Сколько турбина добавляет мощности


Что даёт больше мощности автомобилю - турбина или нагнетатель? И что они из себя представляют

Долго обсуждалось, что лучше для вашего двигателя - нагнетатели или турбокомпрессоры? Что добавляет больше энергии? И что более надежно?

Разные производители могут комплектовать свою продукцию различными системами увеличения мощности, - нагнетателями, турбокомпрессорами, двойными турбокомпрессорами или последовательными нагнетателями. В поисках большего количества лошадиных сил, установка таких систем, является одним из самых быстрых способов увеличить мощность вашего двигателя. Так, какой же из них выбрать?

Нагнетатель

Идея нагнетателя проста. Воздушный компрессор с ременным приводом прикреплен к аксессуарам двигателя и доставляет большее количество воздуха в двигатель. Звучит достаточно просто, но все немного сложнее.

Нагнетатель с ременным приводом, как и многие другие аксессуары на вашем двигателе, такие как, - генератор, помпа, компрессор кондиционера и гидроусилитель, подключен и питается, напрямую энергией вырабатываемой двигателем вашего автомобиля. И в связи с этим у вас может возникнуть вопрос: «Если он работает за счет энергии вращения коленвала, то он забирает от двигателя ту мощность, которую ему сам и создает?» Отчасти это так, поэтому чтобы нагнетатель «не забирал» всю «заработанную» им мощность, используются шкивы различного диаметра. Чем больше шкив, тем медленнее работает нагнетатель. И наоборот, чем меньше шкив, тем быстрее работает нагнетатель, а следовательно он больше увеличивает обороты крыльчатки и подачу сжимаемого им воздуха.

Нагнетатели или приводные компрессоры бывают трех типов, - роторные, винтовые и центробежные.

Роторные и винтовые нагнетатели - заменяют существующий впускной коллектор, поэтому они не создают сложностей при установке, имеют компактные размеры и занимают меньшее пространство. Проблема с такими установками заключается в том, что они менее производительны.

Центробежный тип является самым популярным, конструкция очень схожа с турбокомпрессором, и в отличии от роторных и винтовых типов, не заменяет впускной коллектор.

Расположение выхода (откуда выводится сжатый воздух) может быть «синхронизировано» (развернуто в различные стороны) для большей гибкости при установке. Большинство центробежных нагнетателей позволяют использовать интеркулеры, так как воздух сжимается за пределами двигателя. Интеркулеры обеспечивают более высокую мощность двигателя, поскольку они понижают температуру сжатого воздуха.

Нагнетатель Плюсы:

1. Простота установки

2. Ременный привод

3. Никаких изменений в выпускной системе

Нагнетатель Минусы:

1. На ременном приводе теряется часть мощности (ремень может проскальзывать, визжать или даже лопнуть). Запасные ремни могут быть достаточно дорогими.

2. Ограничен, размерами шкивов, при изменениях уровней мощности

3. Центробежные тип - это в основном сделанные на заказ комплекты, которые требуют значительных вложений

Турбокомпрессоры

Турбины отличаются от нагнетателей тем, что они работают на выхлопных газах. Турбокомпрессор устанавливается на выпускном коллекторе, и когда выхлопные газы проходят через него, они вращают крыльчатку (турбину), которая соединена через вал соседней крыльчаткой, сжимающей воздух. По этой причине турбокомпрессоры сильно перегреваются и нагревают сжатый воздух, делая его не таким плотным.

Турбина также может потребовать подключения к промежуточному охладителю - интеркулеру (не обязательно, но рекомендуется). Турбины также требуют постоянной смазки, а иногда даже используется принудительное охлаждение, которое должны быть подключено к единой системе, что может быть затруднительно.

Турбокомпрессоры Плюсы:

1. Приводится в действие «свободными» выхлопными газами

2. Форсирование (увеличение мощности) двигателя, можно менять вручную или при помощи электроники, оставляя неограниченный потенциал

3. Неограниченные варианты размеров и конфигураций

Турбокомпрессоры Минусы:

1. «Turbo lag» (Турбо-отставание или турбояма) - означает, что мощность не мгновенная, а между нажатием на педаль газа и ускорением проходит определенное время (в отличии от нагнетателя)

2. Дорогое техническое обслуживание

3. Из-за большого нагрева, высокая вероятность закоксовывания смазки, что может привести к преждевременному износу (об этом дополнительно здесь)

4. Чтобы добавить турбину, выхлопная система должна быть изменена

Вывод

И нагнетатели, и турбины, - значительно увеличивают мощность двигателей.

Что лучше, нагнетатель или турбокомпрессор?

При добавлении принудительного наддува в автомобиль, оба варианта требуют модернизации от компьютера, до топливной системы и сборочных сторон двигателя. Турбокомпрессор требует замены выпускного коллектора и трубопроводов. Нагнетатель требует замены впускного коллектора и трубопроводов промежуточного охладителя во всем моторном отсеке.

В конечном счете, выбор за вами. Если у вашего автомобиля действительно хорошая выхлопная система, а вы хотите получить гораздо больше энергии, рекомендуется использовать комплект нагнетателя.

Если вы собираете проектный автомобиль и двигатель, добавление турбокомпрессора было бы идеальным, потому что двигатель может быть построен с более низкой степенью сжатия, а изготовление трубопроводов и масляных линий может быть легко добавлено к двигателю.

