Редуктор планетарный одноступенчатый


Конструкции и расчет редукторов

Планетарные одноступенчатые редукторы, выполняемые по схеме 2K-h, могут обеспечить при достаточной жесткости конструкции передаточное число до 8, а при двухвенцовом сателлите - до 18.

При малых и средних окружных скоростях в зацеплении зубчатые передачи устанавливаются на подшипниках качения, при высоких скоростях на подшипниках скольжения. В большинстве своем выполняются в горизонтальном исполнении.

Редуктор планетарный одноступенчатый

На листе 107 представлен одноступенчатый редуктор на подшипниках качения с передаточным числом и=7.5 с радиусом водила 180 мм. Быстроходный вал откован вместе с центральной шестерней и опирается на два однорядных шариковых подшипника, установленных в щеках водила. От осевого смещения подшипники и через них быстроходный вал удерживаются торцевой планкой, закрепленной болтами к торцевой поверхности водила со стороны быстроходного вала. Опорами сателлитов служат два однорядных роликовых подшипника с короткими цилиндрическими роликами. От осевого смещения наружные кольца подшипников удерживаются пружинными кольцами, установленными в канавки расточки водила. Внутренние кольца подшипников упираются в торцевые шайбы и закрепляются болтами в торцах валов сателлитов.

Опорами водила служат два однорядных шариковых подшипника, установленных в крышке и корпусе редуктора. Тихоходный вал запрессован в отверстие щеки водила и на конце имеет шлицы. Смазывание заливное. Для отвода теплого воздуха из внутренней полости редуктора на верхней части корпуса установлен вентиляционный колпак. Верхний и нижний уровень масла контролируется жезловым маслоуказателем.

Редуктор планетарный одноступенчатый с двухвенцовым сателлитом

Одноступенчатый планетарный редуктор с двухвенцовыми сателлитами (лист 108), выполняемый по схеме 2K-h, может обеспечить передаточное число до 18, а при использовании редуктора в кинематических схемах при кратковременном режиме работы - до 30.

Установка и крепление подшипников такая же, как и в ранее рассмотренном одноступенчатом редукторе. Центральная шестерня входит в зацепление с сателлитом, насаженным с натягами прессовой посадки на удлиненную часть второго венца сателлита. Сателлиты через вал опираются на два сферических бочкообразных роликовых подшипника, установленных в отверстиях водила. Наружные кольца подшипников от осевого перемещения закрепляются специальной шайбой с буртом, которая крепится болтами к торцевой поверхности водила. Между шайбой и торцевой поверхностью необходимо предусматривать зазор 0,5—1 мм во избежание пережатия подшипников. Второй сателлит входит в зацепление с неподвижным центральным колесом с внутренними зубьями, отталкивается от него и передает движение водилу, а от водила на тихоходный вал. Опорами водила служат два однорядных роликовых конических подшипника. Осевой зазор в подшипниках регулируется жестяными прокладками, установленными между торцевой поверхностью корпуса и крышки. Корпус и крышка сварные. Смазывание зацепления происходит окунанием в масло, залитое в картер редуктора, а подшипники смазываются разбрызгиванием.

Редуктор планетарный одноступенчатый усиленной конструкции

Планетарный одноступенчатый редуктор, предназначенный для непрерывной продолжительной работы, показан на листе 109. Вал центральной шестерни опирается на два однорядных конических роликовых подшипника. Регулировка осевого зазора осуществляется жестяными прокладками, установленными между торцевой частью водила и специальной шайбой, закрепляются болтами, головки болтов перевязываются проволокой. Сателлиты через валы опираются на два двухрядных сферических роликоподшипника.

Водило опирается на два крупногабаритных двухрядных роликовых конических подшипника. Центральное колесо с внутренним зацеплением через болтовое соединение объединено с корпусными деталями.

Водило сборной конструкции, состоящее из двух частей, соединенных между собой болтами, которые центрируют их по посадке с допусками Н7/к6, что обеспечивает точность при расточке отверстий под подшипники сателлитов и центральной шестерни.

Внутренние кольца подшипников зажимаются от осевого смещения широкими гайками. Гайки стопорятся планкой, установленной на лыске цилиндрической части водила и крепятся болтами к гайке (вид Б и разрез В-В на листе 109). Центральная шестерня и сателлиты проходят цементацию, закалку и шлифовку зубьев.

Центральное колесо изготовляется из легированной конструкционной стали и проходит общую термическую обработку до твердости 280...32Р НВ. Корпус редуктора сварной, жесткость его усилена ребрами.

Смазывание зацепления и двухрядных конических подшипников централизованное от специальной смазочной станции, которая обеспечивает фильтрацию и охлаждение масла. Учитывая непрерывную работу, на верхней части корпуса редуктора установлены два вентиляционных колпака для отвода теплого воздуха и паров масла из редуктора.

Со стороны конца быстроходного вала установлено лабиринтное уплотнение, а со стороны тихоходного - двойное манжетное.

