Спирт в бензобак удаление водного конденсата


Может ли спирт удалить воду из бензобака? - 4КОЛЕСА

Среди препаратов современной автохимии сегодня представлены и так называемые нейтрализаторы влаги, препятствующие коррозии топливной системы. Наши эксперты на практике решили оценить эффективность нескольких присадок для бензина.

На «автохимических» прилавках наших автомагазинов можно найти не одну, не две, а гораздо больше различных влаговытесняющих топливных присадок. И это обстоятельство лишний раз говорит о том, что, качество отечественного бензина до сих пор оставляет желать лучшего. Одна из самых наболевших проблем — это наличие в топливе воды. Откуда она там берется — вопрос отдельный и весьма неоднозначный хотя бы потому, что никто не отменял такое распространенное природное физическое явление, как конденсация влаги. И даже изначально бензин на нефтеперерабатывающем предприятии был сделан по всем нормативам (что подтверждается лабораторными тестами), то после его транспортировки и доставки заказчику у последнего вполне могут появиться сомнения в качестве полученного топлива.

Дело в том, что в значительной мере сам процесс увлажнения топлива происходит уже на этапах его транспортировки к бензохранилищам и АЗС, а также в ходе последующего хранения и перекачки из цистерн в цистерны.

Главная причина — это суточные изменения влажности и перепады температур, которые при определенных условиях вызывают выпадение конденсата. Интенсивнее всего такой процесс идет в полупустых автоцистернах-наливниках или емкостях АЗС. Кстати, при подобных условиях влага будет образовываться и в незаполненных баках автомобилей. По оценкам экспертов, за год эксплуатации автомобиля на дне бензобака в зависимости от его объема может накапливаться от 300 мл до литра водно-грязевой смеси. Чем это грозит?

Прежде всего вода, перемешиваясь с бензином и попадая в топливный тракт, провоцирует активную коррозию любых его металлических элементов. Как правило, пораженные ржавчиной детали (а иногда и узлы) приходится в дальнейшем менять. Во-вторых, вода заметно ухудшает работу инжекторов, а в-третьих, зимой, особенно в сильный мороз, она может вызвать банальное промерзание топливопроводов или жиклеров. В любом случае, о нормальной работе двигателя в подобных ситуациях говорить уже не приходится

Конденсат в топливе может появиться даже во время его транспортировки в полупустых автоцистернах.

 

В состоянии покоя вода в емкости отделяется от бензина и опускается на дно. Она всегда находится ниже уровня топлива.

Важное дополнение к сказанному выше — вода никогда не растворяется в бензине. В отличие от солярки, с этим видом автомобильного горючего она во время движения перемешивается и образует эмульсию так называемого неустойчивого состояния. А в состоянии покоя жидкости разделяются по фракциям из-за своей разности по плотности, причем вода всегда оказывается ниже уровня бензина.

Эту особенность разделения водно-бензиновой смеси некоторые автопроизводители используют для удаления воды из топливного бака. В частности, это широко применяется на грузовиках, в топливных емкостях которых часто делают сливные отверстия. А вот на современных легковушках, оснащенных пластиковыми бензобаками, такой слив не предусмотрен. Как быть в таких случаях?

 

Альтернативный вариант нейтрализации влаги в баке сегодня активно предлагают производители автохимии. Они выпускают как специализированные присадки, именуемые нейтрализаторами (или вытеснителями) влаги, так и универсальные топливные препараты-очистители, обладающие частичным влаговытесняющим действием. Наконец, есть народные средства против влаги, например, обыкновенный спирт, о способах и итогах применении которого найдется масса отзывов в автомобильных соцсетях.

Как бы то ни было, но все продукты этой категории действуют по одному принципу — они на молекулярном уровне связывают воду, которая через бензонасос выводится из бака, а затем с потоком формируемой горючей смеси попадает во впускной тракт и далее — в камеры сгорания. Правда, такие присадки эффективны лишь тогда, когда бензин и вода в баке постоянно перемешиваются, то есть когда машина движется. А если она находится на долгом простое, например, во время длительного зимнего отпуска? И этот аспект применения присадок заинтересовал нас больше всего. Заинтересовал потому, что среднестатистическая легковушка проводит 90% своего жизненного цикла в состоянии покоя, то есть в ожидании своего хозяина. И лишь 10% всей своей жизни находится в движении.

Сегодня в автомагазинах можно увидеть универсальные топливные очистители, способные, по утверждениям производителей, связывать конденсат в бензине.

 

В качестве индикаторов ржавчины для теста были задействованы обыкновенные гвозди.

