекстолитовые клинья.

Ротор генератора выполнен с явно выраженными полюсами, остов ротора 3 набран из штампованных листов стали и насажен на вал генератора 2. Обмотки полюсов 4, расположенные на изолированных сердечниках 5, изготовлены из неизолированной шинной меди и имеют изоляцию из асбестовой бумаги, покрываемой сверху лаком. Успокоительная обмотка состоит из медных стержней и расположена в башмаках полюсов. Выводы обмотки ротора с помощью кабеля присоединены к контактным кольцам 28.

Постоянный ток подается в обмотку ротора с помощью контактной траверсы с щетками 27.

Шкив генератора 29 с помощью клиноременной передачи 23 и шкива возбудителя 24 вращает вал возбудителя 13.

Центробежный вентилятор 7, закрепленный на втулке вала ротора, обеспечивает аксиально-радиальную вентиляцию генератора. Подшипниковые щиты 1 и кожух 25 закрывают корпус генератора.

Станина возбудителя типа П-70 15 выполнена сварной из листовой стали, на ней болтами укреплена магнитная система, состоящая из четырех главных и четырех добавочных полюсов. Сердечники главных полюсов 17 собраны из штампованных листов электротехнической стали и стянуты стальными заклепками в пакеты, сердечники добавочных полюсов 16 стальные, массивные. На сердечнике главных полюсов установлены катушки последовательной обмотки 19 и катушки шунтовой обмотки 18.

Катушка последовательной обмотки состоит из одного витка неизолированной ленточной меди, а катушка шунтовой обмотки изготовлена из прямоугольной меди. Обе катушки обмотаны снаружи стекломикалентой и пропитаны лаком. Катушки добавочных полюсов 14 также изготовлены из неизолированной ленточной меди, изолированы стекломиканитом и пропитаны лаком. На вал якоря возбудителя 13 насажен пакет якоря 26, состоящий из штампованных листов электротехнической стали и имеющий открытые пазы прямоугольной формы для укладки обмотки якоря. Обмотка якоря состоит из катушек, выполненных из прямоугольной меди, изолированных стекломикалентой, уложенных в открытые пазы железа якоря и закрепленных бандажами из стальной луженой проволоки.

Коллектор 12 собран из отдельных медных пластин, изолированных друг от друга прокладками из миканита, а выводные концы обмоток секции якоря впаяны в шлицы коллекторных пластин. Коллектор в собранном виде посажен на вал возбудителя. Над коллектором укреплены щетки, установленные в обоймы траверсы возбудителя 11. Подшипниковые щиты 10, 20 и крышка 22 крепятся к станине и закрывают возбудитель.

Вентиляция возбудителя аксиальная. Напор воздуха для вентиляции создается центробежным вентилятором возбудителя 21.

Генераторы со статической системой возбуждения.

В этих генераторах статическая система, состоящая из неподвижных элементов (силового трансформатора, выпрямителей и т.д.), преобразует переменный ток на выводах генератора в постоянный для питания обмотки возбуждения и регулирования напряжения генератора.

Рис.5. Принципиальная схема генератора со статической системой возбуждения.

Схема генератора со статической системой возбуждения (рис.5) состоит из обмоток статора 1, обмоток ротора 2 и статической системы возбуждения (блока возбуждения и блока управления). Блок возбуждения состоит из силового трансформатора 3, селеновых выпрямителей 4, блока конденсаторов 5 и силовых выпрямителей питания 6. Элементы блока возбуждения смонтированы на литом основании, которое крепится к станине генератора и закрывается сверху колпаком.

Блок управления 7 состоит из переключателей работы П5, резистора уставки напряжения РУ и отдельно стоящих резисторов для регулирования статизма 8. С помощью блоков 7 и 8, установленных на отдельном щите, управляют выходными параметрами генератора. Принцип работы генератора аналогичен работе генератора с машинной системой возбуждения, за исключением работы статической системы.

Для поддержания напряжения на выводах генератора неизменным при любой нагрузке необходимо, чтобы ток возбуждения генератора изменялся в соответствии со значением и характером его нагрузки. В статической системе возбуждения (рис.5) использован принцип фазового компаундирования. В обмотке W2 компаундирующего трансформатора 3 и селеновых выпрямителях происходит сложение и выпрямление двух составляющих тока возбуждения: от обмотки W1 пропорциональной напряжению генератора, и от обмотки Wc, пропорциональной току генератора, сдвинутых относительно друг друга под углом, зависящим от характера нагрузки (cosφ).

Система статического возбуждения автоматически обеспечивает изменение тока возбуждения при изменении значения и характера нагрузки генератора. Так как выпрямители 4 имеют нелинейное сопротивление, что не обеспечивает начального самовозбуждения, в системе предусмотрен резонансный контур, образованный емкостью Хс конденсаторов С4-С6, подключенных к обмотке Wд, и индуктивностью рассеяния XL первичной обмотки Wi. Специальным подбором параметров при частоте 50 Гц обеспечивают XL=Xc тогда ток возбуждения уже не будет зависеть от сопротивления выпрямителей 4 и обмотки возбуждения в процессе начального самовозбуждения.

