Схема подключения датчика холла


Датчик Холла – принцип работы, схема подключения, эксплуатация + видео

Среди элементов радиоэлектроники, автоматики, а также измерительной техники, датчик Холла, принцип работы которого основан на одноименном эффекте, занимает особое место. Смысл упомянутого эффекта заключается в том, что при помещении проводника в магнитное поле появляется электродвижущая сила (ЭДС), направление которой будет перпендикулярным полю и току. Как же это используется в автомобиле?

В современных условиях происходит постоянное технологическое развитие датчиков Холла. Они отличаются надежностью, точностью и постоянством данных. Широкое распространение эти приборы получили в автомобилях и других транспортных средствах. Они обладают повышенной устойчивостью к агрессивным внешним воздействиям. Датчики Холла являются составной частью многих устройств, с помощью которых контролируется определенное состояние техники.

Во многих случаях этот прибор размещается в трамблере и отвечает за образование искры, то есть он используется вместо контактов. Нередко данный прибор применяется для слежения за током нагрузки. С его помощью производится отключение при возникновении токовых перегрузок. В случае перегревания датчика происходит срабатывание температурной защиты. Резкое изменение напряжения может иметь для устройства тяжелые последствия. Поэтому в последних моделях устанавливается внутренний диод, препятствующий обратному включению напряжения.

Датчик Холла до настоящего времени не смог заменить обычные механические переключатели. Однако в любом случае он имеет ряд значительных преимуществ. Основными из них являются отсутствие контактов, загрязнений, а также механических нагрузок. Поэтому часто можно встретить датчик Холла на скутере, применяемый в качестве составной части датчика зажигания.

Датчик Холла – схема подключения и «физика» процесса

Классическое устройство датчика Холла на практике – тонкий полупроводниковый листовой материал. При прохождении через него постоянного тока на краях листа образуется сравнительно невысокое напряжение. Если под прямым углом поперек пластинки проходит магнитное поле, то на краях листа происходит усиление напряжения, которое находится в прямо пропорциональной зависимости с магнитной индукцией. Датчик Холла является одной из разновидностей датчиков импульсов, создающих электрические импульсы с низким напряжением. Благодаря своим качествам, этот элемент широко применяется в бесконтактных системах зажигания.

Мы рассмотрели, какой имеет датчик Холла принцип работы, схема его пока что нам не ясна. Она включает в свой набор постоянный магнит, полупроводниковую пластину с микросхемой и стальной экран, имеющий прорези. Стальной экран через прорези осуществляет пропуск магнитного поля, благодаря чему в пластине из полупроводников начинает возникать напряжение. Сам экран не пропускает магнитного поля, поэтому, когда прорези и экран чередуются, происходит создание импульсов низкого напряжения.

При конструктивном объединении этого датчика с распределителем получается единое устройство – трамблер, выполняющий функции прерывателя-распределителя зажигания.

Датчик Холла и особенности эксплуатации

Когда в конструкции авто активно эксплуатируется датчик Холла, схема подключения его требует регулярных проверок и профилактического обслуживания. Главное еще и не навредить во время таких проверок, поэтому отсоединение разъема кабеля от датчика должно в обязательном порядке производиться при выключенном зажигании. Иначе элемент может просто выйти из строя, ремонтировать его нет смысла, потребуется замена.

Проверить правильность схемы можно следующим образом: при вращении коленчатого вала и, соответственно, вала распределителя должен попеременно загораться и гаснуть контрольный светодиод, указывающий на наличие сигнала. Запрещается проверять датчик с помощью обычной контрольной лампы. Особое внимание во время работы устройства следует обращать на чистоту и надежность в разъеме и контакте штекеров. Необходимо помнить, что датчик Холла нельзя использовать в обычной системе зажигания.

Неисправный датчик Холла определить визуально практически невозможно, за исключением разве что явных механических повреждений и обрывов электропроводки или контактов. Чтобы провести точную диагностику не обойтись без услуг квалифицированных специалистов имеющих необходимое оборудование. В любом автосервисе есть осциллограф, с помощью которого можно определить любые неисправности датчиков, в том числе и датчика Холла. Поводом провести такую диагностику могут стать следующие причины:
  1. затрудненный запуск двигателя, причём в некоторых случаях запустить его не получается совсем;
  2. нестабильный холостой ход (обороты плавают);
  3. во время движения при повышении оборотов чувствуются резкие рывки;
  4. двигатель может заглохнуть в любой момент без видимых на то причин.