Чтобы оценить эффективность разных типов присадок, мы решили провести сравнительный эксперимент. Для этого использовали методику, которую в свое время успешно апробировали наши коллеги из журнала «За рулем». Суть ее в том, что для проверки исследуемого образца в пластиковую емкость наливалось 80 мл бензина, затем добавлялось 20 мл воды и потом еще (в зависимости от типа препарата) от 7 до 14 мл присадки. Затем эта смесь перемешивалась, после чего в нее в качестве индикатора ржавчины помещали обычный железный гвоздь, который выдерживали там не менее 30 суток. Поскольку его «шляпочная» часть изначально находилась внизу, то есть в слое воды и постепенно ржавела, то, по степени коррозии этой части гвоздя можно легко оценить эффективность применяемой присадки.

 

Всего же для теста с «индикаторными» гвоздями подготовили четыре образца. Один содержал только бензин и воду, в остальные три были добавлены еще и «нейтрализаторы» влаги. Роль первого выполнял 96-процентный спирт, в качестве второго взяли популярный топливный препарат направленного действия «Fuel Protect Антилед» немецкой фирмы Liqui Moly, а в качестве третьего выступила универсальная присадка Gas Treatment марки Motor Medic.

Через месяц все четыре банки были вскрыты, а извлеченные из них «индикаторы» ржавчины осмотрены и сфотографированы. Обобщенные результаты этого эксперимента и краткие комментарии к ним приведены ниже.

Перед началом тестирования в каждый образец с водно-бензиновой смесью помещали железный гвоздь и в таком виде выдерживали 30 суток.

БЕНЗИН С ВОДОЙ, БЕЗ ПРИСАДОК

Как известно, даже обычная пресная вода является активной коррозионной средой. Поэтому картина, которую можно наблюдать на фото, была вполне предсказуема — вся та часть железного индикаторного гвоздя, которая оказалась в слое воды, основательно проржавела. Сама вода за месяц простаивания приобрела характерный рыжий цвет из-за растворившихся в ней частичек ржавчины. Можно сказать, что нечто подобное с большой вероятностью может происходить и в металлическом бензобаке, если, конечно, в нем длительное время будет находиться вода. Очевидно, что на морозе такой водяной слой попросту превратится в лед.

 

БЕНЗИН С ВОДОЙ И ПРИСАДКОЙ FUEL PROTECT «АНТИЛЕД»

Немецкая присадка «Fuel Protect Антилед» от компании Liqui Moly представляет собой специализированный топливный препарат, обладающий направленным нейтрализующим действием по отношению влаге, которая находится бензине. Результат применения этой присадки говорит сам за себя — индикаторный гвоздь после 30 суток пребывания в водно-бензиновой смеси, в которую предварительно добавили «Fuel Protect Антилед», вообще не подвергся коррозии, что свидетельствует о высокой эффективности данного нейтрализатора влаги. Кстати, связывая воду в бензине, этот препарат предотвращает и ее замерзание. Одним словом, это именно тот продукт, который полностью соответствует своему назначению.

Препарат поставляется во флаконах объемом 300 мл. Соотношение «Препарат/Бензин» — 1:170. Рекомендуемый объем топливного бака — 50 л.

БЕНЗИН С ВОДОЙ И ПРИСАДКОЙ GAS TREATMENT

Топливная присадка Gas Treatment торговой марки Motor Medic из США хорошо известна на российском рынке и пользуется популярностью у автолюбителей. Потребителей привлекает универсальность данного продукта, поскольку он представляет собой многофункциональный топливный очиститель широкого спектра действия. В числе особенностей данного препарата, которые, кстати, указаны на этикетке, упоминается способность связывать и выводить из топлива конденсат. Возможно, что во время движения автомобиля так оно и происходит, однако в состоянии покоя присадка оказалась малоэффективной — это видно по ржавчине, покрывшей часть индикаторного гвоздя.

Препарат поставляется во флаконах объемом 350 мл. Соотношение «Препарат/Бензин» — 1:215. Рекомендуемый объем топливного бака — 75−80 л.

 

БЕНЗИН С ВОДОЙ И СПИРТОМ

Визуальное представление о результате применения спирта, который виден на фото, полностью развеивает миф о его эффективности в качестве нейтрализатора влаги. А все потому, что водно-спиртовая смесь сама по себе является активной коррозионной средой, в которой, как можно наглядно убедиться, железо ржавеет очень даже неплохо. Поэтому мы не рекомендуем применять спирт для удаления влаги из бензобака, чтобы там не рассказывали отдельные «опытные» автоблогеры.

…Результаты проведенного эксперимента убедительно свидетельствуют в пользу специализированных присадок, обладающих направленным действием против влаги, которая накапливается в бензобаке. В то же время, нейтрализовать воду с помощью многофункциональных топливных присадок, обладающих универсальным действием, довольно сложно. По крайней мере, нашим тест-редакторам этого сделать не удалось. Как не удалось предотвратить и развитие коррозии, вызванной наличием воды в бензине, с помощью народного средства — обыкновенного спирта. Более того, его применение, на наш взгляд, эту «водную» коррозию может даже усилить.