Параметры трансформатора 3 обеспечивают стабильность напряжения генератора при cosφ от 0,4 до 1,0 с точностью ±5%.

Для более точной стабилизации напряжения (±3%) служит специальная обмотка управления Wy, в которую подается постоянный ток. При протекании постоянного тока по обмотке Wy образуется магнитный поток, который замыкается по сердечнику трансформатора 3. С изменением протекающего по обмотке Wy постоянного тока изменяется постоянный магнитный поток сердечника 3 и, следовательно, ток возбуждения генератора в обмотке W2. Так как обмотка Wy питается постоянным током от двух последовательно встречных источников: выпрямителя 4 (ток Iв пропорционален напряжению возбуждения генератора) и выпрямителя питания 6 через резистор РУ и сопротивление статизма СС1 (ток Iвп не зависит от нагрузки и неизменен для любого режима), то Iу=Iвп-(-Iв) и, следовательно, напряжение возбуждения генератора будет увеличиваться с ростом нагрузки.

При нагрузке с меньшим cosφ напряжение возбуждения возрастает больше, чем при нагрузках с большим cosφ, и, следовательно, ток подмагничивания трансформатора 3 (Iвп>Iв) при реактивных нагрузках генератора будет уменьшаться больше, чем при активных. Благодаря этому осуществляется коррекция параметров системы фазового компаундирования и достигается большая точность регулирования напряжения генератора по нагрузке, чем при неуправляемом варианте фазового компаундирования.

Уставку напряжения генератора регулируют резистором РУ, включенным последовательно в цепь обмотки Wy, а составляющую тока управления Iв можно корректировать резистором СС1.

Статическая система возбуждения обладает следующими достоинствами: отсутствием движущихся частей, высокой механической прочностью конструкций, надежностью и высокой точностью регулирования напряжения, небольшими эксплуатационными затратами.

Для начального возбуждения генераторы могут иметь резонансную систему с конденсаторами (генераторы типов ДГФ, ЕСС, ГСФ-100-БК, ОС, ГСС-104-4Б), или аккумуляторную батарею (ЕСС-5, ГСФ-100М, ГСФ-200), или генератор начального возбуждения (СГДС-11-46-4), или трансформатор напряжения (ЕСС-5). Принцип работы статической системы возбуждения одинаков для всех типов генераторов, за исключением схем начального возбуждения.

Техническая характеристика генераторов со статической системой возбуждения приведена в табл.2.

Таблица 2

Технические характеристики генератора ДЭС
со статической системой возбуждения

Серия ДГФ состоит из двух типоразмеров 82-4Б и 83-4Б (8-й габарит, 2-я или 3-я условная длина, четырехполюсный). Исполнение генераторов фланцевое, защищенное, с самовентиляцией, на двух щитовых подшипниках.

Рис.6. Синхронный генератор ДГФ-82-4Б.

Генератор ДГФ-82-4Б (рис.6) состоит из статора, ротора, системы возбуждения и двух подшипниковых щитов.

Статор состоит из чугунной станины на двух лапах, сердечника 5 и обмотки 2, ротор генератора - из вала 1, сердечника 9 с обмоткой возбуждения 8, контактных колец 7. Сердечник ротора собирается из листов электротехнической стали, а обмотка ротора намотана прямоугольными проводами. Катушки полюсов соединяются между собой последовательно. Ротор уравновешивается креплением балансировочных грузов к балансировочному кольцу с одной стороны и к воронке вентилятора - с другой.

Задний щит фланцевый, литой, чугунный, имеет два окна, закрытых съемными заглушками (через них открывается доступ к крышке роликоподшипника для его осмотра и пополнения смазки). Система статического возбуждения (3, 4, 6) установлена в верхней части генератора отдельным блоком и закрыта крышкой.

Серия ЕСС состоит из двух модификаций. У генераторов модификации ЕСС точность регулирования напряжения ±2%, что обеспечивает надежную параллельную работу. Генераторы модификации ЕСС-5 имеют упрощенную схему автоматического регулирования и точность регулирования напряжения ±5%, недостаточную для надежной параллельной работы.

У генераторов ЕСС в исполнении MI01 оба подшипниковых щита одинаковы, а в исполнении М201 один из подшипниковых щитов имеет фланец и допускает соединение с двигателем только эластичной муфтой. Генераторы серии ЕСС-5 выпускают только исполнения М101. Серии ЕСС и ЕСС-5 имеют несколько типоразмеров. Например, обозначение ЕСС-82-4/М101 расшифровывается: генератор серии ЕСС, 8-го габарита, 2-й длины, четырехполюсный, на лапах с двумя подшипниковыми щитами.

Генератор ЕСС устроен аналогично генератору ДГФ, а генераторы серии ЕСС-5 имеют кроме основной обмотки статора еще и дополнительную трехфазную обмотку, которая вкладывается в полузакрытые пазы статора и служит для питания схемы возбуждения.