Уважаемые гости - переходите на мой канал, кликнув - Pit Stop, ставьте лайки и не забывайте подписываться (это Вас ни к чему не обяжет, а Вы будете чаще встречать мои статьи в ленте Дзен), впереди ещё будет много нового и интересного!

zen.yandex.ru

Турбина или суперчарджер? — DRIVE2

Турбонаддув — это не что иное, как слово, обозначающее процесс работы центробежного нагнетателя с турбоприводом (который в России часто называют просто турбиной), имеющий своей целью увеличение объема вентиляции двигателя. Конечный результат сходен с результатом действия любого нагнетателя – увеличение массы потока воздуха к двигателю и связанный с ним прирост мощности. Мощность, как известно, напрямую зависит от того, сколько воздуха попадет в двигатель.

Принципиальная разница между турбонагнетателем и традиционным нагнетателем с механическим приводом (также, возможно, известным читателю под словом «суперчарджер») состоит в способе, которым он приводится в действие. Все нагнетатели по сути своей – насосы. Они качают воздух и все они, естественно, требуют какого-то источника энергии, чтобы выполнять эту свою функцию. Нагнетатели с механическим приводом (центробежные, винтового типа или объемные нагнетатели Рута) работают благодаря энергии, получаемой ими от коленвала через механическое соединение – ремень, зубчатую передачу и т.п. Турбонагнетатели же извлекают энергию для своей работы из того, что вообще-то предназначено для выброса наружу – из потока выхлопных газов. Забавно, но в итоге турбина, работающая на таком «отработанном материале», способна дать любому двигателю более высокий прирост мощности – просто потому, что она не требует дополнительных энергозатрат от этого самого двигателя.

Кстати, эти энергозатраты намного более высоки, чем многие думают. Возьмем, к примеру, механический нагнетатель, который теоретически добавляет к мощности двигателя 100 лошадиных сил. До этого он «скушает» 25-35 л.с. (если двигатель не очень объемный). Эта величина, кстати, зависит от КПД самого нагнетателя, но это уже тема для другой статьи :) Так вот, «отъев» от поставляемой им самим мощности те самые 25-35 л.с., механический нагнетатель оставит двигателю соответственно только 65-75 «лошадей». В то же время турбина, которая раскручивается выхлопными газами, а никак не коленвалом, даст двигателю 90-95 л.с. дополнительной мощности. При этом, конечно, 5-10 «лошадей» тоже потеряются — из-за противодавления в выпускном тракте, — но масштаб все равно не тот, не правда ли? В итоге при прочих равных двигатель с турбонаддувом получит мощности на 30-40 процентов больше, чем тот же двигатель с механическим нагнетателем.

Однако многие считают работу турбонагнетателей некой «черной магией». Свою долю в восхищенное недоумение, которое кто-то наверняка испытывает перед турбинами, вносит распространенное заблуждение касательно того, что поток выхлопных газов от двигателя недостаточно силен для того, чтобы привести в действие нагнетатель (компрессор). Однако это не так. Энергетический потенциал выхлопа любого двигателя внутреннего сгорания огромен. Он почти равен тому, что передается через маховик. А все благодаря тому, что энергия горения в ДВС высвобождается почти в одинаковых долях тремя путями: вращение коленвала, выделение тепла и сила выхлопа. Эта последняя сила как раз и заставляет вращаться целые газотурбинные двигатели, что уж говорить о турбочарджерах (а они представляют собой те же ГТД, только маленькие, и используют двигатель внутреннего сгорания как топку). Хороший повод задуматься о том, сколько энергии мы тратим впустую, позволяя ей просто утекать в атмосферу, хотя она могла бы добавить нам немного дополнительных лошадей под капот :)

Теперь вспомним школьный курс математики и немного поупражняемся на гипотетическом драгстере, который, допустим, оснащен суперчарджером и имеет мощность в 1000 л.с. Предположим, 500 л.с. из этой тысячи получены как раз благодаря суперчарджеру. Немного отмотав текст назад и взяв оттуда соотношение 65/100, с которым механические нагнетатели выдают реальную прибавку к мощности, а потом разделив 500 на 0,65, мы получим 769 л.с. Именно такую мощность должен реально выдавать суперчарджер, чтобы двигатель получил в итоге 500 л.с. в плюс. А теперь посчитаем, сколько «лошадей» потребуется от турбины, чтобы получить такой же результат. Взяв выше соотношение 95/100, получим 526 л.с. Из этого следует, что двигатель с механическим нагнетателем должен вырабатывать мощность в 1269 л.с. (500 + 769), чтобы сравняться с турбированным двигателем мощностью в 1026 л.с. (500 + 526) – при прочих равных условиях, безусловно.

Впрочем, 35 л.с., которые теряет суперчарджер и 5 л.с., которые теряет турбонагнетатель – значения максимальные. Возьмем другое соотношение: 25 л.с. теряет суперчарджер и 10 л.с. – турбонагнетатель. Соотношение сил здесь все равно не в пользу механического привода. 1056 л.с. должен будет выдать турбодвигатель и 1167 л.с. – его собрат с суперчарджером. При этом турбодвигатель, к слову, намного меньше износится, что тоже порой имеет значение. (Примечание: все приведенные здесь соотношения, конечно, не идеально точны для двигателей внутреннего сгорания, но близки к реальности). Так что, подводя итог, можно сказать, что «черная магия» турбонаддува – не магия вовсе, а просто более эффективное использование энергии, которую выделяет двигатель. Однако пока изложенные выше вещи удалось донести до конструкторов и разработчиков моторов, прошли десятилетия – и это не преувеличение. Однако сейчас можно наблюдать огромную популярность турбонаддува. Значит, кто-то все-таки не побоялся «черной магии», что не может не радовать.