 

Источник

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Подписаться

Как быстро удалить воду из бензобака своими руками: основные способы

Всем привет! Если вы вдруг столкнулись с вопросом о том, как удалить воду из бензобака, переживать сильно не стоит. Вы не одни сталкиваетесь с такой проблемой. В нашей стране и вовсе это считается довольно распространенным явлением. И вы вскоре узнаете, почему.

Но сам факт того, что влага оказалась в баке, не должен быть ни в коем случае проигнорирован. О соответствующих неприятностях могут указать определенные симптомы. Лучше не бороться с последствиями, а устранить проблему на раннем этапе ее развития.

Предлагаю узнать, почему летом и зимой в баке может вдруг оказаться вода, какие последствия такого явления, что указывает на неприятности и как можно очистить от воды резервуар с горючим, снимая или не снимая его.

Причины и признаки

Такая проблема актуальна для владельцев разных по статусу и стоимости автомобилей. Потому не принципиально важно, что у вас, Лада Калина или какой-нибудь Мерседес последнего поколения.

Первым делом нужно разобраться в причинах, чтобы в дальнейшем их постараться исключить:

  • Атмосферные осадки. Вы открываете лючок, и капли дождя или снег могут проникнуть внутрь. Если это происходит часто, за определенное время количество влаги увеличивается до опасных отметок;
  • Образование конденсата. В воздухе присутствует влага, которая может конденсироваться и оседать на внутренних стенках;
  • Добавление воды на АЗС. Топливо попросту разбавляют, чтобы отдавать меньше и получать больше;
  • Неправильная перевозка или хранение горючего;
  • Умышленное добавление хулиганами или людьми, которым вы не угодили;
  • Нарушение герметичности бака.

Причин довольно много, и каждая из них имеет полное право на существование.

Скажу сразу, что не существует прямых признаков попадания или накопления внутри бензобака воды. Никакой датчик вам об этом не расскажет даже на самых современных автомобилях.

Потому симптомы и признаки нужно определять косвенно. Существует несколько моментов, которые потенциально указывают на такую проблему.

Не скажу, что эти моменты заметить сложно, но порой стоит быть внимательнее. Обращайте внимание на следующие симптомы:

  • После длительной стоянки авто не может завестись, либо делает это с трудом;
  • Параллельно АКБ работает хорошо;
  • Начинается эффект троения двигателя;
  • Машина ведет себя нестабильно на любых параметрах оборотов;
  • Авто дергается при наборе скорости;
  • При этом сами обороты мотора выставлены верно, проблем со свечами нет;
  • В двигателе слышен стук, обусловленный вибрациями коленчатого вала;
  • После прогрева стук исчезает, поскольку двигатель нагревается и лишняя влага постепенно испаряется.

Поскольку влага может проникать из бака в сам мотор, это повышает вероятность образования коррозии. А если вода превратится в лед, могут произойти еще большие неприятности.

Способы борьбы

Всего можно выделить несколько методов для эффективного удаления воды, которые делятся на следующие категории:

  • механические;
  • химические;
  • с помощью разных присадок.

Поскольку каждая категория включает в себя несколько действенных способов, их следует рассмотреть отдельно. А там уже каждый для себя решит, чем лучше воспользоваться, и от какого метода стоит отказаться.

Механическое удаление

Некоторые автомобилисты используют методы механической очистки. Не самый плохой вариант, но по скорости уступает конкурентам. Тут уже сами решайте, насколько вы готовы к проведению таких процедур.

  • Демонтаж. Если воды много, а вы гарантированно хотите избавиться от всего до последней капли, плюс почистить сам бак от накопившегося осадка, придется снимать конструкцию, удалять все содержимое и сушить. Быстрым метод никак не назовешь;
  • Сообщающиеся сосуды. Суть вот в чем. Вы берете длинный шланг, один его конец вставляете в бак до дна, а второй в подготовленную емкость. Причем тару нужно поставить так, чтобы она была ниже, нежели уровень бака. Будет отлично, если в распоряжении есть яма, подъемник или эстакада;
  • Насос. Причем сам топливный. Во многих авто он располагается под задними креслами. С него нужно снять шланг подачи, надеть второй на золотник и поместить в пустую тару. Включается автомобильное зажигание, и насос, отвечающий за перекачку топлива, начинает откачку. Метод подойдет лишь инжекторным моторам.

Механическое удаление достаточно эффективное, но очень затратное по времени. Так что это не совсем соответствует теме нашего разговора. Мы ведь ищем быстрые способы.

Химический

Далее идет химический метод. Затрат по времени куда меньше, да и разбирать или подключать ничего не придется.

На выбор предлагается несколько вариантов.