Редуктор планетарный с двумя внутренними зацеплениями, выполнены по схеме 2K-h

Схема и конструкция планетарного редуктора с двумя внутренними зацеплениями представлены на листе 110. Особенность этой схемы заключается в том, что число зубьев центральных колес может отличаться на один, два, три и более от числа зубьев сателлитных шестерен. При таком соотношении чисел зубьев меньше потерь мощности в зацеплении. Передаточные числа при неподвижном колесе, выраженные через число зубьев центральных колес и сателлитов, могут быть определены по формуле

Наименьшее передаточное число рекомендуется принимать не ниже 30. Ведущий вал в месте установки подшипников с короткими цилиндрическими роликами под блок сателлитов имеет эксцентрик. За каждый оборот эксцентрикового вала сателлит обегает закрепленное центральное колесо с внутренним зацеплением в одном направлении и при наличии разницы в числе зубьев совершает поворот на определенный угол в направлении, обратном вращению эксцентрикового вала, вторая сателлитная шестерня поворачивает подвижное центральное колесо. Подвижное центральное колесо жестко связано с тихоходным валом и передает ему движение.

В данном редукторе имеет место односторонний контакт зубьев сателлитных шестерен с центральными колесами. Поэтому при проектировании таких редукторов необходимо обеспечить достаточную жесткость валов и высокую статическую грузоподъемность подшипников качения, предназначенных для установки блока сателлитов.

Односторонняя конструкция эксцентрика уравновешивается грузом в виде сектора, установленного на быстроходном валу. Необходимо обращать внимание на то, чтобы уравновешивающий груз при вращении не купался в масле, так как при высоких оборотах может происходить нагрев масла из-за ударов сектора о масло, что приведет к повышению температуры всего редуктора.

На листе 110 показана установка специального лотка в масляной ванне, где при вращении проходит сектор. Стенки лотка сделаны выше уровня масла в ванне.

Редукторы с двумя внутренними зацеплениями просты в изготовлении, но КПД их значительно ниже. При высоких числах оборотов эти редукторы работают неустойчиво, с вибрацией и стуками. Поэтому можно их использовать для передачи мощности не свыше 5...10 кВт при кратковременной работе с ПВ = 10 % и ПВ = = 15 % при частоте вращения до 1000 мин-1.

Смотрите также

Планетарный редуктор, устройство и принцип работы, кинематическая схема одноступенчатого и двухступенчатого, расчет и ремонт своими руками

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.Обращаться на почту [email protected]

Двухступенчатый планетарный редуктор представляет собой конструкцию, составленную из шестеренок и других рабочих элементов, которые приводятся в движение посредством зубчатой передачи. При этом двигаются они по принципу, который заложен в механике вращения планет – вокруг одного центра. По этой причине центральная шестерня именуется «солнечной», промежуточные — «сателлитами», а внешняя с внутренним зубчатым сцеплением — «коронной». Кроме этого, самый простой планетарный редуктор состоит из водила. Оно предназначено для фиксации сателлитов относительно друг друга, чтобы они двигались вместе.

Для правильной работы устройства необходимо, чтобы одна из составляющих его частей была жестко закреплена на корпусе. В планетарном редукторе, который оснащен водилом, статической частью является именно оно. Кроме этого, жестко закрепленным может быть коронная или солнечная шестеренки.  В случае если ни одна из частей этого устройства не закреплена, имеется возможность расщепления одного движения на несколько, либо слияние двух в одно.

При этом в сцепке с ведущим и ведомым валом может быть как коронная, так и солнечная шестерни, или сателлиты. Этот механизм может осуществлять повышение передаточного числа и снижение крутящего момента и на оборот.

За счет такой конструкции обеспечивается движение ведомого и ведущего валов в одном направлении.

Назначение и конструкция редуктора

Служит редуктор для обеспечения понижения передачи и при этом повышения силы крутящего момента. Для обеспечения работы этого механизма вращающийся вал присоединяется к его ведомому элементу.

Это устройство в классическом исполнении состоит из червячных или зубчатых пар, центрирующих подшипников, различных уплотнений, сальников и т.д. Примером планетарного редуктора является шариковый подшипник.  Корпус устройства сложен из двух элементов:

Смазка всех составных элементов этого устройства производится путем разбрызгивания масла, но в некоторых особенных устройствах это осуществляется при помощи масляного насоса в принудительном порядке.

Принцип работы

То, как будет функционировать этот агрегат зависит от кинематической схемы привода. Так подводку вращательного движения можно осуществлять к любому элементу этой системы, а снятие производить с какого-либо из оставшихся. Передаточное число зависит от того, согласно какой схемы организована подводка и съем вращательного движения.

Понимание того, как работает подобный редуктор, позволяет оценить сложность ремонта и восстановления.

Разновидности планетарных редукторов

В зависимости от количества ступеней, которые они имеют планетарные редукторы подразделяют на:

  • одноступенчатые;
  • многоступенчатые.

Одноступенчатые более простые и при этом компактнее, меньше по размерам в сравнении с многоступенчатыми, обеспечивают более широкие возможности по передаче крутящего момента, достижения разных передаточных чисел. Обладающие несколькими ступенями являются достаточно громоздкими механизмами, при этом диапазон передаточных чисел, которые ими могут быть обеспечены, существенно меньше.

В зависимости от сложности конструкции они могут быть:

  • простыми;
  • дифференциальными.