Page 2

Турбонаддув — это не что иное, как слово, обозначающее процесс работы центробежного нагнетателя с турбоприводом (который в России часто называют просто турбиной), имеющий своей целью увеличение объема вентиляции двигателя. Конечный результат сходен с результатом действия любого нагнетателя – увеличение массы потока воздуха к двигателю и связанный с ним прирост мощности. Мощность, как известно, напрямую зависит от того, сколько воздуха попадет в двигатель.

Принципиальная разница между турбонагнетателем и традиционным нагнетателем с механическим приводом (также, возможно, известным читателю под словом «суперчарджер») состоит в способе, которым он приводится в действие. Все нагнетатели по сути своей – насосы. Они качают воздух и все они, естественно, требуют какого-то источника энергии, чтобы выполнять эту свою функцию. Нагнетатели с механическим приводом (центробежные, винтового типа или объемные нагнетатели Рута) работают благодаря энергии, получаемой ими от коленвала через механическое соединение – ремень, зубчатую передачу и т.п. Турбонагнетатели же извлекают энергию для своей работы из того, что вообще-то предназначено для выброса наружу – из потока выхлопных газов. Забавно, но в итоге турбина, работающая на таком «отработанном материале», способна дать любому двигателю более высокий прирост мощности – просто потому, что она не требует дополнительных энергозатрат от этого самого двигателя.

Кстати, эти энергозатраты намного более высоки, чем многие думают. Возьмем, к примеру, механический нагнетатель, который теоретически добавляет к мощности двигателя 100 лошадиных сил. До этого он «скушает» 25-35 л.с. (если двигатель не очень объемный). Эта величина, кстати, зависит от КПД самого нагнетателя, но это уже тема для другой статьи :) Так вот, «отъев» от поставляемой им самим мощности те самые 25-35 л.с., механический нагнетатель оставит двигателю соответственно только 65-75 «лошадей». В то же время турбина, которая раскручивается выхлопными газами, а никак не коленвалом, даст двигателю 90-95 л.с. дополнительной мощности. При этом, конечно, 5-10 «лошадей» тоже потеряются — из-за противодавления в выпускном тракте, — но масштаб все равно не тот, не правда ли? В итоге при прочих равных двигатель с турбонаддувом получит мощности на 30-40 процентов больше, чем тот же двигатель с механическим нагнетателем.

Однако многие считают работу турбонагнетателей некой «черной магией». Свою долю в восхищенное недоумение, которое кто-то наверняка испытывает перед турбинами, вносит распространенное заблуждение касательно того, что поток выхлопных газов от двигателя недостаточно силен для того, чтобы привести в действие нагнетатель (компрессор). Однако это не так. Энергетический потенциал выхлопа любого двигателя внутреннего сгорания огромен. Он почти равен тому, что передается через маховик. А все благодаря тому, что энергия горения в ДВС высвобождается почти в одинаковых долях тремя путями: вращение коленвала, выделение тепла и сила выхлопа. Эта последняя сила как раз и заставляет вращаться целые газотурбинные двигатели, что уж говорить о турбочарджерах (а они представляют собой те же ГТД, только маленькие, и используют двигатель внутреннего сгорания как топку). Хороший повод задуматься о том, сколько энергии мы тратим впустую, позволяя ей просто утекать в атмосферу, хотя она могла бы добавить нам немного дополнительных лошадей под капот :)

Теперь вспомним школьный курс математики и немного поупражняемся на гипотетическом драгстере, который, допустим, оснащен суперчарджером и имеет мощность в 1000 л.с. Предположим, 500 л.с. из этой тысячи получены как раз благодаря суперчарджеру. Немного отмотав текст назад и взяв оттуда соотношение 65/100, с которым механические нагнетатели выдают реальную прибавку к мощности, а потом разделив 500 на 0,65, мы получим 769 л.с. Именно такую мощность должен реально выдавать суперчарджер, чтобы двигатель получил в итоге 500 л.с. в плюс. А теперь посчитаем, сколько «лошадей» потребуется от турбины, чтобы получить такой же результат. Взяв выше соотношение 95/100, получим 526 л.с. Из этого следует, что двигатель с механическим нагнетателем должен вырабатывать мощность в 1269 л.с. (500 + 769), чтобы сравняться с турбированным двигателем мощностью в 1026 л.с. (500 + 526) – при прочих равных условиях, безусловно.

Впрочем, 35 л.с., которые теряет суперчарджер и 5 л.с., которые теряет турбонагнетатель – значения максимальные. Возьмем другое соотношение: 25 л.с. теряет суперчарджер и 10 л.с. – турбонагнетатель. Соотношение сил здесь все равно не в пользу механического привода. 1056 л.с. должен будет выдать турбодвигатель и 1167 л.с. – его собрат с суперчарджером. При этом турбодвигатель, к слову, намного меньше износится, что тоже порой имеет значение. (Примечание: все приведенные здесь соотношения, конечно, не идеально точны для двигателей внутреннего сгорания, но близки к реальности). Так что, подводя итог, можно сказать, что «черная магия» турбонаддува – не магия вовсе, а просто более эффективное использование энергии, которую выделяет двигатель. Однако пока изложенные выше вещи удалось донести до конструкторов и разработчиков моторов, прошли десятилетия – и это не преувеличение. Однако сейчас можно наблюдать огромную популярность турбонаддува. Значит, кто-то все-таки не побоялся «черной магии», что не может не радовать.

www.drive2.ru

Мощность турбонаддува

Способность турбонагнетателя увеличивать мощность наиболее наглядно демонстрировалась гоночными автомобилями Гран-при Формулы 1 эпохи 1977-1988 годов.