Рис.7. Принципиальная схема генератора ЕСС-5 с начальным возбуждением.

При пуске генератора ЕСС-5 (рис.7) за счет остаточного магнетизма в полюсах ротора 2 в основной 1 и дополнительной 4 обмотках, выведенных на доску зажимов 5, индуктируется ЭДС. Значение ЭДС дополнительной обмотки оказывается недостаточным для открытия выпрямителей 3 и самовозбуждения генератора. Поэтому для обеспечения начального возбуждения применяют два способа.

От аккумуляторной батареи 6-24 В (рис.7,б) подается кратковременный импульс постоянного тока на обмотку ротора. Импульс подается кнопкой 12 через токоограничивающий резистор 11 от источника постоянного тока 13.

От трансформатора начального возбуждения 7 (рис.7,а) через выключатель 8 подается остаточная ЭДС основной обмотки, которая, складываясь с ЭДС дополнительной обмотки, открывает выпрямители 3 и возбуждает генератор. Регулирование напряжения осуществляется с помощью стабилизирующего устройства, состоящего из компаундирующих трансформаторов 10, резисторов 6 и реостатов уставки 9.

Когда ток нагрузки генератора проходит по первичным обмоткам трансформатора 10, то в его вторичной обмотке индуктируется ЭДС, которая вызывает протекание тока по вторичным обмоткам трансформатора 10 и резисторам 6. Резистор 6 включен последовательно в цепь дополнительной обмотки возбуждения 4. Электродвижущая сила, создаваемая на резисторе 6 током нагрузки, и ЭДС дополнительной обмотки геометрически суммируются и вызывают в обмотке возбуждения увеличение тока.

Следовательно, этот ток будет пропорционален току нагрузки генератора и позволит поддерживать напряжение на выводах генератора постоянным. Реостат уставки 9 позволяет изменять напряжение генератора в пределах ±5% номинального значения.

Генераторы серии ГСФ имеют мощность 100 и 200 кВт, исполнение фланцевое, защищенное, на двух щитовых подшипниках, соединение с двигателем с помощью муфты и фланцевого подшипникового щита.

Устройство и принцип работы генератора ГСФ и генератора ДГФ аналогичны. Начальное возбуждение у генераторов ГСФ-200 и ГСФ-100М осуществляется подачей импульса постоянного тока от аккумуляторной батареи; начальное возбуждение генератора ГСФ-100 БК осуществляется с помощью резонансной системы с конденсаторами.

Генераторы серии ОС имеют мощность 8, 16, 30 и 60 кВт и две модификации, которые обеспечивают точность регулирования напряжения ±2 или ±5%.

Генераторы серии ОС выпускаются в исполнении M201 имеют несколько типоразмеров. Условное обозначение этих генераторов аналогично обозначению генератора ЕСС. Конструкция генератора бесстанинная. Пазы статора открытые, обмотка выполнена из готовых секций с изоляцией класса В из кремнийорганической резины. Ротор гребенчатый с демпферами, катушки ротора съемные. Статическая система возбуждения на полупроводниках для автоматического регулирования напряжения размещена непосредственно на генераторе.

В ДЭС используется только четырехполюсный генератор ГСС-104-4Б 10-го габарита и 4-й габаритной длины.

Исполнение генератора брызгозащищенное, с самовентиляцией, на двух щитовых подшипниках. Генератор сопрягается с приводным двигателем эластичной муфтой. Устройство и принцип действия этого генератора аналогичны устройству и принципу действия генератора.

Серия СГДС имеет устройство, аналогичное устройству генератора СГД, но обмотка возбуждения питается от статической системы самовозбуждения, состоящей из трансформаторов фазового компаундирование блока силовых выпрямителей, отдельного выпрямителя и генератора начального возбуждения Работа системы возбуждения этого генератора аналогична работе статической системы возбуждения других генераторов.

 Генератор импульсного напряжения

/ генератор Маркса - принципиальная схема, принцип работы и применение

В электронике скачки напряжения - очень важная вещь, и это кошмар для каждого разработчика схем. Эти скачки обычно называют импульсами, которые можно определить как высокое напряжение , обычно в несколько кВ, которое существует в течение короткого промежутка времени . Характеристики импульсного напряжения можно заметить по времени спада высокого или низкого напряжения, за которым следует очень высокое время нарастания напряжения. Молния является примером естественной причины, вызывающей импульсное напряжение.Поскольку это импульсное напряжение может серьезно повредить электрическое оборудование, важно протестировать наши устройства на работу против импульсного напряжения. Здесь мы используем генератор импульсного напряжения, который генерирует скачки высокого напряжения или тока в контролируемой испытательной установке. В этой статье мы узнаем о работе и применении генератора импульсного напряжения . Итак, приступим.

Как было сказано ранее, импульсный генератор производит эти кратковременные выбросы очень высокого напряжения или очень большого тока.Таким образом, существует два типа генераторов импульсов: генератор импульсного напряжения и генератор импульсного тока . Однако в этой статье мы обсудим генераторы импульсного напряжения.