Кроме этого, планетарные редукторы в зависимости от формы корпуса, используемых элементов и внутренней конструкции могут быть:

  • коническими;
  • волновыми;
  • глобоидными;
  • червячными;
  • цилиндрическими.

Через них может передаваться движение между параллельными, пересекающимися и перекрещивающимися валами.

Характеристики основных разновидностей этого устройства

Цилиндрические

Самые распространенные. Коэффициент полезного действия этих устройств достигает 95%. Они могут обеспечивать передачу достаточно больших мощностей. Передача движения осуществляется между параллельными и соосными валами. Они могут оснащаться прямозубными, косозубными и шевронными зубчатыми колесами. Коэффициент передачи может колебаться в пределах от 1,5 до 600.

Конические

Такое название они носят потому, что в них используются шестеренки, которые имеют коническую форму. Это обеспечивает плавность сцепки и способность выдерживать достаточно большие нагрузки. Могу иметь одну, две и три ступени. Валы в этой разновидности редукторов могут располагаться как горизонтально, так и вертикально.

Волновые

Они представляют собой конструкцию с гибким промежуточным числом. Состоят они из генератора волн, эксцентрика или кулачка, который обеспечивает растяжение гибкого колеса до достижения его контакта с неподвижным. При этом гибкое колесо имеет наружные зубья, а неподвижное — внутренние.

К достоинствам такого типа редукторов относится:

  • плавность хода;
  • высокое передаточное число;
  • возможность передачи движения через герметичные и сплошные стенки.

Они могут быть одно- и многоступенчатыми. Высокоскоростные оснащены подшипниками скольжения, а низкоскоростные — подшипниками качения.

Достоинства планетарных редукторов

  • Небольшой вес;
  • Широкий диапазон передаточных чисел;
  • Относительная компактность;
  • Собрать и починить такое устройство можно своими руками.

Советы по подбору планетарного редуктора

Главное в этом деле — правильно произвести расчет основных параметров нагрузки и существующих условий эксплуатации этого устройства.

Выбор производиться в зависимости от:

  • типа передачи;
  • максимально допустимых осевых и консольных нагрузок;
  • типоразмера этого устройства;
  • диапазона температур, в которых редуктор может использоваться длительный период и не терять при этом своих полезных качеств и свойств.

Делаем планетарный редуктор своими руками

Первым делом производится проектирование будущей конструкции в зависимости от конструктивных особенностей изделия и задач, которые планируется решать с его использованием. При этом производится расчет таких параметров как передаточное число, расположение валов, количество ступеней и т.д.

Далее производится определение межосевого расстояния. Этот показатель очень важен, так как указывает на способность передавать крутящий момент. Температура внутри устройства во время его работы не должна быть выше, чем 80 градусов по Цельсию.

При конструировании планетарного редуктора производится также расчет:

  • числа передаточных ступеней;
  • количества сателлитных шестеренок и зубьев на них;
  • толщины шестеренок;
  • размещения осей в будущем механизме.

Кроме этого, осуществляется подбор шестеренок, которые выполнены из подходящего материала, расчет сил, которые будут присутствовать при функционировании механизма и проверочный расчет.

Не имея специального оборудования и условий, изготовить составные части этого устройства в условиях домашней мастерской не получится. Планетарный редуктор можно собрать из подобранных частей, которые без труда можно приобрести в торговой сети или на разборке.

Сборка также является делом достаточно непростым, для достижения успеха в этом деле необходимо иметь практический опыт ремонта подобных механизмов, их сборки и разборки, обладать теоретическими познаниями в механике, прочими знаниями и навыками.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Планетарные редукторы.

Редукторы с зубчатыми передачами, в которых имеются колеса с перемещающимися осями, называются планетарными. Планетарные передачи позволяют получить большие передаточные числа редукторов при малом числе зубчатых колес. Габариты планетарных редукторов меньше, чем габариты обычных редукторов при одинаковых передаточных числах и нагрузках. Планетарные передачи несколько сложнее в изготовлении.

Кинематические схемы планетарных редукторов.

Планетарные передачи с одновенцовыми (рис. 1 ) и двухвенцовыми (рис. 3) сателлитами, а также многоступенчатые передачи (рис. 2) имеют средние передаточные числа (2…30) и высокий КПД (0,9…0,97).

Одноступенчатый планетарный редуктор.

Рис.1

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 3 закреплено в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 1.

Рис.2

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н2 — ведомое. Центральные колеса 3 и 6 закреплены в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 2.

Рис.3

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 4 закреплено в корпусе. Колеса 2 и 3 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 3.

Рис. 4

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, центральное колесо 5 — ведомое. Центральное колесо 3 закреплено в корпусе, колеса 2 и 4 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются при D5D3 — в противоположные стороны.

Планетарные передачи с тремя центральными колесами (рис. 4) имеют большие передаточные числа (100… 200). С увеличением передаточного числа КПД резко снижается.

Двухступенчатый планетарный редуктор с кривошипом.

Планетарные передачи с кривошипами (рис. 5,6) имеют большие передаточные числа (100…200), но сравнительно низкие КПД.