Рис. Двигатель Renault EF15B Formula 1, 1985 — 1986 г.г., V6. объем 1492 куб. см., давление наддува до 4 бар, мощность до 900 л.с.

Сравнение мощности драгстеров с мощностью болидов Формулы 1 показывает абсолютное превосходство двигателей с турбонаддувом. Реальная мощность драгстера с 8-ми литровым двигателем находится в диапазоне 5000-6000 л.с., что означает 0,62 — 0,75 л.с. с 1 куб. см. Эти цифры выглядят блекло в сравнении с 1300-1400 л.с. 1500 кубовых двигателей автомобилей Формулы 1 1981 года, что означает отдачу от 0,86 до 0,93 л.с. с одного кубического сантиметра рабочего объема. Однако у потенциального пользователя турбонаддува остается много вопросов, ответы на которые покажут, почему турбонадцув в равной степени полезен автомобильному энтузиасту, который использует автомобиль для повседневной езды, спортсмену, и даже уличному гонщику.

Почему турбонаддув дает больший прирост мощности, чем другие способы модернизации двигателя?

Потенциал повышения мощности двигателя от применения любого компрессора измеряется количеством воздуха, нагнетаемого устройством с учётом потерь мощности, затрачиваемой на привод, а так же на нагрев воздуха в процессе сжатия. Хотя может показаться, что турбонагнетатель не использует мощность двигателя, так как энергия выхлопа так или иначе будет потеряна, это далеко не так. Поток горячих выхлопных газов приводит во вращение турбину. Уменьшенные проходные сечения, свойственные ее конструкции, создают этим газам противодавление. Это вызывает некоторые потери мощности двигателя, которые не возникли бы, если бы турбонагнетатель получал энергию от другого её источника, а не от двигателя, который в нашем случае выступает в роли насоса. Потеря мощности увеличивается при уменьшении размера турбонагнетателя, потому что турбина меньшего размера создает большее противодавление. Напротив, большие турбины создают намного меньшее противодавление, и поэтому потери мощности меньше.

И всё же затраты мощности на привод нагнетателя, свойственные двигателю с турбиной, существенно меньше, чем потери, возникающие при использовании приводного компрессора с ремнем или другим механическим приводом.

То, что нагнетатель всегда нагревает сжимаемый воздух, является термодинамическим фактом, от которого мы не можем отмахнуться. Различные виды нагнетателей нагревают воздух в разной степени при одинаковых расходах газа и степенях сжатия. В значительной степени это зависит от КПД различных типов насосов. Классический компрессор типа Рутс обычно имеет КПД приблизительно 50 % при том, что турбонагнетатель имеет КПД в районе 70%. Чем выше эффективность (КПД), тем меньше нагрев воздуха. Эффективность имеет первостепенное значение для настоящих энтузиастов мощности, так как повышенная температура воздуха на впуске — враг для высоких характеристик двигателя. При высокой температуре плотность воздуха меньше, таким образом, двигатель фактически потребляет меньшее количество воздуха при более высокой температуре, даже при неизменном давлении. Второй проблемой является то, что более высокие температуры способствуют разрушительно воздействующей на двигатель детонации топливовоздушной смеси.

ustroistvo-avtomobilya.ru

Как контролируется надув, и как прибавить 20% мощности к Вашему турбомотору — DRIVE2

Всем привет, давно не писал по делу. Сегодня хочу Вам рассказать о различных системах контроля надува в турбо системе мотора. Но для начала, очень коротко о самой турбине и как она работает. Турбина или точнее турбокомпрессор состоит из двух частей – из самой турбины (горячая часть) и компрессор (холодная часть)

Вот так выглядит турбокомпрессор

1. Вход в турбину выпускных газов (из выпускного коллектора)2. Вход в компрессор свежего воздуха3. Выход из турбины горячих газов в систему выпуска4. Выход из компрессора сжатого воздуха

Принцип очень простой отработанные газы, попадая в турбину, раскручивают крыльчатку (лопатки) которая имеет одну ось с лопатками компрессорной части. Крыльчатка компрессора всасывает свежий воздух и под давлением (создает надув, избыточное давление) направляет сжатый воздух в интеркулер, где он охлаждается и потом поступает в камеру сгорания. Вот и все.

Но сегодня я бы хотел более подробно остановится о принципах, видах контроля надува. Последнее время мне часто попадались споры о том, что лучше 2 портовый или 3 портовый соленоид и т.д. Лично я даже, не понимаю сути этих споров. Моя цель рассказать Вам, как все это работает, а Вы потом сами решите, что лучше.

Надув контролируется регуляцией выпускных газов в горячей части турбокомпрессора (турбине). Для этого в ней есть специальный клапан, дверка или вестгейт

Если дверка закрыта, то все газы попадают на лопатки, если этот клапан (на фото valve) открыть то часть газов, направится в систему выпуска, минуя крыльчатку и тем самым снизится скорость вращения лопаток, что соответственно приведет к понижению давления. Все гениальное, очень просто. И вот здесь начинается самое интересное, а именно, как производится регулировка открытия и закрытия вестгейта.