Форма волны импульсного напряжения

Чтобы лучше понять импульсное напряжение, давайте взглянем на форму волны импульсного напряжения. На изображении ниже показан одиночный пик формы импульса высокого напряжения

Как видите, волна достигает своего 100-процентного пика за 2 мкс.Это очень быстро, но высокое напряжение теряет свою силу почти на 40 мкс. Следовательно, импульс имеет очень короткое или быстрое время нарастания , тогда как очень медленное или длинное время спада . Длительность импульса называется хвостовой частью волны , которая определяется разницей между 3-й временной меткой ts3 и ts0.

Генератор одноступенчатых импульсов

Чтобы понять работу генератора импульсов , давайте взглянем на принципиальную схему одноступенчатого генератора импульсов , которая показана ниже

.

Схема выше состоит из двух конденсаторов и двух сопротивлений.Искровой зазор (G) - это электрически изолированный зазор между двумя электродами, в котором возникают электрические искры. Источник питания высокого напряжения также показан на изображении выше. Любая схема генератора импульсов требует по крайней мере одного большого конденсатора, который заряжается до соответствующего уровня напряжения, а затем разряжается нагрузкой. В приведенной выше схеме CS - это зарядный конденсатор . Обычно это высоковольтный конденсатор с номиналом более 2 кВ (зависит от желаемого выходного напряжения).Конденсатор CB представляет собой нагрузочную емкость , которая разряжает зарядный конденсатор. Резистор и RD и RE управляют формой волны.

Если внимательно присмотреться к изображению выше, можно обнаружить, что искровой разрядник не имеет электрического соединения. Тогда как емкость нагрузки получает высокое напряжение? Вот уловка, и по этой схеме вышеупомянутая схема действует как генератор импульсов. Конденсатор заряжается до тех пор, пока напряжение заряда конденсатора не станет достаточным для прохождения искрового промежутка.Электрический импульс, генерируемый через искровой промежуток, и высокое напряжение передается от вывода левого электрода к выводу правого электрода искрового промежутка, образуя таким образом подключенную цепь.

Время отклика схемы можно контролировать, изменяя расстояние между двумя электродами или изменяя напряжение полностью заряженных конденсаторов. Расчет выходного импульсного напряжения можно выполнить путем расчета формы выходного напряжения с помощью

 v (t) = [V  0  / C  b  R  d  (α - β)] (e  - α   t  - e  - β   t ) 

Где,

 α = 1 / R  г  C  б  β = 1 / R  e  C  z  

Недостатки одноступенчатого импульсного генератора

Основным недостатком схемы одноступенчатого генератора импульсов является физический размер .В зависимости от номинального высокого напряжения компоненты становятся больше в размерах. Кроме того, для генерации высокого импульсного напряжения требуется высокое напряжение постоянного тока . Следовательно, для схемы одноступенчатого импульсного генератора напряжения довольно сложно добиться оптимального КПД даже после использования больших источников питания постоянного тока.

Сферы, которые используются для соединения зазора, также должны быть очень большого размера. Корону, которая разряжается в результате генерации импульсного напряжения, очень трудно подавить и изменить форму.Срок службы электрода сокращается и требует замены после нескольких циклов повторения.

Генератор Маркса

Эрвин Отто Маркс предоставил схему многоступенчатого импульсного генератора в 1924 году. Эта схема специально используется для генерации высокого импульсного напряжения от источника питания низкого напряжения. Схема мультиплексированного импульсного генератора или обычно называемая схема Маркса может быть замечена на изображении ниже.

В приведенной выше схеме используются 4 конденсатора (может быть n конденсаторов), которые заряжаются источником высокого напряжения в режиме параллельной зарядки с помощью зарядных резисторов R1 - R8.

Во время разрядки искровой разрядник, который был разомкнутой цепью во время зарядки, действует как переключатель и соединяет последовательный путь через батарею конденсаторов, а генерирует очень высокое импульсное напряжение на нагрузке. Состояние разряда показано на изображении выше фиолетовой линией. Напряжение первого конденсатора должно быть превышено в достаточной степени, чтобы пробить разрядник и активировать схему генератора Маркса .

Когда это происходит, первый разрядник соединяет два конденсатора (C1 и C2).Следовательно, напряжение на первом конденсаторе удваивается на два напряжения C1 и C2. Впоследствии третий разрядник автоматически выходит из строя, потому что напряжение на третьем разряднике достаточно велико, и он начинает добавлять напряжение третьего конденсатора C3 в батарею, и это продолжается до последнего конденсатора. Наконец, когда достигается последний и последний искровой промежуток, напряжение достаточно велико, чтобы разорвать последний искровой промежуток в нагрузке, которая имеет больший промежуток между свечами зажигания.

Конечное выходное напряжение на конечном промежутке будет nVC (где n - количество конденсаторов, а VC - напряжение заряда конденсатора), но это верно в идеальных схемах.В реальных сценариях выходное напряжение схемы генератора импульсов Маркса будет намного ниже фактического желаемого значения.