Рис. 5

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, центральное колесо 4 — ведомое. Центральное колесо 2 закреплено в корпусе, колеса 1 и 3 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются при D3D2 — в противоположные стороны.

Одноступенчатый планетарный редуктор с кривошипом.

Рис. 6

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, вал с кривошипами К — ведомый. Центральное колесо 2 закреплено в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в разные стороны.

Кинематическая схема волнового редуктора.

 На рис. 7 дана схема волнового зубчатого редуктора.

Рис. 7

Генератор волн Н (кулачок и подшипник с гибкими кольцами) — ведущий, колесо 1 с гибким венцом — ведомое, колесо 2 закреплено в корпусе.

Передаточное число 

Чертежи и устройство планетарных редукторов.

Планетарный редуктор

Процедура механизации производственной и другой деятельности существенно повысила поставленные задачи. Довольно большое распространение получили механизмы, предназначенные для передачи вращения и распределения создаваемого усилия. Существует довольно большое количество различных редукторов, все они характеризуются своими определенными эксплуатационными характеристиками. Примером можно назвать планетарный редуктор, устройство которого имеет довольно большое количество различных особенностей. Рассмотрим подобный механизм подробнее.

Устройство и принцип работы

Рассматриваемый механизм представлен классическим сочетанием шестерен с различным диаметром, которые обеспечивают передачу вращения с изменением числа оборотов и передаваемого усилия. Особенности механизма определяют возможность применения в самых различных отраслях. Обеспечить работу можно только в случае присоединения вращающего вала к ведомой части.

Рассматривая чертеж классического устройства, следует отметить, что оно состоит из следующих элементов:

  1. Основные элементы представлены зубчатыми и червячными парами.
  2. Для установки и фиксации основных деталей проводится установка центрирующих подшипников.
  3. Для смазывания трущихся деталей корпус заполняется специальным маслом. Исключить вероятность его вытекания можно за счет уплотнений.
  4. Сальники также являются важной частью конструкции.
  5. Корпус состоит из двух составных элементов, за счет которых есть возможность разобрать конструкция при обслуживании или ремонте.

Принцип работы планетарного редуктора предусматривает то, что смазывание основных деталей происходит за счет естественного разбрызгивания масла при работе устройства.

Схема классического устройства выглядит следующим образом:

  1. В качестве источника вращения устанавливается мотор.
  2. Другая часть представлена шестерней планетарного типа. Внутри расположены другие детали, крепление стакана редуктора к мотору проводится за счет фиксирующих элементов.
  3. Далее идет вал с подшипником.

Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов. В целом можно сказать, что устройство достаточно сложное, поэтому провести его ремонт и обслуживание не всегда просто.

Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.

Основная часть конструкции состоит из следующих деталей:

  1. Коронной шестерни.
  2. Планетарная или сателлиты.
  3. Водило и солнечная шестерня.

Принцип действия рассчитывается следующим образом:

  1. Солнечная шестерня расположена в центральной части конструкции. Зачастую именно ей передается основное вращение, для чего элемент имеет посадочное отверстие под вал.
  2. Центральный элемент постоянно находится в зацеплении с другими подобными шестернями, оси которых расположены по окружности.
  3. Сателлиты находятся в зацеплении с коронной шестерней, которая представлена зубчатым колесом большого диаметра с внутренним расположением основных деталей.
  1. Водило требуется для жесткой фиксации всех деталей относительно друг друга.

Стоит учитывать, что для работы механизма одна из частей должна быть зафиксирована относительно других. В зависимости от выбора ведомого или ведущего элемента зависит показатель передаточного числа. Рассчитать число достаточно сложно, от этого показателя также зависит удельная мощность.

Конструктивные особенности рассматриваемого механизма определили то, что он может применяться для достижения самых различных целей.

Виды планетарных редукторов

Встречается довольно большое количество разновидностей понижающих редукторов. Классификация проводится также по количеству ступеней:

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

Также классификация проводится по показателю сложности планетарного редуктора. Выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

На сегодняшний день дифференциальный редуктор получил весьма широкое распространение, так как позволяет передавать вращение требуемым образом в конкретном случае.

Выделяют виды в зависимости от формы корпуса, а также применяемым внутри элементам. Классификация выглядит следующим образом:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. Именно поэтому планетарный редуктор получил широкое распространение.

Двухступенчатые планетарные мотор-редукторы применяются в случае, когда нужно передавать вращение с различной частотой. Некоторые варианты исполнения изготавливаются по схеме 3к, планетарные редукторы большой мощности зачастую имеют крупный размер, а при изготовлении основных частей применяется закаленная сталь, характеризующаяся высокой устойчивостью к износу.

Применение

Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:

  1. Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
  2. Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
  3. Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.

Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.

Следует уделить довольно много внимания и подбору наиболее подходящего варианта исполнения. Если установленное устройство не будет обладать требуемыми свойствами, то есть вероятность выхода конструкции их строя при ее применении.

Наиболее важными параметрами выбора можно назвать следующие показатели:

  1. Тип передачи, которая применяется для передачи вращения.
  2. Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
  3. Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях. Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
  4. Диапазон температур, при которых механизм может применяться. Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
  5. Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.

Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.