Для этих целей используется актуатор (на фото wastegate Actuator), если его шток выдвигается, то он открывает вестгейт Для качественной настройки системы регулирования вестгейтом необходимо установить правильный преднатяг. Для этого, у большинства хороших актуаторов, используется шток с изменяемой длиной

(это кстати мой любимый актуатор)В нутрии актуатора есть возвратная пружина. Если ее не будет, то давление выпускных газов в турбине сразу откроют вестгейт и мы не сможем создать избыточное давление (буст). Обычно в стоке (если у машины максимальное давление около 1 бара) пружина устанавливается на 0.6 бара. Расмотрим на различных примерах

При таком подключении (на актуатор подается давление, источник должен быть до заслонки, чем ближе, короче трубка, тем лучше) надув будет контролироваться жесткостью пружины актуатора. Если мы уберем источник давления на актуатор (заглушим трубку) то надув будет максимально возможный (очень большой)Как мы можем увеличить надув, есть много вариантов. Один из хорошо себя зарекомендовавших это установка в актуатор пружины под планируемый надув, работает великолепно. Этот вид подключения можно использовать, как при установке турбокомпрессора на атмосферный мотор, так и при желании улучшить характеристики стандартной системы контроля с помощью соленоида. Очень просто, подберите пружину или актуатор с жесткостью пружины для планируемого Вами максимального надува, Подключите как на выше указанном примере. Трубки, идущие к соленоиду заглушите, а сам соленоид оставьте подключенным к разъему (или можете заменить на сопротивление 10 кОм)

Самое главное, Вы должны понять принцип, а он очень простой. В выше указанном примере давление контролируется пружиной актуатора. Если мы отсоединим от источника давления, то сможем увеличить надув в 2 раза (возможно). В таком случае без помощи дополнительного давления на мембрану актуатора будет необходимо создать намного больше обратного давления в системе выпуска, для открытия вестгейта.Принцип ясен, уменьшая подачу давления на актуатор, мы увеличиваем силу необходимую для открытия вестгейта и тем самым увеличиваем надув, избыточное давление или буст.

Скажем у Вас пружина на 0.6 бара и Вы решили поднять давление до 0.9 бар, что можно для этого сделать. Вот несколько вариантов

Установка рестриктора. Чем меньше будет диаметр рестриктора, тем меньше будет подаваться давления на актуатор, и тем больше мы сможем получить избыточное давление (надув). Какой диаметр рестриктора? Необходимо подбирать, скажем, где-то между 1.5 мм – 0.8 мм.Если для Вас это слишком сложно, то можете использовать следующий вариант

Обыкновенный ручной (мануал) буст контролер. В принципе это регулируемый рестриктор, не более. Зажимаем, уменьшаем диаметр, уменьшаем давление на актуатор – понимаем давление турбины и наоборот.Это мы рассмотрели возможные механические варианты регулирования надува. Конечно, большинство современных моторов с турбонадувом используют электронную систему управления. Предлагаю рассмотреть основные, с использование электронного соленоида 2 или 3 портового. Соленоид, это электромагнитный клапан, который регулируется ЭБУ.

Основные схемы подключения

С 2-х портовым соленоидом

С 3-х портовым соленоидом

Теперь более подробно

Порт 1 – источник давленияПорт 2 – возврат в систему впуска (после МАФ сенсора)Порт 3 – подключается к актуаторуЕсли соленоид закрыт, то в таком случае порт 1 и 2 соединены между собой, на актуатор нет подачи, и как следствие мы можем ожидать максимальный надув.Если соленоид открыт, то порты 1 и 3 соединены, надув контролируется пружиной актуатора.

ЭБУ меняя дюти сайкл соленоида, перераспределят подачу между портами 2 и 3.

Теперь рассмотрим варианты с 2-х портовым соленоидом

Bleed Style Boost Controller

Достаточно узкий диапозон контроля надувом соленоидом, но очень точный. Taкая система контроля эффективно работает только с рестриктором, если Вы не можете добиться необходимого Вам надува, то для увеличения буста, просто уменьшите диаметр рестриктора, только очень аккуратно

Если соленоид закрыт, то система работает по размеру рестриктора и пружине актуатора

Если клапан, соленоид открыт тот система будет иметь максимальное давление. Максимальное значение в большей степени зависит от диаметра рестриктора

И последний (мой любимый вариант), так же с использованием 2-х портового соленоида. Очень широкий диапазон контроля надувом с помощью соленоида

Interrupt Stule Boost Controller

Если соленоид открыт, то надув контролируется только пружиной актуатора

Если соленоид закрыт, то будет достигнуто максимальное значение надува.

Мы рассмотрели основные варианты используемые для контроля надува в системах с турбонагнетателями. Теперь я подскажу Вам, как можно безопасно, эффективно повысить мощность Вашего турбомотора на 20%.Очень просто. Для этого необходимо поменять систему выпуска Вашего автомобиля на более эффективную, большего диаметра, без катализатора или с заменой на спортивный. Главное понизить обратное давление в системе выпуска. Следующее, желательно установить холодный впуск (как его сделать я уже писал) или хотя бы более эффективный фильтр в стандартный фильтр бокс.После этого Вы можете безопасно повысить надув Вашего турбонегнетателя на 10-15% и получите, как минимум прибавку мощности 20%. Как поднять буст Вы теперь знаете, все в Ваших руках. Да и последнее, не пытайтесь изменить надув на автомобиле в котором система контролируется ЭБУ с использованием соленоида. Для этого надо перевести в механическую систему контролем надува, а сам соленоид, чтобы ЭБУ не выдавал ошибку оставить просто подключенным к разъему или впаять сопротивление.