Несмотря на сложность процедуры проверки датчика Холла каждый может провести проверку самостоятельно, хотя объективность тестирования будет ниже. Например, можно воспользоваться мультиметром, установить работу прибора в режим вольтметра и измерить выходное напряжение, которое должно находиться в диапазоне от 0,4 до 11 В. Ну, а самый простой способ проверки это установка заведомо исправного датчика, если изменения будут очевидны, это повод отправиться в магазин за новым датчиком.

carnovato.ru

Датчик холла схема и принцип работы

Датчик Холла это магнитоэлектрическое устройство, использующее эффект Холла. Сам принцип был открыт в 1879 году, когда в магнитное поле поместили тонкую пластину золота с пропущенным через нее током и увидили возникновение поперечной разности потенциалов (холловское напряжение).

Принцип работы датчика Холла

Современные датчики обладают, обычно, щелевой конструкцией. На одной стороне щели располагается проводник, по нему пропускают электрически ток, а на другой стороне расположен постоянный магнит. Когда ток попадает в магнитном поле, на него действует сила Лоренца, если при этом в магнитное поле находиться тонкая пластинка, то на ее сторонах появиться разность потенциалов.

1 — постоянный магнит; 2 — лопасть ротора; 3 — магнитопроводы; 4 — пластмассовый корпус; 5 — микросхема; 6 — выводы.

В зазоре между пластинкой и магнитом расположен экран. Он предназначен для замыкания силовых линий. Если его убрать, то разность потенциалов с металлической пластины будет, сниматься. Если экран расположен в зазоре, то силовые линии замкнуться через него. Ну а при прохождении экрана (в его роли часто используется – лопасть ротора) через зазор, индукция будет нулевая на микросхеме, а напряжение сгенерируется на выходе устройства.

Принцип работы позволяет применять эту конст=рукцию в виде регистрирующего устройства без механического контакта с механизмом в движении, что увеличивает срок эксплуатации по сравнению с другими похожими, но работающих на других принципах преобразователях.

Учитывая возможности современной электроники датчики Холла бывают: цифровые и аналоговые. Обычные преобразователи (аналоговые) изменяют индукцию поля. От полярности и силы магнитного поля зависит величина, которую выдает преобразователь.

Цифровые датчики отличаются полным отсутствием магнитного поля. Его принцип работы состоит в том, что датчик выдает логическую единицу, когда индукция достигает пороговой величины, а ноль, когда установленный номинал не достигнут. Большим минусом цифрового преобразователя считается его низкой чувствительность.

Схема подключения датчика Холла

В качестве примера использования, на картинке ниже показана электрическая цепь бесконтактной системы зажигания автомобиля, с преобразователем Холла.

Преобразователи Холла получили широкое распространение в авиации, машиностроение, и в автомобильной электрике. Все это, благодаря высоким показателям надежности и точности, ну и достаточно низкой стоимости. В автомобиле датчик используется для контроля за положением различных узлов и механизмов.

В авиации используется возможность ориентироваться на полюса на северный и южный, поэтому его все еще используют как датчик скорости или направления движения, несмотря на GPS и Глонасс.

Схема подключения Датчика Холла для определения вертикального положения

Эту схему можно использовать в масленых обогревателях. В случае их случайного опрокидывания датчик сформирует сигнал на отключение последнего.

Питается схема от бестрансформаторного блока питания. Выходное напряжение стабилизируется с помощью стабилитрона VD3, переменная составляющая отфильтровывается емкостью С3. Напряжение номиналом около 5 вольт поступает на первую ножку преобразователя. Когда магнит находится рядом с датчиком, его магнитное поле оказывает воздействие на преобразователь и на его третьем выходе присутствует напряжение близкое к питающему. Светодиод HL1 загорается и оптотиристор оптрона U1 открыт, что приводит к отпиранию симистора VS1 и подключению тэна обогревателя к сети переменного напряжения 220В. В случае наклона корпуса начинает поворачиваться маятник (Фото 2 3)на оси 1. На маятнике закреплен кусочек магнитной резины, от старого вентилятора (см. Фото 1). Ось с маятником закреплена на плате со стороны радиокомпонентов. Что бы маятник не слетел с оси, на его конец надеты несколько шайб, а наружная шайба припаяна.

Как только магнит отходит от датчика, магнитный поток от магнита ослабевает и в определенном положении на выходе три преобразователя напряжение будет почти нулевое. Светодиод потухнет, оптосимистор и мощный симистор закроются. Обогреватель отключится от сети. Если вернуть обогреватель в вертикальное положение, то обогреватель снова включится.