  • Связывающие вещества. Они связывают воду, когда попадают в бак с топливом. Работает эффективно, но считается опасным методом. Вода ведь останется внутри, пусть и изменит свое агрегатное состояние. Методика плохо изучена, потому рисковать не советую;
  • Машинное масло. Метод подойдет для дизельного автомобиля, где на 50 литров топлива требуется 0,5 литра масла. Когда вода смешается со смазкой, образуется эмульсия и она сгорит;
  • Удаление ацетоном или спиртом. Это уже для бензиновых автомобильных двигателей. В полный бак заливается от 200 до 500 мл средства. Вода будет сгорать вместе с образованной смесью. Важно добавлять именно в полный бензобак. Никакого вреда для автомобиля.

Тут нужно заметить лишь то, что при давлении спирта или ацетона со дна поднимается весь осадок. Потому после использования лучше сразу поменять фильтр в вашей топливной системе.

Присадки

Специальный удалитель влаги можно приобрести в магазине автомобильных товаров. Присадок достаточно много, и некоторые их них отлично справляются с поставленной задачей.

Их можно разделить на 4 основные категории:

  • Средства, предназначенные для экономии горючего. Их заливают в бак, и ожидают около 10% экономии по расходу за счет того, что очищается двигатель. Параллельно выводится лишняя влага;
  • Присадки с дегидрирующим эффектом. Обычно их заливают, когда температура на улице низкая, и существует риск замерзания смешанного с водой топлива в баке;
  • Стабилизаторы. Добавки со стабилизирующим воздействием уже заливают в масло. В основном влияют на выхлоп, улучшают вязкость. Скорее для борьбы с последствиями попадания воды;
  • Реставрирующие. Они же присадки антифрикционного типа. Удаляют скопившиеся загрязнения с внутренних поверхностей, помогают улучшить компрессию и вывести влагу.

Присадки являются актуальной темой для автомобилистов. Не все верят в их эффективность и считают правильным заливать постороннюю химию в свой автомобиль.

Тут уже каждый решает сам для себя. Напишите свое отношение к присадкам в комментариях. Будет интересно узнать ваше мнение.

Меры профилактики

Напоследок дам несколько простых, но полезных советов, которые помогут предотвратить такое явление как накопление воды в топливном баке вашего автомобиля.

Ничего сложного тут нет. Просто придерживайтесь следующих рекомендаций:

  • избегайте незнакомые и сомнительные заправки;
  • старайтесь не открывать крышку бака без необходимости;
  • плотно закручивайте крышку;
  • не заливайте на АЗС небольшие объемы горючки;
  • если погода влажная, заливайте всегда максимально полный бак;
  • вовремя меняйте фильтр;
  • в осенний период можно добавить около 200 мл спирта на полный ваш бак;
  • периодически (лучше осенью) снимайте бак, очищайте и сушите его.

Вот и все. Единственное хочется добавить относительно ситуаций, когда вода замерзает. То есть превращается в кусочек льда, который находится в баке.

Эксплуатация машины со льдом в баке может действительно и быстро привести всю топливную систему в негодность, спровоцировать поломку двигателя и пр. Тут лучшим решением будет загнать машину в теплый гараж. Если есть время, просто на пару дней оставьте авто в тепле. Если спешите, придется снять резервуар, подать внутрь струю теплого воздуха, просушить и поставить на место.

Проблема попадания воды в бензобак знакома большому количеству автомобилистов. Но теперь вы знаете, как в такой ситуации делать, как поступить и какими методами можно воспользоваться.

Спасибо всем, кто с нами! Подписывайтесь, оставляйте комментарии, задавайте вопросы и не забывайте рассказывать о нас своим друзьям!

Как удалить воду из бензобака, советы и рекомендации

Проблема удаления воды из бензобака рано или поздно встречается у многих водителей.

Основная причина появление воды в бензобаке, это не качественное топливо, которого на наших автозаправках «хоть пруд пруди».

Если периодически не решать эту проблему, то в независимости от того на чем работает Ваш автомобиль на бензине или на дизтопливе, в любом случае в техническом аспекте последствия для работы двигателя будут негативными.

Дизельный двигатель — последствия

Если взять дизельный двигатель, то дизтопливо, в котором имеется даже не большое количество воды, в кротчайшие сроки выведет из строя ТНВД (топливный насос высокого давления), а в частности его плунжерные пары. Однозначно, ремонт будет не из дешевых.

Бензиновый двигатель

Похожая ситуация может случиться и с бензиновым двигателем, но только из строя могут выйти топливные форсунки (инжектор).

Что произойдет зимой.

В зимний период эксплуатации автомобиля наличие воды в бензобаке может привести к замерзанию ее в трубопроводах. Не трудно догадаться, что при этом произойдет.

Признаки наличия воды в топливной системе

  1. После заправки двигатель начал работать с перебоями;
  2. Мотор не набирает мощности;
  3. Уменьшилась приёмистость автомобиля;
  4. На морозе автомобиль не заводится, при этом Вы точно знаете, что топливо в баке есть.

Основные методы решение проблемы

  1. Снятие бензобака и его помывка.
  2. Удалить воду из топлива без снятия бензобака.