И главное, нет необходимости прибегать к услугам различных ателье, мастеров занимающихся пошивом прошивок для ЭБУ. В этом нет необходимости. Нет это не значит, что не надо настраивать мотор, конечно качественная настройка на порядок улучшит характеристики Ваше автомобиля.

Page 2

Всем привет, давно не писал по делу. Сегодня хочу Вам рассказать о различных системах контроля надува в турбо системе мотора. Но для начала, очень коротко о самой турбине и как она работает. Турбина или точнее турбокомпрессор состоит из двух частей – из самой турбины (горячая часть) и компрессор (холодная часть)

Вот так выглядит турбокомпрессор

1. Вход в турбину выпускных газов (из выпускного коллектора)2. Вход в компрессор свежего воздуха3. Выход из турбины горячих газов в систему выпуска4. Выход из компрессора сжатого воздуха

Принцип очень простой отработанные газы, попадая в турбину, раскручивают крыльчатку (лопатки) которая имеет одну ось с лопатками компрессорной части. Крыльчатка компрессора всасывает свежий воздух и под давлением (создает надув, избыточное давление) направляет сжатый воздух в интеркулер, где он охлаждается и потом поступает в камеру сгорания. Вот и все.

Но сегодня я бы хотел более подробно остановится о принципах, видах контроля надува. Последнее время мне часто попадались споры о том, что лучше 2 портовый или 3 портовый соленоид и т.д. Лично я даже, не понимаю сути этих споров. Моя цель рассказать Вам, как все это работает, а Вы потом сами решите, что лучше.

Надув контролируется регуляцией выпускных газов в горячей части турбокомпрессора (турбине). Для этого в ней есть специальный клапан, дверка или вестгейт

Если дверка закрыта, то все газы попадают на лопатки, если этот клапан (на фото valve) открыть то часть газов, направится в систему выпуска, минуя крыльчатку и тем самым снизится скорость вращения лопаток, что соответственно приведет к понижению давления. Все гениальное, очень просто. И вот здесь начинается самое интересное, а именно, как производится регулировка открытия и закрытия вестгейта.

Для этих целей используется актуатор (на фото wastegate Actuator), если его шток выдвигается, то он открывает вестгейт Для качественной настройки системы регулирования вестгейтом необходимо установить правильный преднатяг. Для этого, у большинства хороших актуаторов, используется шток с изменяемой длиной

(это кстати мой любимый актуатор)В нутрии актуатора есть возвратная пружина. Если ее не будет, то давление выпускных газов в турбине сразу откроют вестгейт и мы не сможем создать избыточное давление (буст). Обычно в стоке (если у машины максимальное давление около 1 бара) пружина устанавливается на 0.6 бара. Расмотрим на различных примерах

При таком подключении (на актуатор подается давление, источник должен быть до заслонки, чем ближе, короче трубка, тем лучше) надув будет контролироваться жесткостью пружины актуатора. Если мы уберем источник давления на актуатор (заглушим трубку) то надув будет максимально возможный (очень большой)Как мы можем увеличить надув, есть много вариантов. Один из хорошо себя зарекомендовавших это установка в актуатор пружины под планируемый надув, работает великолепно. Этот вид подключения можно использовать, как при установке турбокомпрессора на атмосферный мотор, так и при желании улучшить характеристики стандартной системы контроля с помощью соленоида. Очень просто, подберите пружину или актуатор с жесткостью пружины для планируемого Вами максимального надува, Подключите как на выше указанном примере. Трубки, идущие к соленоиду заглушите, а сам соленоид оставьте подключенным к разъему (или можете заменить на сопротивление 10 кОм)

Самое главное, Вы должны понять принцип, а он очень простой. В выше указанном примере давление контролируется пружиной актуатора. Если мы отсоединим от источника давления, то сможем увеличить надув в 2 раза (возможно). В таком случае без помощи дополнительного давления на мембрану актуатора будет необходимо создать намного больше обратного давления в системе выпуска, для открытия вестгейта.Принцип ясен, уменьшая подачу давления на актуатор, мы увеличиваем силу необходимую для открытия вестгейта и тем самым увеличиваем надув, избыточное давление или буст.

Скажем у Вас пружина на 0.6 бара и Вы решили поднять давление до 0.9 бар, что можно для этого сделать. Вот несколько вариантов

Установка рестриктора. Чем меньше будет диаметр рестриктора, тем меньше будет подаваться давления на актуатор, и тем больше мы сможем получить избыточное давление (надув). Какой диаметр рестриктора? Необходимо подбирать, скажем, где-то между 1.5 мм – 0.8 мм.Если для Вас это слишком сложно, то можете использовать следующий вариант

Обыкновенный ручной (мануал) буст контролер. В принципе это регулируемый рестриктор, не более. Зажимаем, уменьшаем диаметр, уменьшаем давление на актуатор – понимаем давление турбины и наоборот.Это мы рассмотрели возможные механические варианты регулирования надува. Конечно, большинство современных моторов с турбонадувом используют электронную систему управления. Предлагаю рассмотреть основные, с использование электронного соленоида 2 или 3 портового. Соленоид, это электромагнитный клапан, который регулируется ЭБУ.