Датчика Холла для определения скорости и направления вращения

Импульсный преобразователь скорости и направления вращения преобразует величины скорость и направление вращения деталей механизма в общий электрический сигнал для последующей передачи, измерения и отображения параметров работы. Системы автоматики могут применять преобразователь для включения в петлю обратной связи. Информация, следующая от датчика, требуется для формирования сигналов в системах регулировки и стабилизации параметров перемещения различных механических узлов объекта. Применения такого преобразователя требует осуществлять контроль оборотов выходных валов редукторов, определение направления вращения от двух и выше механизмов, учет расхода жидкости и многие подобные приборы. Информация с преобразователя передается по трем проводам, с помощью которых поступает питание и идет сигнал частоты и направления вращения в фиксирующий прибор системы автоматического контроля и управления. Преобразователь может использоваться в системах автоматизации, транспортных системах и т.п.

В основе работы схемы лежит преобразование перемещения в сигнал которое выполняет микросхема с эффектом Холла SS526DT. Микросборка содержит два полупроводниковых элемента, генерирующих разность потенциалов при попадании в магнитное поле. Она позволяет вычислить скорость и направление вращения. Информация идет в схему датчика с двух выходов микросборки в цифровом виде: скорость движения соответствует частоте следования импульсов с выхода Speed, направлению соответствует логический уровень сигнала на выходе Direction.

Упрощенная конструкция датчика скорости и направления вращения.

Вращательное перемещение воспринимает вал преобразователя через зафиксированную на нем шестеренку. На валу имеется диск, в котором имеются постоянные магниты. Установлены магниты так, что их полюса чередуются для правильной работы микросборки SS526DT. Чем больше магнитов на диске, тем лучше дискретность и, поэтому, увеличивается возможность регистрации низкоскоростных перемещений. SS526DT монтируется на печатной плате, соединенной проводами с основной схемой преобразователя, элементы которой размещены на второй печатной плате.

С выхода направления следует сигнал, передающий данные о скорости оборотов за счет частоты импульсов, а данные о направлении вращения передается с помощью полярности импульсов.

Т.к в схеме имеется источника двуполярного напряжения питания выходной сигнал размахом пять вольт может иметь как отрицательную, так и положительную полярность.

Схема преобразует сигнал идущий от датчика Холла в выходной сигнал датчика скорости и направления вращения, обеспечивает нормальную нагрузочную способность по току. Для снижения вероятных помех, оказывающих воздействие на кабель импульсного датчика, сопротивление приёмника сигнала должно быть достаточно низким. Питание преобразователя осуществляется по двум проводам. Третий применяется для передачи информационного сигнала, полярность которого меняется относительно общего провода питания. Датчик Холла генерирует сигнал, передающий информацию о направлении вращения, упровляющий переключателем К1. В зависимости от уровня сигнала К1 подает К2 положительный или отрицательный уровень напряжение. Сигнал скорости управляет переключателем К2. Частота сигнала скорость, формируется К2, соответствует половине магнитов, расположенных на диске датчика.

Логические элементы усиливают сигнал направление, идущий от датчика Холла. Другие элементы управляют светодиодами оптронов, один из которых срабатывает на замыкание, а другой на размыкание. При нулевом логическом уровне сигнала Направление светодиоды оптронов не горят. Поэтому замкнуты контакты оптрона на размыкание, на контакты оптрона сигнала Скорость поступает + 5 вольт от встроенного двухполярного ИБП. При логической единице сигнал Направление через светодиоды оптронов заставляет срабатывать соответствующие цепи, выходной оптрон подключается к -5 вольт. Сигнал Скорость через усиливающий элемент следует на управление выходным оптроном. Под действием сигнала скорость с выхода преобразователя следуют импульсы, полярность которых задается сигналом Направление. Использование оптрона на выходе преобразователя дает возможность увеличить нагрузочную способность, что позволяет передавать сигнал с большим током для повышения уровня помехоустойчивости.

Для увеличения уровня помехозащищенности параллельно светодиодам рекомендуется подсоединить резисторы, увеличивающие ток, идущий по проводу “Скорость/направление”.