Достоинства и недостатки

Широкая область применения прежде всего связана с основными преимуществами механизма. Многие свойства такие же, как у цилиндрического варианта исполнения, так как в обоих случаях применяются шестерни. Преимущества следующие:

  1. Компактность. Многие модели характеризуются небольшими размерами, за счет чего упрощается установка. Небольшие габаритные размеры также позволяют создавать механизмы с небольшой массой. За счет этого существенно повышается эффективность рассматриваемого устройства.
  2. Сниженный уровень шума. Это свойство достигается за счет установки конических колес с косым зубом. За счет применения большого количества зубьев также обеспечивается точность хода основных элементов. Даже при большой нагрузке и скорости вращения основных элементов сильного гула не возникает, что и стало причиной широкого распространения планетарных редукторов.
  3. Малая нагрузка, оказываемая на опоры. Обычные редуктора характеризуются тем, что нагрузка оказывается на вал, который со временем может сорвать. Также нагрузка оказывает влияние на подшипники, повышая степень их износа. Со временем все приведенные выше причины приводят к необходимости выполнения обслуживания.
  4. Снижается нагрузка на зубья. Это достигается за счет ее равномерного распределения и большого количества задействованных зубьев. Часто встречается проблема, связанная с истиранием рабочей части зубьев. За счет этого они начинают не плотно прилегать друг к другу, последствия подобного явления заключается в повышенном износе и появлении шума.
  5. Обеспечивается равномерное разбрасывание масла на момент работы. Как и при функционировании любого другого редуктора, в рассматриваемом случае большое значение имеет степень смазки рабочей поверхности.
  6. Длительный эксплуатационный срок. Особенности расположения сателлитов приводит к взаимному компенсированию оказываемой силы.
  7. Повышенной передаточное отношение. Этот показатель считается основным. Передаточное соотношение может варьировать в достаточно большом диапазоне.

В целом можно сказать, что есть довольно большое количество причин, по которым применяется именно подобный механизм для передачи вращения. КПД планетарного редуктора относительно невысокое, что можно назвать существенным недостатком подобного варианта исполнения. Кроме этого, коэффициент полезного действия существенно падает при непосредственном использовании устройства, так как со временем оно изнашивается.

Кроме этого следует уделить внимание тому, что планетарный редуктор является сложной конструкцией, при изготовлении и установке которой возникают трудности.

Незначительное отклонение в размерах становится причиной уменьшения основных свойств, а также появления серьезных неисправностей.

Обслуживание и ремонт

Сложность рассматриваемого механизма определяет то, что возникает необходимость в своевременном обслуживании и проведении ремонта. Для начала уделим внимание тому, каким образом проводится расчет планетарного редуктора. Среди особенностей этого процесса отметим следующие моменты:

  1. Определяется требуемое число передаточных ступеней. Для этого применяются специальные формулы.
  2. Определяется число зубьев и расчет сателлитов. Зубчатые колеса могут иметь самое различное число зубьев. В рассматриваемом случае их число довольно много, что является определяющим фактором.
  3. Уделяется внимание выбору наиболее подходящего материала, так как от его свойств зависят и основные эксплуатационные характеристики устройства.
  4. Определяется показатель межосевого расстояния.
  5. Делается проверочный расчет. Он позволяет исключить вероятность допущения ошибок на первоначальном этапе проектирования.
  6. Выбираются подшипники. Они предназначены для обеспечения плавного вращения основных элементов. При выборе подшипника уделяется внимание тому, на какую нагрузку они рассчитаны. Кроме этого, не рекомендуется использовать этот элемент без смазки, так как это приводит к существенному износу.
  7. Определяется оптимальная толщина колеса. Слишком большой показатель становится причиной увеличения веса конструкции, а также расходов.
  8. Проводится вычисление того, где именно должны быть расположены оси шестерен. Это проводится с учетом размеров зубчатых колес и некоторых других моментов. Как правило, в качестве основы применяется чертеж, который можно скачать из интернета. Самостоятельно разработать проект по изготовления планетарного редуктора достаточно сложно, так как нужно обладать навыками инженера для проведения соответствующих расчетов и проектирования.

Изготовить самостоятельно рассматриваемую конструкцию достаточно сложно, как и провести ремонт планетарных редукторов. Среди особенностей этой процедуры отметим следующее:

  1. Процедура достаточно сложна, так как механизм состоит из большого количества различных элементов. Примером можно назвать то, что сразу после разбора все иголки могут высыпаться практически моментально.
  2. Многие специалисты рекомендуют доверять рассматриваемую работу исключительно профессионалам, так как допущенные ошибки становятся причиной быстрого износа и выхода из строя механизма.
  3. Ремонт зачастую предусматривает замену шестерен, которые со временем изнашиваются. Примером можно истирание зубьев, изменение размеров посадочного гнезда и многие другие дефекты. Самостоятельно изготовить подобные изделия практически невозможно, так как для этого требуется специальное оборудование.

Чаще всего обслуживание предусматривает добавление масла. Смазка планетарного редуктора позволяет существенно продлить срок службы конструкции, так как соприкосновение и трение металла становится причиной его истирания. Рекомендуется смазывать механизм периодически, так как масло выступает еще в качестве охлаждения. В продаже встречаются специальные смазывающие вещества, которые характеризуются определенными эксплуатационными качествами.