Основные схемы подключения

С 2-х портовым соленоидом

С 3-х портовым соленоидом

Теперь более подробно

Порт 1 – источник давленияПорт 2 – возврат в систему впуска (после МАФ сенсора)Порт 3 – подключается к актуаторуЕсли соленоид закрыт, то в таком случае порт 1 и 2 соединены между собой, на актуатор нет подачи, и как следствие мы можем ожидать максимальный надув.Если соленоид открыт, то порты 1 и 3 соединены, надув контролируется пружиной актуатора.

ЭБУ меняя дюти сайкл соленоида, перераспределят подачу между портами 2 и 3.

Теперь рассмотрим варианты с 2-х портовым соленоидом

Bleed Style Boost Controller

Достаточно узкий диапозон контроля надувом соленоидом, но очень точный. Taкая система контроля эффективно работает только с рестриктором, если Вы не можете добиться необходимого Вам надува, то для увеличения буста, просто уменьшите диаметр рестриктора, только очень аккуратно

Если соленоид закрыт, то система работает по размеру рестриктора и пружине актуатора

Если клапан, соленоид открыт тот система будет иметь максимальное давление. Максимальное значение в большей степени зависит от диаметра рестриктора

И последний (мой любимый вариант), так же с использованием 2-х портового соленоида. Очень широкий диапазон контроля надувом с помощью соленоида

Interrupt Stule Boost Controller

Если соленоид открыт, то надув контролируется только пружиной актуатора

Если соленоид закрыт, то будет достигнуто максимальное значение надува.

Мы рассмотрели основные варианты используемые для контроля надува в системах с турбонагнетателями. Теперь я подскажу Вам, как можно безопасно, эффективно повысить мощность Вашего турбомотора на 20%.Очень просто. Для этого необходимо поменять систему выпуска Вашего автомобиля на более эффективную, большего диаметра, без катализатора или с заменой на спортивный. Главное понизить обратное давление в системе выпуска. Следующее, желательно установить холодный впуск (как его сделать я уже писал) или хотя бы более эффективный фильтр в стандартный фильтр бокс.После этого Вы можете безопасно повысить надув Вашего турбонегнетателя на 10-15% и получите, как минимум прибавку мощности 20%. Как поднять буст Вы теперь знаете, все в Ваших руках. Да и последнее, не пытайтесь изменить надув на автомобиле в котором система контролируется ЭБУ с использованием соленоида. Для этого надо перевести в механическую систему контролем надува, а сам соленоид, чтобы ЭБУ не выдавал ошибку оставить просто подключенным к разъему или впаять сопротивление.

И главное, нет необходимости прибегать к услугам различных ателье, мастеров занимающихся пошивом прошивок для ЭБУ. В этом нет необходимости. Нет это не значит, что не надо настраивать мотор, конечно качественная настройка на порядок улучшит характеристики Ваше автомобиля.

www.drive2.ru

Турбина — Subaru Impreza WRX, 2.0 л., 1994 года на DRIVE2

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува.Другие элементы турбонаддува

Главная проблема турбины – создание давления требует некоторого времени после нажатия на педаль газа. Проходит около секунды, прежде чем турбина выйдет на рабочее давление. Водитель чувствует турбояму при нажатии на газ, потом машина резко выстреливает.

Один из путей снижения турбоямы – уменьшение инерции вращающихся частей в основном снижением их веса. Это позволяет турбине и компрессору быстро ускоряться, нагнетая давление раньше. Инерция турбины преодолевается уменьшением размера турбины. Маленькая турбины выйдет на давление раньше и на более низких оборотах, но не сможет закачать достаточно воздуха на больших оборотах, когда двигателю надо действительно много воздуха. Большие обороты также опасны для маленькой турбины.

Турбина создает максимальное давление на высоких оборотах.Большая турбина хорошо качает на высоких оборотах, но отличается глубокой турбоямой, так как раскручивание ее более тяжелых частей занимает больше времени. К счастью, есть способы решить это противоречие.

Почти все автомобильные турбины имеют вестгейт, позволяющий использовать маленькую турбины для уменьшения турбоямы и предотвращающий турбину от слишком высоких скоростей на высоких оборотах двигателя. Вестгейт (от англ. Wastegate – ворота для мусора) – это клапан, позволяющий выхлопным газам обходить лопатки турбины. Вестгейт реагирует на давление. Если давление турбины становится слишком высоким, то турбина вращается слишком быстро. Вестгейт отводит часть отработавших газов мимо лопаток крыльчатки, замедляя тем самым скорость вращения турбины.

Некоторые турбины используют шариковые подшипники, но это необычные изделия – они сделаны прецизионно из продвинутых материалов, способных выдерживать температуру в турбине. Их применение объясняется тем, что они способны еще больше снизить трение по сравнению с обычными жидкими коллегами. Еще одно преимущество – они позволяют уменьшить размер вала.

Керамические лопатки турбины легче обычных стальных. Результат: турбина раскручивается еще быстрее с меньшей турбоямой.

Две турбины и дополнительные частиНекоторые двигатели используют две турбины разного размера. Маленькая турбина быстро раскручивается, уменьшая турбояму, а большая нагнетает давления на больших оборотах.

Когда воздух сжимается, он нагревается; нагретый воздух расширяется. То есть увеличение давления воздуха из турбины поднимает его температуру до попадания в цилиндры. Увеличение мощности происходит из-за увеличения количества молекул воздуха, попадающих в цилиндры, а необязательно из-за увеличения давления наддува.