C1…C3 Конденсатор EMR 47 мкФ 50 В ф. Hitano, C4…C6 Конденсатор SMD 0805 2,2 мкФ 16 В, DA1 Преобразователь напряжения TMR 3-1221WI ф. Traco power, DA2 Микросхема SS526DT ф. Honeywell, DD1 Микросхема КР1533ЛН1, R1, R2 Резистор 300 Ом ±5%, R3, R4 Резистор 180 Ом ±5%, VK1 Оптореле 249КП10АР, ХТ1 Клемма LMI 107 203 51

Сигнал Направление идет с выхода D микросборки с эффектом Холла, DA2. Единичный логический уровень Направление преобразуется инвертором DD1, в низкий на выводе 12. Светодиод VK1.2 пработает при появлении единичного логического уровня на десятом выводе DD1. Одновременно с этим блокируется работа светодиода оптрона VK1.1, так как на анод светодиода поступает напряжение нулевого логического уровня. Благодаря соединению светодиодов оптронов с логическим элементом сигнал Направление устанавливает, через какой из оптронов будет идти сигнал, с вывода 10 DD1. Сигнал скорости оборотов следует с выхода S DA2 на вход инвертора DD1. Высокий уровень импульсов, идет с вывода 10 микросхемы DD1, заставляет течь ток через сопротивление R4 и светодиод VK1.2. Функции оптронов разделяются: оптрон VK1.1 генерирует сигнал положительной полярности на третьем контакте клеммы XT1, VK1.2 – отрицательной. В схему преобразователя входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание. Емкостисглаживают помехи, снижая их влияние на формирование выходного сигнала. Сопротивления R1, R2 задают выходной ток импульсного датчика. Их номинал можно перераспределить в зависимости от входной цепи приёмника для их согласования. Схема использует один сдвоенный оптрон VK1, что экономит площадь печатной платы и сформировать сигналы Скорость и Направление вращения, используя один радиоэлемент.

www.texnic.ru

Датчик Холла

Есть такой интересный эффект — если через квадратную проводящую пластину гнать постоянный ток, а саму пластину пронизать магнитным полем, чтобы линии индукции проходили через ее сечение, то летящие по пластине электроны отклоняются силой Лоуренса.

А раз так, то с одного края электронов будет больше чем с другой. Возникает разность потенциалов, то есть напряжение. И чем больше ток и сильней поле, тем большая разность будет. Это и есть эффект Холла.

Дальше дело за малым — берем источник стабильного тока, чем стабильней тем лучше, ведь от стабильности зависит точность показаний. Прогоняем постоянный ток по пластине, ловим да усиливаем разность потенциалов до осязаемых величин. В результате получаем отличную вещь — датчик магнитного поля, он же датчик Холла. Например такой:

Моделей существует целая прорва. В чистом виде, правда, встречается редко. Обычно элемент Холла с чем нибудь да совмещен. Либо, как тут, с усилителем, либо с силовыми ключами, как в датчиках из компьютерных бесколлекторных вентиляторов — там он сразу же коммутирует обмотки, выполняя роль электронного коллектора. Правда на некоторых старых моделях вентиляторов можно обнаружить и целые микросборки из «чистого» датчика, усилителя и силовых ключей, но вот уже лет 5 мне такие не попадались.

Делал я тут один частный заказик недавно, вот там и применил эти козявки.

Подключение проще простого — подал питание, снял сигнал. Питание по даташиту написано двуполярное, но ничего не мешает подать и однополярное. Просто в этом случае ноль сигнала у нас будет не 0В а Vcc/2. У меня на Pinboard напряжение в магистрали питания около 4.8 вольт, поэтому на выходе датчика 2.4 вольта в подвешенном состоянии.

Теперь берем и подносим к нашему датчику магнитик. В зависимости от полярности стороны магнита, напруга либо обвалится в ноль, либо подскочит до максимума. Ну и, в зависимости от расстояния, может принимать промежуточные значения, линейно завися от силы магнитного поля.

Это все интересно, но что с того? Куда это можно применить? А применений датчику можно придумать вагон и маленькую тележку. Например, бесконтактные концевые выключатели.

Причем, в отличии от герконов, датчики эти почти вечные — там нет ни единой движущейся части.

А если совместить датчик с магнитом и подсунуть ему шестеренку, что будет замыкать через себя магнитный поток, то можно легко получить датчик скорости вращения. Когда зубец будет ближе к датчику, то сопротивление магнитному потоку будет ниже, а значит и его сила будет больше. А на межзубцовых промежутках все наоборот. В результате, на выходе датчика будут импульсы сходные с формой зубов шестерни, а уж посчитать их не составит труда.

Или, например, надо нам замерить БОООЛЬШОЙ постоянный ток. Скажем идущий к драйверу двигателя. С малыми токами все ясно и так — ставим шунт и снимаем с него падение напряжения. С большими токами финт прокатит плохо — шунт будет лишней нагрузкой, сжирающей мощность, греющейся. Да и сделай его еще из подручных средств… А ведь можно сделать все куда проще. Заворачиваем провод в катушку, опоясываем магнитопроводом, а в разрез пихаем наш датчик. Причем необязательно делать много витков — если ток большой, да датчик чувствительный, то и одного-двух витков хватит (кстати, есть и неплохие промышленные датчики постоянного тока — LEM делает).