Сегодня ремонтом редукторов занимаются компании, которые специализируются на предоставлении соответствующих услуг. Признаком того, что механизм начинает выходить из строя становится появление сильного шума, вибрации, рывков, нагрев и многое другое. Со временем процесс износа существенно ускоряется, так как металл, находящийся в масле попадает в зацепление шестерен. В большинстве случаев ремонт предусматривает замену всех элементов на новые.

В заключение отметим, что планетарный редуктор характеризуется весьма привлекательными свойствами. Примером можно назвать отсутствие большого количества крепежных элементов, а также равномерное распространение нагрузки. Как ранее было отмечено, редуктор применяется при создании различных узлов транспортных средств.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Конструкции и расчет редукторов

Планетарные одноступенчатые редукторы типа Пз горизонтального исполнения общего назначения предназначены для изменения крутящего момента от 125 до 31500 Н·м с передаточными числами от 6,3 до 12,5.

На листе 90 показано конструктивное исполнение планетарного редуктора с радиусом водила r = 100 мм.

Таблица 153

Классификация планетарных одноступенчатых передач

Продолжение табл. 153

Таблица 154

Классификация планетарных двухступенчатых редукторов

Продолжение табл. 154

Таблица. 155

Классификация планетарных многоступенчатых передач

Продолжение табл. 155

В чугунном неразъемном корпусе установлена одна планетарная передача, выполненная по схеме 2К-h

Быстроходный вал опирается на два подшипника качения. Со стороны конца быстроходного вала установлен однорядный роликоподшипник с короткими цилиндрическими роликами. Наружное кольцо шарикового подшипника от осевого смещения закреплено пружинным кольцом, установленным в канавку корпуса. Торцевая поверхность наружного кольца цилиндрического подшипника упирается в крышку. Такая установка подшипников обеспечивает неподвижность в осевом направлении быстроходному валу. Быстроходный вал через зубчатую муфту соединяется с центральной шестерней.

На концах быстроходного вала и центральной шестерни выполнены зубья с внешним зацеплением, которые соединяются между собой обоймой с внутренними зубьями. От осевого смещения как обойма муфты, так и центральная шестерня фиксируются пружинными кольцами, установленными в канавках зубчатого зацепления соединительной муфты. Такой способ соединения обеспечивает самоустановку центральной шестерни относительно сателлитов.

Центральная шестерня входит в зацепление с тремя сателлитами. Каждый сателлит опирается на ось через радиальный сферический роликоподшипник. От осевого смещения подшипник закреплен по наружному кольцу двумя пружинными кольцами, а по внутреннему кольцу - двумя распорными втулками. Ось установки сателлита от осевого смещения фиксируется пружинным кольцом, установленным в канавке оси около левой щеки водила.

Использование в установке сателлитов радиальных сферических роликоподшипников имеет преимущество, так как обеспечивает возможность самоустановки относительно центральных колес и улучшает распределение нагрузки по длине зубьев. Оси сателлитов закрепляются в щеках водила и при работе передают ему вращательный момент.

Центральное колесо с внутренними зубьями, выполненное в виде бандажа, устанавливается с посадкой в корпус редуктора и закрепляется по наружному диаметру цилиндрическими штифтами или призматическими шпонками.

Водило выполнено вместе с тихоходным валом и опирается на два однорядных радиальных шариковых подшипника разных размеров. Шарикоподшипник со стороны тихоходного вала установлен более крупный и рассчитан на восприятие нагрузки от планетарной передачи и от возможной допускаемой консольной нагрузки на конец тихоходного вала.

Шестерни и колеса планетарной передачи выполнены с прямыми зубьями с использованием корригирования, с одной стороны, для устранения подрезания при малом числе зубьев шестерен, а с другой - для обеспечения в передаче заданного стандартного межосевого расстояния.

Конические концы валов со шпоночным соединением для крепленая засаживаемых деталей. В картер “редуктора заливается масло, и смазывание зацепления планетарной Передачи происходит окунанием, а смазывание подшипников - разбрызгиванием. При непрерывной работе редуктора происходит нагрев воздуха, вследствие чего может повыситься давление внутри корпуса, чтобы создать условие для течи масла через уплотнения. Для отвода теплого воздуха на верхней части корпуса установлена пробка, в которой выполнены вертикальные и горизонтальные отверстия. Эта же пробка закрывает отверстие, через которое заливают масло в редуктор.

Таблица 156

Габаритные и присоединительные размеры планетарных зубчатых одноступенчатых редукторов типа Пз, мм

Продолжение табл. 156

Примечания: 1. У редуктора Пз-200 тихоходный вал — цилиндрический.

2. Расход масла при струйном смазывании для редукторов Пз-80; Пз-100 и Пэ-125 даны при ин = 6,3 и nБ = 1500 мин-1, для редукторов Пз-160 и Пз-200 — при ин=6,3 и пБ = 1000 мин-'. При других передаточных числах и частотах вращения быстроходного вала расход масла будет меньше.