Однако у этой последней точки искры должны быть большие промежутки, потому что без этого конденсаторы не перейдут в полностью заряженное состояние. Иногда выделения делают намеренно. Есть несколько способов разрядить батарею конденсаторов в генераторе Маркса.

Методы разряда конденсаторов в генераторе Маркса:

Импульсный дополнительный пусковой электрод : Импульсный дополнительный пусковой электрод - это эффективный способ преднамеренного запуска генератора Маркса в состоянии полной зарядки или в особом случае.Дополнительный пусковой электрод называется Тригатроном. Существуют тригатроны разных форм и размеров с различными характеристиками.

Ионизация воздуха в зазоре : Ионизированный воздух - эффективный путь, по которому проходит искровой промежуток. Ионизация осуществляется с помощью импульсного лазера.

Снижение давления воздуха внутри зазора : Снижение давления воздуха также эффективно, если искровой промежуток спроектирован внутри камеры.

Недостатки генератора Маркса

Длительное время зарядки: В генераторе Маркса для зарядки конденсатора используются резисторы. Таким образом, время зарядки увеличивается. Конденсатор, который находится ближе к источнику питания, заряжается быстрее, чем другие. Это связано с увеличенным расстоянием из-за повышенного сопротивления между конденсатором и источником питания. Это главный недостаток генератора Маркса.

Потеря эффективности: По той же причине, что описана ранее, поскольку ток протекает через резисторы, эффективность схемы генератора Маркса низкая.

Короткий срок службы разрядника: Повторяющийся цикл разряда через разрядник сокращает срок службы электродов разрядника, который необходимо время от времени заменять.

Время повторения цикла зарядки и разрядки: Из-за большого времени зарядки время повторения генератора импульсов очень низкое. Это еще один серьезный недостаток схемы генератора Маркса.

Применение схемы генератора импульсов

Основное применение схемы импульсного генератора - испытание высоковольтных устройств .Грозозащитные разрядники, предохранители, TVS-диоды, различные типы устройств защиты от перенапряжения и т. Д. Испытываются с помощью генератора импульсного напряжения. Не только в области испытаний, но и схема генератора импульсов также является важным инструментом, который используется в ядерно-физических экспериментах , а также в производстве лазеров, термоядерных и плазменных устройств.

Генератор Маркса используется для моделирования эффектов молнии на линиях электропередач и в авиационной промышленности.Он также используется в аппаратах X-Ray и Z. Другие применения, такие как испытание изоляции электронных устройств также испытываются с использованием схем импульсного генератора.

.Принципиальная схема генератора треугольных волн

с использованием операционного усилителя

Функциональный генератор или генератор сигналов является неотъемлемой частью электроники и используется для создания различных типов сигналов, таких как синусоидальная волна, прямоугольная волна, пилообразная волна и т. Д. Мы уже разработали синусоидальную волну Схема генератора, схема генератора прямоугольной волны и схема генератора пилообразной волны. Теперь в этом руководстве мы покажем вам, , как спроектировать схему генератора треугольных сигналов , используя операционный усилитель и несколько основных компонентов.

Треугольная волна состоит из постоянного восходящего склона, за которым следует постоянный нисходящий уклон, и волна напоминает плохо нарисованный горный хребет.

Генераторы сигналов Triangle

используются в самых разнообразных вещах, таких как анализаторы кривой транзистора, контроллеры PWM, усилители класса D и генераторы тона.

Необходимые детали

  • 1x LM358 или аналогичный операционный усилитель
  • 3 резистора 1K
  • Резистор 1x 10К
  • Резистор 1x 100К
  • Керамический конденсатор 1x 1 нФ
  • 1x 1 мкФ электролитический конденсатор

Операционный усилитель LM358

Операционные усилители

также известны как компараторы напряжения.Когда напряжение на неинвертирующем входе (+) выше, чем напряжение на инвертирующем входе (-), тогда на выходе компаратора высокий уровень. И если напряжение инвертирующего входа (-) выше, чем неинвертирующего конца (+), то выходное напряжение НИЗКОЕ. Узнайте больше о работе операционного усилителя здесь.

LM358 - это сдвоенный малошумящий операционный усилитель , который имеет внутри два независимых компаратора напряжения. Это операционный усилитель общего назначения, который может быть настроен во многих режимах, таких как компаратор, сумматор, интегратор, усилитель, дифференциатор, инвертирующий режим, неинвертирующий режим и т. Д.Чтобы узнать больше о LM358, просмотрите различные схемы LM358, такие как усилитель и компаратор

.

Принципиальная схема

Схема генератора треугольных сигналов ОУ приведена ниже:

Работа генератора треугольных волн

Эта схема представляет собой простой пример генератора релаксации, использующего один операционный усилитель в качестве компаратора.

Для начала предположим, что конденсатор разряжен. Это ставит на инвертирующий вход напряжение ниже, чем на неинвертирующем входе, которое составляет половину напряжения питания резисторного делителя.