Ну и вот такой практический примерчик — на базе датчика SS495A сварганил простейший цифровой тахометр :) Сам датчик купил на Алиэспрессе

А схему собрал на своей демоплате:

Получилась такая вот конструкция:

Включил моторчик, магнитик завертелся, а на выходе датчика Холла пошла вот такая вот картина:

Вообще я сам удивился насколько четкие и резкие фронты. Я думал будет подобие синуса. Ан нет, магнит оказался мощный (ниодимовый из лазерной головки CD-ROM’a) и видимо он сразу же зашкаливает наш датчик.

Дальше, на базе ядра диспетчера, описанного в не так давно, набросал по быстрому программку (только функциональная часть):

HAL.c

1 2 3 4 5 6 7 8 9 10 11 12 13 inline void InitAll(void) { //InitUSART UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1

easyelectronics.ru

Датчик Холла: принцип работы и особенности ремонта

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.Обращаться на почту [email protected]

Датчики в конструкции машины – своеобразные шпионы, которые сообщают головным узлам автомобиля ту или иную информацию, а последние в свою очередь, анализируя полученные данные, принимают решение относительно своей дальнейшей работы. Подобных шпионов в любом транспортном средстве установлено немало, однако и среди этих вспомогательных деталей выделяют некоторые основные. Так, датчик тока, основанный на эффекте Холла, участвует в работе многих систем автомобиля. Есть желание узнать о нём подробнее? Тогда обязательно ознакомьтесь с приведённой ниже статьёй, которая во всевозможных разрезах рассматривает линейный датчик Холла.

Принципы работы и устройство датчика Холла

Датчик любого вида устанавливается на автомобиль с одной целью: получение информации об одном из многочисленных параметров его работы. Какой-то идентификатор отвечает за определение температуры в двигателе, другой отслеживает количество расходуемого воздуха, а третий всегда готов ответить за положение того или иного узла мотора. Именно для достижения последней цели нужен датчик Холла, который беспрерывно следит за положением коленчатого или распределительного вала.

Принцип работы датчика Холла основан на применении гальваномагнитного явления, открытого в 1879 году Эдвином Холлом. Суть последнего заключается в том, что посредством интеграции некоторого полупроводника (датчика Холла) в электросистему с магнитным полем на его выводах возникает напряжение. При помощи измерения напряжённости магнитного поля в системе зажигания и получается определять углы расположения коленвала и распредвала машины, что крайне важно для грамотного формирования знаний о моменте искрообразования на данный момент времени. Благодаря своей специфике, магнитный датчик Холла применяется исключительно в бесконтактных системах с протекающим в них током (в случае с автосферой – в бесконтактных системах зажигания или, в сокращении, БСЗ).

Обобщая отмеченную выше информацию, стоит поэтапно рассмотреть то, как работает датчик Холла. Если обращать внимание на этот процесс максимально просто, то его сущность заключается в следующем:

  • Аналоговый датчик Холла монтируется в систему зажигания автомобиля, что с точки зрения физики означает включение в электросеть (магнитное поле) дополнительного проводника. Уточняя этот момент, важно отметить, что устройство идентификатора предполагает использование высокотехнологичных проводников, которые позволяют не нарушать сопротивление и напряжение в цепи;
  • В процессе работы мотора, а именно в моменты искрообразования в датчике Холла формируется некоторое напряжение, которое и необходимо для определения точного угла коленвала и распредвала в конкретный момент времени;
  • После этого, выявленное изменение в магнитном поле системы зажигания автомобиля, передаётся на коммутатор, а затем отходит на иные узлы машины. Последние, к слову, основываясь на данном изменении в магнитном поле и расположении валов, могут принимать наиболее оптимальные решения в плане организации своей работы.

Возникновение и точная передача напряжения Холла через соответствующий датчик возможна благодаря уникальной схеме подключения последнего. Уникальность заключается в расположении датчика, который просто вмонтирован в электроцепь системы зажигания автомобиля и не нарушает работу таковой. Именно подобные характеристики идентификатора Холла позволяют ему оставаться наилучшим способом определения положения коленвала и распредвала мотора вот уже долгие годы.

Цифровой датчик Холла в конструкции автомобиля

Теперь, когда принципы работы, устройство датчика Холла и то, для чего он вообще нужен, стали более-менее понятны, можно углубиться в рассмотрение его функционирования именно в конструкции машины. Для начала обратим внимание на его физическое состояние. Большинство современных датчиков Холла, устанавливаемых на мотор, представляют собой составляющую трамблёра. Она устанавливается неподалёку от распредвала и имеет в своей конструкции магнитопроводящую пластину, с виду напоминающую корону. Последняя имеет n-ое количество прорезей (их число всегда равняется числу цилиндров двигателя), а также дополняется основой датчика тока на эффекте Холла – магнитом.