Таблица 157

Техническая характеристика планетарных зубчатых одноступенчатых редукторов типа Пз

Примечания: 1. Для передаточного числа и = 12,5 допускаемый крутящий момент на тихоходном валу Тт уменьшается на 40%. 2. Допускаемая радиальная консольная нагрузка приложена в середине посадочной части вала.

На валах установлены однорядные манжетные уплотнения. Контроль уровня масла в картере редукторов осуществляется жезловым щупом.

Габаритные и присоединительные размеры редукторов типа Пз приведены в табл. 156. Допускаемые крутящие моменты на тихоходном валу, частота вращения быстроходного вала, консольные нагрузки на концы быстроходного и тихоходного вала, значения КПД редукторов даны в табл. 157.

Для изготовления центральной и сателлитных шестерен используются легированные стали с разными видами термической обработки.

В зависимости от величины модуля, диаметра и ширины зубчатых колес, марки сталей применяется азотирование, цементация с закалкой или нитроцементация. Большую глубину твердого слоя обеспечивает цементация.

В табл. 158 приведены марки сталей и вид термической обработки зубчатых колес планетарных передач редукторов.

Для смазывания зацепления и подшипников при температурах +25...-40°С рекомендуется применять масло АСЗп-10, при температурах +40...-40°С - масло ТСп-10.

Таблица 158

Материалы и термическая обработка зубчатых колес планетарных зубчатых одно-  и двухступенчатых редукторов типа Пз

Смотрите также

Конструкции и расчет редукторов

Для получения передаточных чисел от 10 до 60 могут быть использованы двухступенчатые редукторы со ступенями, выполненными по схеме 2K-h.

Двухступенчатые редукторы, выполненные по схеме 2K-h, с двухвенцовыми сателлитами, в обоих ступенях могут иметь передаточные числа от 60 до 400.

Двухступенчатые планетарные редукторы этой же схемы используются для получения крутящих моментов до 4000 кН • м.

В силовых установках, в двухступенчатых редукторах можно получить передаточные числа до 60 и более, Передаточные числа свыше 50 уменьшают число зубьев на центральных шестернях и уменьшают срок службы редуктора. При этом повышается уровень шума. Поэтому сумма передаточных чисел не должна превышать 50,

Редуктор планетарный двухступенчатый блочный

На листе 111 приведена конструкция редуктора, выполненная по схеме 2K-h. В торцевой крышке на двух подшипниках установлен вал, откованный вместе с центральной шестерней первой ступени передач. Опорами сателлитов служат двухрядные сферические и роликовые подшипники. Водило первой ступени соединяется с центральной шестерней второй ступени через зубчатое соединение.

Сателлиты второй ступени установлены на двух двухрядных роликовых подшипниках, водило установлено на двух однорядных цилиндрических роликоподшипниках. Водила первой и второй ступени имеют жесткую конструкцию. Внутренние зубья центрального колеса первой ступени нарезаны на внутреннем выступе корпусной детали. Кованое центральное колесо второй ступени из легированной стали с общей термической обработкой. Колесо болтовым соединением объединено с корпусными деталями. Смазываются зацепление и подшипники маслом, залитым в картер редуктора. Валы уплотняются манжетными уплотнениями. Характерной особенностью редуктора является его блочность и удобство сборки. Отдельно собирается торцевая крышках валом и подшипниками и водило с сателлитами первой и второй ступени.

 Редуктор планетарный двухступенчатый с плавающими венцами

В двухступенчатом планетарном редукторе (лист 112) с передаточным числом и = 51,3 консольное центральное колесо быстроходной ступени редуктора опирается с одной стороны на два однорядных шариковых подшипника, размещенных в левой щеке водила. Каждый сателлит первой ступени установлен на однорядном шариковом подшипнике, который опирается на ось, установленную неподвижно в щеках водила. Правая щека с помощью цилиндрических штифтов соединена со шлицевой втулкой. Движение на центральное колесо второй ступени передается через шлицевое соединение втулки с валом. Опорами каждого сателлита второй ступени служат два однорядных шариковых подшипника. Водила обеих ступеней неразъемные, что значительно упрощает их конструкцию. Водило второй ступени выполнено как одно целое с тихоходным валом и опирается на два однорядных шариковых подшипника. Центральные колеса с внутренними зубьями первой и второй ступени выполнены плавающими и застопорены от вращения зубчатыми муфтами.

Наружные зацепления зубчатых муфт с одной стороны входят в зацепление с зубьями центрального колеса, а с другой - соединяются с венцами, закрепленными неподвижно в корпусе редуктора. Муфты и центральные колеса о внутренним зацеплением удерживаются от осевого смещения пружинными кольцами, установленными в канавках центрального колеса и неподвижного венца. Использование плавающих центральных колес дает возможность выравнивать нагрузку между сателлитами по длине зубьев и тем самым повышать передаваемый момент. Введение плавающих центральных колес и зубчатых муфт ведет к усложнению конструкции редуктора, поэтому их используют только при высоких частотах вращения.