Выход становится высоким до тех пор, пока напряжение конденсатора не превысит половину напряжения питания, в этот момент напряжение на инвертирующем входе больше, чем на неинвертирующем входе. Затем выход становится низким, разряжая конденсатор. В то же время, 10K резистор действует как гистерезис - когда выходной сигнал переходит на низком уровне, нижняя нога делителя напряжения теперь имеет 1K и 10K параллельно, что уменьшает общее сопротивление и снижает опорное напряжение.

Значения резистора гистерезиса и резисторного делителя можно изменять для увеличения или уменьшения частоты.

Выход операционного усилителя затем соединяется по переменному току, чтобы произвести сигнал с равным положительным и отрицательным размахом. Этот сигнал можно легко усилить.

Вот как можно построить простой треугольный генератор , используя один операционный усилитель и несколько дискретных компонентов.

.

Простая схема генератора постоянного тока с использованием транзистора

Многие из нас, кто работал с Аналоговые схемы , часто сталкивались с терминами источник напряжения и источник тока в схемотехнике. Хотя все, что обеспечивает постоянное напряжение, например, простой выход USB 5 В или адаптер 12 В, можно рассматривать как источник напряжения, термин «источник тока» всегда остается загадкой. И многие схемы, особенно те, которые включают в себя операционные усилители или схемы переключения, потребуют от вас использования источника постоянного тока, чтобы проект работал.Итак, что подразумевается под текущим источником? Как это будет работать и зачем это нужно?

В этом руководстве мы найдем ответы на эти вопросы, а также построим и протестируем простую схему источника постоянного тока с использованием транзистора . Схема, используемая в этом руководстве, сможет подавать на вашу нагрузку постоянный ток 100 мА , но вы можете изменить его с помощью потенциометра в соответствии с вашими проектными требованиями. Интересно! Итак, приступим.

Что такое источник постоянного тока (CC)?

Обычно, когда блок питания управляет нагрузкой, может быть два возможных режима работы: один - , режим постоянного напряжения (CV), , другой - , постоянный ток (CC), , , режим .

В режиме CV источник питания делает выходное напряжение постоянным и изменяет выходной ток в соответствии с требованиями сопротивления нагрузки. Лучшим примером будет ваш USB-порт 5 В, где выходное напряжение зафиксировано на уровне 5 В, но в зависимости от нагрузки ток будет меняться.Если вы подключите маленький светодиод, он будет потреблять меньше тока, а если вы подключите больший, он будет потреблять больше тока, но напряжение на светодиоде всегда будет 5 В.

В режиме CC идеальный источник тока Источник питания обеспечивает постоянный выходной ток и изменяет выходное напряжение в зависимости от сопротивления нагрузки. Примером этого может быть зарядное устройство 12 В в режиме CC, где ток зарядки будет фиксироваться в зависимости от напряжения. В случае, если у вас батарея 10.5 В, если вы подключите его к зарядному устройству на 1 А 12 В, выходной ток зарядного устройства всегда будет 1 А, но выходное напряжение будет изменяться для поддержания этого зарядного тока 1 А. Итак, здесь требуются Цепи постоянного тока , другим примером может быть схема драйвера светодиода постоянного тока, где ток через светодиод должен быть постоянным.

Простой источник постоянного тока 100 мА на транзисторе

В этом проекте мы построим простой генератор с транзисторным источником постоянного тока , используя всего 4 компонента.Это очень недорогая схема, которая может обеспечить источник постоянного тока 100 мА , используя источник питания 5 В. Он также будет иметь потенциометр для управления токовым выходом в диапазоне от 1 до 100 мА. Он будет обеспечивать постоянный ток даже при изменении сопротивления нагрузки. Это будет полезно использовать, когда в цепи требуется постоянный ток без колебаний. Ранее мы также построили другой тип схемы источника тока, называемой схемой токового насоса Хауленда, и схемой текущего зеркала, вы также можете взглянуть на них, если хотите.Теперь давайте посмотрим на материалы, необходимые для этого проекта.

Необходимые материалы:

  1. TL431
  2. BC547
  3. 2к резистор 1%
  4. Переменный резистор 10к
  5. 22R 1% резистор
  6. Адаптер 5 В постоянного тока или блок питания.
  7. Различное сопротивление нагрузке в соответствии с требованиями.
  8. Макетная плата и провода подключения
  9. Мультиметр для тестирования.

Как указано в вышеприведенной спецификации, схема состоит только из двух активных компонентов, TL431 и BC547.TL431 является регулятором шунта, который использует ссылку 2.5V напряжения. Он поддерживает катодный ток 1–100 мА для операций, связанных с шунтом. Корпус этого компонента такой же, как и у обычного сквозного транзистора. Остальные компоненты являются пассивными. Для точной выходной мощности резисторы должны иметь допуск 1%.

Схема источника постоянного тока:

Принципиальная схема источника постоянного тока на транзисторе проекта представлена ​​ниже.

Вышеупомянутая цепь полностью подключена к линии 5В. Выходная нагрузка должна быть подключена между выходом и заземлением. На приведенной выше схеме BC547 работает как транзистор прохода , подробнее об этом будет сказано в рабочем разделе.