В процессе вращения распредвала его лопасти поочерёдно проходят прорези ранее отмеченной пластины датчика, что вызывает появления напряжения. Последнее формирует электрический импульс, передающийся сначала на коммутатор, а затем на катушку зажигания и другие электронные узлы автомобиля. В итоге, в системе зажигания с датчиком Холла он выполняет две основные функции:

  • Запускает искрообразование на концах свечей зажигания посредством преобразования напряжения Холла в высокую напряжённость магнитного поля;
  • Оповещает другие узлы автомобиля, которым требуется знать положение распредвала и коленвала, о таковом в данный момент времени.

Подобные характеристики узла делают из него довольно-таки важную составляющую системы зажигания, без правильной работы которой, функционирование мотора зачастую невозможно. Теперь, наверное, уже всем полностью понятно – зачем нужен этот пресловутый «холловский» идентификатор. Отметим, что данная деталь успешно применяется как на одноконтактных, так и двухконтурных системах зажигания. Более того, двухконтурное зажигание с одним датчиком Холла довольно-таки популярно.

Подключение датчика Холла предусматривает использование трёх клемм:

  • первая идёт на «массу»;
  • вторая — на плюс с входным напряжением порядка 6 Вольт;
  • третья является «выходной» и отправляет преобразованное напряжение на коммутатор.

Распиновка у датчика простейшая и, как правило, не отличается от представленной ниже (то есть, провода датчика Холла зачастую подключаются по следующей схеме):

Вопросы по типу:

  • Как проверить датчик Холла?
  • Где находится датчик Холла?
  • Как заменить датчик Холла?
  • Как подключить датчик Холла?
  • Как поменять его на новый?

Требуют от автомобилиста знаний того, как выглядит этот элемент системы зажигания, отвечающий за правильное искрообразование. К счастью, нужная деталь до безобразия проста как в ремонте, так и во внешнем виде. В типовом варианте датчик Холла, поставленный на абсолютно любой автомобиль, выглядит следующим образом:

Ремонт детали: симптомы неисправности и процедура замены

Замена датчика Холла – именно та операция, проведение которой может понадобиться в самый неподходящий момент. «Затроил» мотор, его плохой запуск, дал сбой карбюратор или инжектор, неисправен другой узел автомобиля – всё это может указывать на поломку именно «холловского» идентификатора. Увы, от этого не застраховаться, поэтому знать о возможных поломках детали и о том, как проводится установка Датчика Холла, желательно каждому автомобилисту.

В первую очередь, обратим внимание на признаки неисправности датчика Холла, в качестве которых могут выступать:

  • плохой запуск или отказ в работе мотора;
  • перебои в его функционировании на холостых оборотах;
  • «дёрганье» машины на высоких оборотах;
  • самопроизвольное глушение двигателя, повторяющиеся многократно;
  • отказ функционирования от электроники инжектора, карбюратора или иных узлов автомобиля, работающих совместно с двигателем.

Безусловно, отмеченная выше симптоматика может проявляться и при неисправности других узлов машины, но зачастую виной всему именно поломанный датчик Холла. Тем более никто не мешает проверить его собственноручно. Спросите – «Как проверить датчик Холла на правильность функционирования?». Крайне просто! Для этого достаточно:

  1. Снять датчик с автомобиля;
  2. Замкнуть его выходы под номером 2 и 3 (минус и контакт с коммутатором);
  3. Проверить – появилась ли искра или нет. Если она есть и стабильно хорошая, то датчик неисправен. В ином случае стоит поискать проблему в другой составляющей системы зажигания.

Также имеется возможность проверки идентификатора Холла мультиметром. В этом случае нужно замерить напряжения на его выходах, которое в норме должно равняться от 0,4 до 11 Вольт. Естественно, при проверке датчика важно убедиться в исправности инжектора или карбюратора вашего автомобиля, ведь нередко проблемы с перебоями в работе мотора связаны именно с неисправностью элементов топливной системы.

Если узел неисправен, то следует провести соответствующий ремонт. Отметим, что замена датчика Холла особых сложностей не представляет и проводится не более 10-15 минут при соблюдении следующего порядка процедуры:

  1. Первоочерёдно автомобиль глушится, клеммы АКБ отключаются и снимается трамблёр зажигания;
  2. Отсоединив последний, демонтируется его крышка. На этом же этапе желательно совместить метки ГРМ и коленвала;
  3. После этого снимают вал трамблёра, а затем и датчик Холла. Далее остаётся лишь поставить новый идентификатор и собрать автомобиль в обратном порядке.