Первый метод хотя и эффективный, но долгий и не удобный. В дороге Вы вряд ли будете снимать топливный бак и заниматься его промывкой.

Второй метод более удобный и внедрить его в жизнь можно несколькими способами.

Первый способ – использование спирта

Для удаления воды из бензобака подойдёт как этиловый, так и метиловый спирт не разбавленный водой, лучше всего подойдет медицинский. Синее пламя при горении спирта указывает, что его можно использовать для нашего мероприятия.

Что нужно делать

Если у Вас бензиновый двигатель и не много воды в топливной баке, то возьмите от 0,2 до 0,5 литров качественного спирта и залейте их в бак.

При этом произойдет следующее:

  1. Вода смешается со спиртом;
  2. Полученная смесь приобретет такою же плотность, как и бензин;
  3. Вода не будет замерзать в трубопроводах;
  4. Смесь воды со спиртом сгорит в камере сгорания двигателя.

При подготовке автомобиля к зиме рекомендуется использовать данный способ, чтобы удалить воду из топливного бака.

Если же Ваш автомобиль работает на дизтопливе, то вместо спирта в топливный бак заливают моторное масло из расчета 0,2 л на 50 л. ДТ.

Что при этом происходит:

  1. Происходит смешивание воды с маслом.
  2. Образуется своеобразная эмульсия.
  3. Эмульсия воды с маслом сгорает в камере сгорания двигателя.

Альтернативные методы

Было бы не правильно думать, что автохимия не работает в этом направлении и не предлагает на рынке средства для удаления воды из топливного бака. Существует много таких средств и называются они дегидраторы.

В отличии от выше описанных способов удаления води из бензобака, данные средства предусматривают и другие спектры действий.

Благодаря наличию антикоррозийных присадок, дегидраторы предотвращают появление на внутренней поверхности всех деталей, узлов и агрегатов топливной системы появлению коррозии.

Такая автохимия, конечно же, представлена в широком ассортименте на авторынке и нужно уметь разбираться в ней.

Существуют дегидраторы одноразового и много разового использования, как для дизельных, так и для бензиновых двигателей. Это нужно знать. Соответственно цена тоже разная.

Полезно знать — Можно ли смешивать воду и антифриз и заливать в машину.

Как не допустить попадание воды в бензобак

  1. Заправляйтесь только на известных заправках, которые дорожат своей репутацией;
  2. Избегайте заправку на не больших частных заправках, где топливо сомнительного качества;
  3. В зимний период старайтесь, чтобы бензобак был полным. При не полном бензобаке зимой на его стенках образуется конденсат, который в виде воды попадает в топливо.
  4. Вовремя меняйте топливные фильтры;
  5. Не верьте тем продавцам, которые гарантируют, что в топливе полностью отсутствует вода. Даже в самом высококачественном топливе обязательно присутствует какой-то процент воды. Соответственно избегайте такие заправки.

Используя данные рекомендации и советы Вы гарантированно удалите воду из бензобака и в дальнейшем уменьшите попадание ее вновь.

Лед в бензобаке: как навсегда убрать замерзшую воду из топливной системы


 
Мысль о разрушительной роли воды в бензине редко воспринимается всерьез. Почему-то принято считать, что самой тяжкой ношей вдали от дома является автомобиль, отягощенный АКБ без признаков жизни. Между тем, образовавшиеся из воды кусочки льдинок в состоянии остановить двигатель даже в движении, попутно лишив шанса повторного пуска. В целом масштаб последствий замерзания воды в бензобаке, фильтре и магистралях можно смело приравнивать к закупорке топливной системы дизельного двигателя парафинами, выпадающими из солярки не зимнего происхождения. Как предупредить обмерзание важных узлов топливопровода бензинового двигателя, и что делать с уже замерзшей машиной – отвечают эксперты интернет-журнала Autostadt.su.

Откуда в бензине вода

 


При виде льда на дне бензобака все подозрения обычно падают на крайнюю АЗС, услугами которой владелец пользовался накануне. Дескать, разбавили водой и разливают. Корни этой точки зрения уходят в далекие девяностые, когда владельцы бензовозов сбывали незаконно добытое топливо обочечникам с канистрами. В рейсе из цистерны сливали определенное количество бензина, восполняя потерянный объем водой. В пункте приемки контролировали единственный параметр – литраж. Он оставался в норме, а значит вопросов к дальнобою не было. Страдали потребители, но кого это волновало.

Ныне такого беспредела нет, но повод обвинить АЗС в заправке некачественным топливом подобного образца остался. Дело в том, что на дне подземного хранилища тоже скапливается Н2О, которая попадает в бак вашей машины в момент, когда бензоколонка высасывает последние соки из резервуара. Этот факт строго пресекается, но недобросовестные точки все же существуют и в наше время.