Важные расчеты для цепи постоянного тока

Выходной ток вышеуказанной схемы зависит от приведенной ниже формулы, которая может быть использована для расчета выходного тока цепи источника постоянного тока.

 I  out =  V  ref  / R4 + I  KA  

Для этой цепи

 I  out = 100 мА  (.100A) V  ref =  2,5 В I  KA  = 1 мА (0,001 A) [Примечание: минимальный ток смещения] 

Итак,

 I  выход  = V  ref  / R4 + I  KA  .100 = 2,5 / R4 + .001 0,100 - 0,001 = 2,5 / R4 R4 = 2,5 / 0,099 R4 = 25 Ом (приблизительно) 

Доступное наименьшее значение приближения R4 составляет 22 Ом. Теперь переменный резистор или значение потенциометра можно найти по той же формуле.Раньше максимальный доступный ток 100 мА достигался резистором 22 Ом. На этот раз потенциометр снизит выходной ток до самого низкого уровня.

Поскольку для TL431 требуется минимальный катодный ток 1 мА, можно предположить, что минимальный ток будет 2 мА. Следовательно, используя ту же формулу,

 I  выход  = V  ref  / VR  1  + I  KA  0,002 = 2,5 / VR  1  + 0,001 0,002 - 0,001 = 2,5 / VR  1  .001 = 2,5 / VR  1  VR  1  = 2,5 К 

Таким образом, для управления током можно использовать потенциометр 2.2k с наименьшим приближающим значением. Последний расчет для предназначен для расчета значения резистора смещения R1 с использованием следующих формул.

 R1 = V  вход  / (I  выход  / hFE + I  KA ) 

Для этой цепи

 Io  ut  = 100 мА (0,100 А) V  в  = 5 В hFE = 100 (максимум) IKA = 1 мА (0,001 А) [Примечание: минимальный ток смещения] R1 = V  вход  / (I  выход  / hFE + I  KA ) R1 = 5 / (.100/100 + 0,001) R1 = 2,5 кОм 

Таким образом, доступное наименьшее значение R1 приближающего устройства может быть 2,2 кОм.

Работа цепи постоянного тока:

Транзистор BC547 действует как транзистор прохода , который управляется резистором смещения R1 и шунтирующим стабилизатором TL431. База транзистора фактически подключена к делителю тока . Эта схема делителя тока сделана с использованием резистора смещения и шунтирующего регулятора.TL431 регулирует постоянный ток путем измерения опорного напряжения и контролируя проход транзистор BC547. Схема построена на макете, как показано ниже.

Проверка цепи источника постоянного тока

Когда плата была готова, я включил свою схему, используя источник постоянного тока 5 В, и начал ее тестирование. Я использовал разные нагрузки (разные значения резистора) на выходной стороне и следил за тем, чтобы ток всегда оставался постоянным.Я использовал свой мультиметр для измерения выходного тока моей схемы, и он всегда был около 100 мА, как показано на рисунке ниже

.

Полное видео тестирования можно найти внизу этой страницы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте форумы для других технических вопросов.

Применение схем источника постоянного тока

В системе светодиодного освещения требуется источник постоянного тока для операций, связанных с управлением светодиодом.Как и в портативных устройствах, в схемах зарядки аккумуляторов используются источники постоянного тока. Небольшой список приложений, в которых используется источник постоянного тока, приведен ниже

.
  • Система усилителя.
  • Солнечные системы
  • Электромагниты
  • Система двигателя для постоянной скорости.
  • Датчики на эффекте Холла.
  • Цепи стабилизатора смещения стабилитронов.
.

555 Схема схемы генератора ШИМ с таймером

ШИМ (широтно-импульсная модуляция) - важная особенность каждого современного микроконтроллера, поскольку от него требуется управлять множеством устройств почти во всех областях электроники. ШИМ широко используется для управления двигателем, освещением и т. Д. Иногда мы не используем микроконтроллер в наших приложениях, и если нам нужно генерировать ШИМ без микроконтроллера , то мы предпочитаем некоторые ИС общего назначения, такие как операционные усилители, таймеры, генераторы импульсов и т. Д.Здесь мы используем микросхему таймера 555 для генерации ШИМ. 555 ИС таймера - очень полезная ИС общего назначения, которую можно использовать во многих приложениях.

Требуемые компоненты:

  1. 555 таймер IC -1
  2. 10К горшок -1
  3. Резистор 100 Ом -1
  4. 0,1 мкФ конденсатор -1
  5. 1 кОм резистор (опционально)
  6. Хлебная доска -1
  7. 9В Батарея -1
  8. светодиод -1
  9. Мультиметр
  10. или CRO -1
  11. Перемычка -
  12. Разъем аккумулятора -1

Что такое сигнал ШИМ?