Внимание! Менять деталь важно исключительно на покупную. Стоит она недорого (не более 200-300 рублей для большинства марок автомобилей), поэтому говорить о сборке датчика Холла своими руками, наверное, бессмысленно.

На этом, пожалуй, по сегодняшней теме повествование можно завершать. Надеемся, представленный материал был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте!

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Датчики Холла. Виды и применения. Работа и подключения

Речь пойдет о датчике тока, принцип действия которого основан на эффекте Холла (Датчики Холла). Что это за эффект, и как такой датчик можно сделать в домашних условиях? Чтобы лучше понять эффект Холла нужно разобрать эксперимент физика, в честь которого был назван этот эффект.

Виды
  • Цифровые датчики. Работают на определение магнитного поля. Если индукция доходит до определенного предела, то датчик дает сигнал на присутствие магнитного поля. Если предел не достигнут, то сигнал равен нулю. Слабая индукция и малая чувствительность датчика не дает сигнал наличия поля. Недостатком такого типа датчика является то, что у него есть зона нечувствительности порогов. Цифровые датчики Холла делятся на униполярные и биполярные:

— Униполярные датчики Холла работают, если есть поле какой-либо полярности, выключаются при уменьшении индукции. — Биполярные датчики Холла срабатывают на изменение полярности поля. При одной полярности датчик включается, а при другой – выключается.

  • Аналоговый вид датчиков Холла изменяет индукцию поля в разность потенциалов. Значение датчика зависит от полярности и его силы. Нужно учитывать, на каком расстоянии находится датчик.
Применение

Датчики Холла входят в состав многих приборов. Чаще они применяются в измерении напряженности поля магнитной индукции, в электродвигателях, в ионных двигателях ракет. Широкое распространение датчики Холла нашли в устройстве системы зажигания современных автомобилей.

Также они используются в бесконтактных выключателях, герконах, при измерении силы тока, уровня жидкости и других местах. Главное их преимущество – это воздействие без физического контакта.

Как проверить на автомобиле исправность датчика Холла

В быту с такой проблемой сталкиваются чаще всего автомобилисты. Наиболее простым способом является обыкновенная замена на исправный датчик. Если после замены система зажигания заработала, значит необходимо менять датчик.

Если нечем заменить проверяемый датчик, то собирают простое устройство, которое может имитировать работу датчика Холла. Берется кусок провода, и тройной разъем от распределителя зажигания. Эти предметы работают аналогично датчику.

Для контроля пользуются обычным мультиметром. Если датчик вышел из строя, то тестер покажет 0,4 вольта или меньше. Также проверяется работа датчика путем проверки искры при подключении зажигания. Перед этим соединяют концы провода к выходам коммутатора.

Если неисправность возникла не на автомобиле, а на другом оборудовании, то необходим тестер. Методика проверки будет зависеть от прибора, в котором установлен датчик.

Датчики Холла в смартфонах

Мобильные гаджеты имеют в составе много функциональных блоков. Среди них есть вспомогательные датчики, одним из которых является датчик Холла. В современных устройствах связи такие датчики являются измерительными элементами, с помощью которых определяют мощность магнитного поля, его изменения. Они называются в честь ученого Холла.

Для чего установлен датчик Холла в смартфоне

Этот сенсорный элемент имеет много возможностей. Одной из них является измерение магнитной индукции приборов, а также бесконтактное управление. В дорогих моделях смартфонов имеется магнитометр, работа которого основана на датчике Холла.

На многих мобильниках этот датчик не полностью реализован. В основном этот сенсор применяют для таких задач:
  • Цифровой компас. Применяется для программ навигации и повышения скорости позиционирования.
  • Оптимизация взаимодействия устройства с разными аксессуарами, магнитными чехлами.
  • Применение датчика в раскладных моделях телефонов, для включения и отключения экрана при движении крышки.

Пример работы магнитного датчика Холла в чехле и смартфона заключается в том, что при открывании и закрытии чехла автоматически происходит блокировка экрана. Датчик реагирует на движение магнита, на усиление магнитного поля.

Принцип действия

Понадобится пластина и элемент питания постоянного тока. Подключаем пластину к батарее. От плюса к минусу начинает протекать электрический ток, вызванный движением заряженных частиц. Из курса физики эти частицы, или по-другому электроны летят против движения тока. Теперь поднесем два магнита к пластине разными полюсами так, чтобы линии индукции проходили через ее сечение.