Редуктор планетарный двухступенчатый с двухвенцовыми сателлитами

Двухступенчатые редукторы с двухвенцовыми сателлитами в силовых установках могут иметь передаточное число до 400, а в кинематических - до 600, выполненных по схеме 2K-h обеих ступеней. При использовании эффективных методов поверхностного упрочнения зубьев можно достичь и наименьшего расхода металла на единицу передаваемого момента, по сравнению с другими видами передач.

На листе 113 показан двухступенчатый планетарный редуктор с передаточным числом и =167. Конструктивное исполнение как первой, так и второй ступени аналогично ранее рассмотренной конструкции одноступенчатого редуктора с двухвенцовыми сателлитами.

Вторая ступень редуктора передает больший момент, чем первая ступень, и поэтому водило установлено на однорядных роликовых конических-подшипниках. Корпус редуктора сварной. Для устранения возможной деформации корпус подвергается термической обработке для снятия внутренних напряжений, вызываемых нагревом при сварке. Масло заливается в картер корпуса, и зацепление смазывается купанием в ванне, а подшипники — разбрызгиванием.

Редуктор планетарный двухступенчатый с плавающими венцами второй ступени

В двухступенчатых планетарных редукторах, при исполнении первой ступени по схеме 2K-h, а второй - по схеме 3К, можно получить передаточные числа от 60 до 600 при высоком КПД и при небольшой массе на единицу передаваемого момента.

На листе 114 представлен двухступенчатый планетарный редуктор с передаточным числом и = 286. Со стороны быстроходного вала планетарная передача выполнена по схеме 2K-h. Быстроходный вал откован как одно целое с центральной шестерней и опирается на два однорядных шариковых подшипника. Сателлиты, входящие в зацепление с центральной шестерней и с центральным колесом с внутренним зацеплением, в качестве опор имеют по два цилиндрических подшипника с короткими цилиндрическими роликами, с двумя буртами наружного кольца одним буртом на внутреннем кольце. Между наружными кольцами установлено пружинное кольцо в канавке отверстия сателлита и распорное кольцо, что устраняет осевое перемещение колец. Внутренние кольца подшипников от осевого смещения предохраняются двумя кольцами, установленными между торцевыми поверхностями подшипников и щеками водила. С водила движение через шлицевое соединение передается на вал центральной шестерни второй ступени, выполненной по схеме 3К.

Сдвоенные сателлиты опираются на сферические двухрядные роликоподшипники, внутренние кольца которых посажены на неподвижные оси, закрепленные с одной стороны планками и болтами к щекам родила. Для обеспечения самоустановки сателлитов и равномерного распределения нагрузки по длине зубьев центральные колеса с внутренними зацеплениями, неподвижное и подвижное, имеют соединения через зубчатые муфты. На валах установлены двойные севанитовые уплотнения.

Смазывание зацеплений происходит окунанием в масло, налитое в картер, а подшипников - разбрызгиванием. Для отвода теплого воздуха и паров масла на верхней части корпуса установлен вентиляционный колпак.

Габаритные и присоединительные размеры редукторов (лист 115) даны в табл. 187.

Таблица 187

Габаритные и присоединительные размеры планетарных двухступенчатых редукторов с плавающими венцами второй ступени (лист 115), мм

Редуктор планетарный двухступенчатый усиленной конструкции

Редукторы этого типа используются в цементной промышленности для привода крупных высокопроизводительных цементных трубных мельниц.

Редукторы изготовляются с передаточными числами от 30 до 60, с передаваемыми моментами до 3000 кН • м, работают в непрерывном длительном режиме.

На листе 116 представлен двухступенчатый редуктор с радиусами водил первой и второй ступени r1= 462 мм и r2= 700 мм.

Центральная шестерня первой ступени плавающая, соединяется с валом электродвигателя через зубчатую муфту. Сателлиты первой ступени установлены на двухрядных роликовых сферических подшипниках, насаженных на пустотелые валики, последние закрепляются болтами к щекам водила. Опорами водила с одной стороны служит цилиндрический двухрядный роликовый подшипник, а с другой - сферический двухрядный роликовый подшипник.

Сферический подшипник неподвижно закреплен в корпусе по наружному и внутреннему кольцам и устраняет осевое перемещение водила. Водило первой ступени соединяется с центральной шестерней второй ступени зубчатой муфтой. Раздвоенные сателлиты опираются на два сферических роликовых подшипника. Таким образом обеспечивается самоустановка каждой части сателлита по зубьям центральной шестерни и колеса.

Опорами для водила служат цилиндрический роликовый подшипник и двухрядный сферический роликоподшипник, последний жестко установлен в корпусе.

В отверстие водила с допусками горячей посадки запрессован тихоходный вал. Центральные колеса первой и второй ступени болтовыми соединениями жестко связаны с корпусными деталями. Сварные корпус и крышка — из листового металла.

Особое внимание уделено обильному смазыванию всех трущихся деталей редуктора. К центральным шестерням смазка подводится через брызгалы. Двухрядные сферические подшипники имеют подвод смазки с двух сторон зацеплению зубчатых муфт непрерывным потоком подается масло специальными соплами. Такое обильное снабжение охлажденным и отфильтрованным маслом зацепления и подшипников гарантирует надежность непрерывно работающего редуктора.

Смотрите также


Смотрите также