Широтно-импульсная модуляция (ШИМ) - это цифровой сигнал, который чаще всего используется в схемах управления.Этот сигнал устанавливается на высокий уровень (5 В) и низкий (0 В) в заранее определенные время и скорость. Время, в течение которого сигнал остается на высоком уровне, называется «временем включения», а время, в течение которого сигнал остается низким, называется «временем выключения». Ниже описаны два важных параметра ШИМ:

.

Рабочий цикл ШИМ:

Процент времени, в течение которого сигнал ШИМ остается ВЫСОКИМ (по времени), называется рабочим циклом. Если сигнал всегда включен, это 100% рабочий цикл, а если он всегда выключен, это 0% рабочего цикла.

Рабочий цикл = время включения / (время включения + время выключения)

Частота ШИМ:

Частота сигнала ШИМ определяет, насколько быстро ШИМ завершает один период. Один период полностью включает и выключает сигнал ШИМ, как показано на рисунке выше. В нашем руководстве мы установим частоту 5 кГц.

Мы можем заметить, что светодиод не горит на полсекунды, а светодиод горит на полсекунды.Но если частота включения и выключения увеличилась с «1 в секунду» до «50 в секунду». Человеческий глаз не может уловить эту частоту. Для нормального глаза светодиод будет виден как светящийся с половинной яркостью. Таким образом, при дальнейшем сокращении времени включения светодиод становится намного светлее.

Мы ранее использовали ШИМ во многих наших проектах, проверьте их ниже:

Схема и объяснение генератора ШИМ таймера 555:

В этой схеме генератора ШИМ, , как мы упоминали выше, мы использовали микросхему таймера 555 для генерации сигнала ШИМ .Здесь мы контролировали выходную частоту сигнала ШИМ, выбрав резистор RV1 и конденсатор C1. Мы использовали переменный резистор вместо постоянного резистора для изменения рабочего цикла выходного сигнала. Зарядка конденсатора через диод D1 и разрядка через диод D2 будет генерировать сигнал ШИМ на выходном контакте таймера 555.

Для определения частоты сигнала ШИМ используется формула ниже:

F = 0,693 * RV1 * C1

Вся работа и демонстрация генерации ШИМ приведены в Видео в конце, где вы можете найти эффект ШИМ на светодиодах и проверить его на мультиметре.

Моделирование генерации ШИМ с использованием таймера 555 IC:

Ниже приведены несколько снимков:

.

Онлайн-симулятор схем и редактор схем

«Попробуйте - это отличная идея».

«Удивительно удобный и простой для использования даже начинающему любителю».

«Симулятор схем на основе браузера может похвастаться множеством функций».

Технология «Smart Wires»:
Создайте свою схему быстрее, чем когда-либо прежде, с помощью нашей уникальной интеллектуальной технологии Smart Wires для подключения терминалов и перестановки компонентов.

Проприетарный механизм моделирования :
Ядро числового решателя повышенной точности плюс усовершенствованный механизм моделирования, управляемый событиями в смешанном режиме, упрощают быстрое выполнение моделирования.

Схема презентационного качества:
Печатайте четкие, красивые векторные PDF-файлы ваших схем, а также экспортируйте их в PNG, EPS или SVG для включения схем в проектные документы или результаты.

Мощный графический движок:
Легко работайте с несколькими сигналами с помощью настраиваемых окон построения графиков, вертикальных и горизонтальных маркеров и расчетов сигналов. Экспорт графических изображений для включения в проектную документацию.

.Электронная принципиальная схема

- Схема и конструкция печатной платы

Это базовая схема автомобильного гудка и мигалки, которая начинает воспроизведение автомобильного гудка в любой момент, когда ваш автомобиль находится в заднем такелажном положении. Схема (первая диаграмма) использует двойные часы NE556 для создания звука. Один из часов подключен как нестабильный мультивибратор для воспроизведения звука, а другой… Подробнее »

Это принципиальная схема сигнализатора питьевой воды на основе небольшого датчика воды с использованием алюминиевой и пластиковой фольги, подключенного к очень простой сигнализации на основе таймера 555 IC.Государственное управление Джала поставляет воду в течение ограниченного времени в течение дня. Срок подачи воды определяется администрацией… Читать дальше »

Вот усилитель MOSFET мощностью 200 Вт на базе четырех микросхем IRFP250N, они очень дешевые и их легко найти на рынке электроники в вашем регионе. Схема собрана и протестирована с очень хорошими характеристиками.

Это проект схемы стереофонического усилителя мощности на 300 Вт RMS. Этот усилитель основан на четырех микросхемах питания IC TDA7294.Это означает, что каждый канал схемы использует две микросхемы в мостовом режиме. В этом приложении значение нагрузки не должно быть меньше 8 Ом.

Это активная схема регулировки тембра стереозвука с использованием хорошо известной ИС операционного усилителя TL072. Схема включает микрофонный предусилитель и регулятор микшера. В этом дизайне у нас есть два входа: один для линейного (стерео), один для микрофона и имеет управление тремя звуковыми частотами (высокие / высокие, средние и низкие / низкие частоты). Он также обеспечивает контроль баланса… Подробнее »

.

Смотрите также