Итого мы бы рекомендовали пользоваться топом заправок по качеству бензина, и не пополнять запасы в торговых сетях сомнительного происхождения. Впрочем, заправщики виноваты не всегда – жидкость может появляться своим чередом, без участия человека. Тому есть две причины:

  1. Открывая крышку бензобака, мы запускаем внутрь воздух, у которого есть определенный уровень влажности. При определенных условиях образуется конденсат и уровень воды повышается.
  2. Отдельные компоненты высокооктанового топлива чересчур гигроскопичны, они так и норовят привлечь влагу из атмосферы.


Беремся ли мы утверждать, что проблема носит глобальный характер и почти у каждого в бензобаке найдутся лишние миллилитры водички? Отчасти, да, особенно в холодное межсезонье. Тогда и воздух содержит наибольшее количество влаги даже в южных районах + резкие перепады температур + частые туманы…

Чем опасно наличие водички в бензобаке

Исходя из вопроса, поставленного на повестку дня, логично предположить, что переход Н2О в лед – это главная опасность, подстерегающая машину. Дело в том, что водица не смешивается с бензином, и всегда находится на дне резервуара. Как только стукнут морозы, вода переходит в лед, а поверх нее плескается бензин. Самая частая проблема – ледяная кашица забивает приемную сеточку бензонасоса (фильтр грубой очистки), отчего прекращается подача бензина и автомобиль глохнет, требуя отогревания по полной программе.

В остальном же последствия наличия водички в бензобаке – это:

  • Незаметная коррозия трубок и прочей аппаратуры топливной системы.
  • Гидроудары в топливном насосе высокого давления, которым оснащены все двигатели с непосредственным впрыском.
  • Нестабильная работа мотора (рывки и провалы) на любых режимах, которую часто списывают на глюки электронных систем и датчиков.

 

Как узнать, что в баке лед

Понять, что в баке замерзла вода, важно хотя бы из тех соображений, чтобы не пополнить и без того крупную копилку причин быстрого разряда аккумулятора автомобиля. На инжекторном двигателе сделать это элементарно. После второго-третьего неудачного пуска необходимо открутить колпак на топливной рампе, и вжать ниппель: в исправной топливосистеме из трубки ударит ощутимая струя. Замерзший топливопровод будет травить еле заметную струйку или вовсе ничего.

Альтернативный метод – сдернуть выходной патрубок с бензонасоса и накинуть на оголенный штуцер шланг, опустив другой его конец в небольшую емкость. Включаем зажигание и смотрим на мощность струи. Диагноз обмерзшей аппаратуры тот же – отсутствие или еле заметная струя.

Как отогреть топливную систему бензинового двигателя

Пожалуй, безопасный способ разморозки топливоаппаратуры всего один – это в прямом смысле ее отогревание. Совершенно без разницы в каком виде будет подаваться тепло: будь то локально с помощью различных нагревательных средств (электрофен и пр.), то ли в больших масштабах – отапливаемый гараж, теплая подземная парковка или другое помещение.

Однако одного отогревания системы недостаточно для устранения проблем с ее замерзанием. Так на серьезном морозце вода вновь может перейти в лед, и машина встанет колом в самый неподходящий момент. Поэтому топливопровод необходимо не только размораживать, а и удалять кусочки льдинок и воду из всех узлов системы.

В зоне риска – магистраль от бака к рампе, бензонасос, фильтры и смежные с ними патрубки, а также сам бак. Извлечь воду из этих компонентов довольно трудоемко. Если делать все на совесть, на все про все уйдет не один час:

  • Вынуть бензонасос из бака. Он наверняка будет примерзшим, отчего не поддастся разборке. Необходимо опустить узел в теплую воду и дождаться момента, когда лед оттает, после чего разобрать насос.
  • Слить бензин из бака в канистру. В нее же попадет и вода, от которой необходимо избавиться. Самый простой способ – выставить резервуар на крепкий мороз. Через несколько часов на дне будет лед, а поверх него – топливо в чистом виде. Сливаем горючку, затем размораживаем канистру и можно считать, что со львиной долей конденсата покончено.
  • Избавиться от излишков воды во всех элементах системы. Так, бензобак необходимо прогреть и хорошенько вытереть насухо. Бензонасос следует отогреть и просушить феном. Эпицентр внимания – патрубки, которые после оттаивания стоит продуть сжатым воздухом. Что же касается фильтра тонкой очистки, то его лучше заменить.

Как защитить топливопровод и аппаратуру от замерзания

Держа в уме всю суть технологии разморозки, хотелось бы как-то пресечь образование/попадание воды в бензобак. В былые времена для этого использовали чистый спирт, плеская от 0,5 до 1 л. внутрь бака. Согласитесь, заманчивая альтернатива отогреванию всей топливной системы.

 


В эпоху прогресса автохимии спирт вытеснили препараты для удаления воды. Строго названия у средств этого класса нет. К примеру, LAVR обозвал их нейтрализаторами воды, Kerry – осушителем топливной системы, Astrohim – присадкой влаговытесняющей, Liqui Moly – антильдом, AVS Crystal – вытеснителем влаги, а StepUp – антифризом-осушителем.