Возникает так называемая сила Лоренца, которая отклоняет летящие по пластине электроны в сторону. Из-за этого возникает разность потенциалов на краях пластины. Эта разность потенциалов, иначе говоря, напряжение будут меняться в зависимости от силы тока и магнитного поля. Такой эффект носит название человека, который его обнаружил в 1879 году. Им был Эдвин Холл.

На основе этого эффекта выпускается большое количество датчиков, позволяющих без физического разрыва провода измерять в нем как постоянный, так и переменный ток, поскольку при протекании тока в проводнике создается электромагнитное поле.

Оно подобно тем магнитам, подносимым к пластине, изменяет выходное напряжение датчика Холла.

Но возникает проблема того, что это поле при протекании не сильно больших токов само по себе очень мало. Для того, чтобы его увеличить, будем использовать ферритовое кольцо, которое имеет особые магнитные свойства и позволит увеличить необходимое нам электромагнитное поле до уровня для обнаружения протекания тока в проводнике.

Сборка датчика тока на основе эффекта Холла

Попробуем сделать собственный датчик тока. Понадобится ферритовое кольцо и датчик Холла. Найти ферритовое кольцо не составляет особых проблем. Они есть в блоках питания компьютера или энергосберегающих ламп, а также продаются в радиомагазинах по цене от 10 до 100 рублей в зависимости от размера самого кольца. В нашем случае имеется кольцо диаметром 28 мм за 55 рублей.

Подойдут кольца различных диаметров вплоть до 10 мм. Чем больше кольцо, тем чувствительнее получится датчик тока. Что касается датчика Холла, то его можно заказать со всем известного сайта. Стоит он недорого. Либо можно найти в нерабочих вентиляторах, ноутбуках и прочих устройствах, где он может использоваться. Датчики Холла Аналоговые и цифровые (Дискретные).

Дискретные работают по принципу транзисторов, то есть, при превышении какого-либо уровня магнитного поля датчик срабатывает. Аналоговый вид меняет свое выходное напряжение в зависимости от величины проходящего через него магнитного поля. Нам понадобится аналоговый датчик Холла. Если вы хотите не только детектировать протекание тока по проводнику, но также знать приблизительную величину этого тока. В нашем случае это аналоговый датчик ОН49Е.

Схема подключения датчика

Схема подключения выглядит следующим образом.

Как видно из рисунка для детектирования магнитного поля, создаваемого током в проводнике, нам необходимо будет сделать зазор в ферритовом кольце и поместить туда датчик Холла. Тем самым появится возможность измерять величину этого электромагнитного поля. На основании полученных данных можно делать вывод о том, есть ли сейчас ток в проводнике, и какой он величины.

Чтобы получить более универсальный вариант этого датчика, мы распилили ферритовое кольцо пополам, что без тисков было сделать сложно. Это привело к поломке кольца. Как хорошо, что люди придумали клей, и это дело мы быстро исправили. Получив две половинки, мы убрали неровности наждачной бумагой. Затем на одну из сторон мы вырезали и приклеили плотный лист бумаги. На другую сторону сам датчик Холла. После этого мы приклеили обе половинки к большому крокодилу на 30 ампер.

В итоге получились токовые клещи, или более универсальный вариант датчика тока, который можно снять и присоединить к любому проводу без его разреза. Такие разделяемые датчики тока стоят около 1500 рублей, при заказе в Китае. Экономия получилась налицо.

Датчик готов.

Промышленное напряжение в сети переменного тока изменяется с частотой 50 герц. То есть, направление тока, текущего по проводнику, будет меняться 50 раз в секунду. Электромагнитное поле также вслед за током будет менять свое направление 50 раз в секунду.

Похожие темы:

electrosam.ru

Датчик Холла — принцип работы

В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.

Содержание:

Датчик Холла, что это такое

Все автомобильные датчики классифицируются по параметру, который они определяют. Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.

Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.

Применение датчика в автомобиле

Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры. Схема датчика проста и мы ее помещаем ниже.

Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.

Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые  приборы.

Преимущества автомобильного датчика Холла

Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:

  • компактность;
  • возможность разместить в любой точке двигателя или любого другого механизма;
  • стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
  • стабильность не только в работе, но и стабильность характеристики сигнала.

Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:

  1.  Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
  2.  Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
  3.  Работоспособность датчика Холла сильно зависит от электронной схемы.
  4. Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.

Зажигание с датчиком Холла

Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.

Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.

Подключение и проверка датчика Холла

Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.

Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.

Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!

avtoshef.com


Смотрите также