Интеркулер – дополнительный компонент системы наддува, напоминающий обычных радиатор с той разницей, что воздух проходит через него снаружи и внутри. Входящий воздух проходит через лабиринты интеркулера, внешний воздух охлаждает интеркулер.

Интеркулер увеличивает мощность двигателя, охлаждая сжатый воздух из компрессора перед попаданием в двигатель. Например, при избыточном давлении 0.3 бар, интеркулер подаст 0.3 бара холодного воздуха, который плотнее и содержит больше молекул, чем теплый воздух.Турбина помогает в условиях высокогорья, где плотность воздуха ниже. Атмосферные двигатели испытывают снижение мощности, потому что в цилиндры поступает меньше воздуха. Турбированный двигатель тоже снижает мощность, но уменьшение мощности будет не столь критичным, так как разреженный воздух легче закачивать.Старые карбюраторные машины автоматически увеличивали подачу топлива при увеличении входящего воздуха. Современные инжекторные машины делают это до определенного момента. Инжекторная система полагается на датчики кислорода в выхлопной системе, чтобы определить правильность соотношения топливо-воздух, при добавлении турбины автоматически увеличится подача топлива.

Если установленная на инжекторную машину турбина нагнетает слишком большое давление, система может не подать достаточное количество топлива – или программа блока управления двигателем не позволит, либо топливный насос и форсунки не способны выдавать необходимое количество топлива. В этом кроется главная трудность установки турбин на современные машины: часто требуется замена блока управления двигателем с настройкой программы под механические изменения.

www.drive2.ru

Как турбина влияет на мощность двигателя. Система турбонаддува и как она работает

Выбор правильного автомобиля как средства передвижения является важным решением. Здесь необходимо учитывать цену, потребление, комфорт, но есть и другие незаменимые факторы. Одним из таких факторов, который привлекает внимание к авто, является двигатель с турбонаддувом (турбина). Данная система помогает повысить мощность двигателя и предлагает экономию потребления топлива. Что такое турбонаддув, как турбина влияет мощность двигателя и общую производительность автомобиля – об этом расскажем в данном посте.

Содержание

Что такое турбонаддув

Тот, кто работает за рулем, даже если он не очень осведомлен в механике, имеет острое представление о том, как работает машина. Мощность, измеряемая в лошадиных силах, является способностью двигателя превращать топливо в движение и скорость. А это и есть тот значимый элемент, когда речь идет об эффективной, качественной и экономичной работе автомобиля.

На практике это выглядит так: каждая быстрая машина – мощная, но не всякая мощная – быстрая. Это связано с тем, что чем тяжелее транспортное средство, тем больше силы оно использует для движения.

Турбонаддув (система двигателя внутреннего сгорания на основе турбокомпрессора, или турбины) – это способ повысить мощность двигателя, используя компрессор для вытягивания и сжатия большего количества воздуха в камеру сгорания, увеличивая мощность сгорания топлива и, следовательно, увеличивая скорость передвижения авто, вне зависимости от его веса.

Как работает турбонаддув в машине

Двигатель с турбонаддувом состоит из двух частей – выпускного коллектора и турбокомпрессора. Первый отвечает за сбор газов из каждого цилиндра, которые будут поступать в выхлопную систему и выбрасываться в атмосферу.

Турбина собирает воздух, который, в свою очередь, приводит в движение винт, производя прохладный, чистый воздух. Этот воздух передается в компрессор, который уплотняет его и направляет в радиатор промежуточного охладителя, тем самым, охлаждая воздух. Таким образом, большее количество воздуха проходит через цилиндры и попадает в зону сгорания.

Схема работы турбонаддува

Двигатель работает на взрыве, а это значит, что ему нужен огонь, верно? То есть: тепло + топливо + кислород (газы, собираемые из выхлопных газов). Чем больше воздуха в системе, тем больше возможностей сжигать бензин и вырабатывать больше энергии. Прелесть в том, что он создает действенный круг, в котором тот самый газ, генерируемый двигателем (посредством взрывов), становится силой, приводящей в движение турбо систему.

Как турбина влияет на производительность автомобиля

После теоретической части следует объяснить, как турбина влияет на мощность двигателя и производительность автомобиля. Самым большим преимуществом турбины является экономный расход топлива. Но чтобы добиться такой экономии, водителю также необходимо внести свой вклад, научившись управлять своим транспортным средством безопасно, с наименьшим количеством тормозов и внезапным ускорением.

Помимо экономного расхода топлива, турбина помогает снизить выбросы загрязняющих веществ в окружающую среду. И, конечно же, с турбиной производительность авто будет на высоте (из-за нехватки кислорода транспортные средства теряют около 25% своей мощности). Двигатели с турбонаддувом повторно используют выхлопные газы.

Турбонаддув сегодня признан самым действенным механизмом усиления мощности двигателя внутреннего сгорания без увеличения частоты оборота его коленчатого вала и рабочего объема цилиндров. Система с турбонаддувом используется на бензиновых и дизельных двигателях, однако её максимальная действенность доказана на дизельных двигателях за счет высокой степени сжатия в двигателе и относительно невысокой частоты оборота коленчатого вала. В бензиновом двигателе турбонаддув может вызвать эффект детонации по причине резкого увеличения частоты оборотов двигателя, а также высокой температуры отработанных газов и сильного нагрева турбины.

Читайте также: Для чего в автомобиле нужна турбина. Правила эксплуатации турбины.

turbi.com.ua


Смотрите также