Тенденция замещения спирта спецпрепаратами, необходимо признать, преследует не только маркетинговые цели. Проблема чистой спиртовой смеси в том, что она вызывает коррозию элементов топливной системы. У представителей автохимии такого недостатка нет.

Механизм действия будь то спирта или спецсредства сводится к тому, что оно образует с водой горючую смесь, которая свободно сгорает в цилиндрах двигателя без троения и прочих проблем, свойственных присутствию в камере сгорания чистой воды. Однако у техники предупреждения замерзания топливоаппаратуры есть свой недостаток – никто не знает, сколько в баке воды, отчего неизвестно, сколько вливать концентрата.

Вырисовывается разумный выход – добавлять антилед периодически в холодную пору года. Что конкретно лить? Тут можно отрекомендовать прошлогоднее испытание «За рулем», по итогам которого коллеги расставили приоритеты для 8-ми препаратов. Мы приведём список в порядке их убывания по эффективности:

  • Eltrans EL-1007.01.
  • AVS Crystal AVK-162.
  • Hi-Gear HG3325.
  • Liqui Moly Fuel Protect 3964.
  • ASTROhim AC-110.
  • StepUp SP3322.
  • Lavr Art Ln2103.
  • Kerry KR-340.


И напоследок – зимой лучше не ездить на «лампочке». Именно при практически пустом баке бензонасос хватает воду. Ведь она расположена на самом дне, поскольку плотность водички выше плотности бензина. Мы рекомендуем придерживаться неписанного правила – не опускать стрелку топливомера ниже ¼ бака. При этом еще раз повторим: выбирайте качественные автозаправочные сети, иначе любые предупредительные меры будут бессмысленны. 7-10 кг льда на дне бензобака – это вполне реальные вещи, которых можно было бы избежать, соблюдая меры элементарной предосторожности.
 

 



Как удалить воду из бензобака

Влага, будучи живительной субстанцией в большинстве жизненных случаев, попадая в топливный бак авто, превращается в свою противоположность. И хотя простые профилактические меры способны минимизировать процесс проникновения воды в бензобак, полностью устранить эту опасность практически невозможно. К счастью, имеется несколько действенных способов удалять влагу из топливного бака, первые из которых были придуманы ещё сотню лет назад. Разрабатываются и новомодные средства. Всё ли предлагаемое автомобилистами в этом плане эффективно и безопасно для авто?

Чем грозит вода в бензобаке, как она туда может попасть

Вода, имея большую плотность, нежели бензин, опускается на дно бензобака и там концентрируется. Топливо, находясь над ней, препятствует её испарению и тем самым одновременно способствует её накоплению. Далее следуют такие нежелательные процессы в топливной системе авто:

  1. Влага провоцирует окислительную реакцию металлов в ней, что ведёт к их коррозии. Особенно опасен процесс электрохимической коррозии, который запускается водой, впитывающей сернистые соединения из низкокачественного горючего.
  2. В бензиновых системах непосредственного впрыска и в дизельных двигателях влага провоцирует возникновение кавитационного эффекта, ведущего к разрушению форсунок.
  3. Зимой присутствие в топливной системе воды из-за её способности замерзать и при этом расширяться способно привести к выходу из строя топливопроводов и чревато последующей разборкой двигателя и заменой комплектующих.
  4. В дизельных моторах присутствие влаги приводит к поломке плунжерной пары и её дорогостоящей замене.

Наличие влаги в топливном баке можно определить по таким признакам:

  • затруднённому старту холодного двигателя;
  • неровной работе мотора;
  • странным звукам, издаваемым двигателем, которые сопровождаются его сотрясением;
  • снижением динамических характеристик авто.

Попадает же вода в топливный банк чрезвычайно просто. Это неизбежно происходит во время заправки автомобиля горючим. Вместе с вливающимся топливом через открытый люк в бак проникает воздух с содержащейся в нём влагой. Там на стенках образуется водный конденсат, который стекает в бензин и опускается на дно. Особенно интенсивно это происходит в дождливую или туманную погоду.

Во время заправки в бензобак попадает и воздух с парами воды

Виновниками попадания в заправочную ёмкость автомобиля влаги зачастую выступают небольшие АЗС, в которых наблюдается интенсивный кругооборот топлива. Ёмкости часто опорожняются и наполняются, в них собирается водный конденсат, равно как и в бензовозах. И хотя вода не растворяется в бензине (и наоборот), при активном движении этих жидкостей и их перемешивании образуется неустойчивая эмульсия, которая, попадая в автомобильный бензобак, снова распадается на бензин и воду. Этому способствует тот факт, что среднестатический легковой автомобиль 90% своего эксплуатационного цикла пребывает в покое и лишь 10% — в движении.

Заметный вклад в образование влаги в топливной системе делает привычка многих автомобилистов ездить с полупустыми баками. Это они чаще всего объясняют желанием экономить на топливе за счёт снижения веса авто. В итоге же частая заправка провоцирует более интенсивное поступление воздуха в бензобак. Кроме того, чем меньше в нём топлива, тем больше площадь соприкосновения воздуха с его стенками и тем активнее идёт процесс конденсации влаги. Отсюда следует рекомендация специалистов держать бак максимально полным, особенно в сырую погоду.

Как удалить воду из бензобака — обзор способов с учётом разных нюансов

За время существования автомобилей с двигателями внутреннего сгорания автомобилисты накопили богатый опыт избавления топливных баков от коварной влаги:

  1. Наиболее действенный способ избавления заправочной ёмкости от воды — снятие бензобака и его очистка. Он даёт стопроцентно положительный результат, но сопряжён с немалыми усилиями и потерей времени.
  2. Гораздо проще применение метода сообщающихся сосудов, для чего конец длинного шланга помещают на самое дно топливного бака. Второй конец опускают в какую-нибудь ёмкость, расположенную ниже днища бензобака. Под действием атмосферного давления находящаяся на дне вода по шлангу покидает заправочную ёмкость.
  3. В автомобилях с инжекторными двигателями для откачки воды можно использовать бензонасос, у которого шланг, идущий к инжектору, перенаправляется в какую-нибудь пустую ёмкость. При включённом зажигании бензонасос быстро откачает воду из бензобака.
  4. Параллельно с механическими способами освобождения заправочной ёмкости от воды ещё 100 лет назад додумались применять для этой цели спирт. В даном методе используется способность спирта соединяться с водой. Практически в бензобаке получается водка той или иной концентрации. Плотность спирта немного больше бензиновой плотности, а плотность спиртово-водной смеси — ещё больше, но всё же меньше, чем у чистой воды. В спокойном состоянии эта смесь покоится на дне топливного бака, но во время движения и сопутствующей ей тряски легко перемешивается с бензином и в итоге сгорает в двигателе. Кроме того, связанная спиртом вода не замерзает в зимнее время и потому не наносит ущерба топливной системе авто. Для подобных целей применяется этиловый, метиловый и изопропиловый спирты. Их заливают в зависимости от объёма топливного бака от 200 до 500 мл. Понятно, что чем выше их концентрация, тем более выражен эффект от их применения. Правда, данный способ не лишён недостатков, поскольку спирт стимулирует корродирующие свойства воды. Кроме того, образующаяся водка влияет на процесс детонации в моторе. Это нестрашно для старых моделей, но у современных двигателей с их прецизионной настройкой может вызвать проблемы.

    Это дедовское средство удаления воды из бензобака до сих пор востребовано

  5. В настоящее время разработаны десятки различных химических удалителей влаги. Подавляющее число из них действуют по одинаковому принципу связывания молекул воды и перемещения их в топливную массу для последующего сгорания в цилиндрах двигателя. Кроме того, во многих подобных средствах присутствуют антикоррозионных присадки.

    Сегодня существует очень много химических удалителей воды из топливных баков

При этом специалисты подчёркивают, что содержащие спирт осушители топлива подходят только бензиновым двигателям и крайне противопоказаны дизелям. Спиртосодержащие средства нивелируют смазывающие свойства топлива, позволяют воде просачиваться через топливный фильтр и тем самым провоцируют в зоне высокого давления возникновение вредоносных процессов кавитации.

Какие нерабочие способы предлагают в Сети

Далеко не все автомобилисты подозревают, что в бензобаке может появиться вода, считая, что ей просто неоткуда взяться в замкнутой топливной системе авто. Те же, кто знаком с проблемой, быстро овладевают накопленным коллегами богатым арсеналом средств обезвоживания топлива. Поэтому придумывать экстравагантные и недееспособные способы борьбы с водой в бензобаке им нужды нет. Но зато насчёт результатов применения проверенных средств в Сети идёт очень оживлённая полемика. Например, известно, что спирт можно заменить ацетоном. Эта жидкость, связывая воду, хорошо горит, обладает небольшой плотностью и даже повышает октановое число бензина. Однако в автомобилях давних годов выпуска ацетон способен разъедать шланги и прокладки. А этиловый спирт, образующий в бензобаке водку, наоборот, более опасен для современных автомобилей, о чём уже шла речь выше.

Видео: удаление влаги из топливного бака

Бензин и вода — вещи несовместные. Присутствие влаги в топливном баке чревато коррозийными процессами, перебоями в работе и двигателя и даже выходом его из строя. При обнаружении воды в бензобаке необходимо принять немедленные меры по её удалению.

Как удалить воду из бензобака — советы бывалых.

Как удалить воду из бензобака — советы бывалых.

У этого поста - 3 комментария.

Содержание:

Как удалить воду из бензобака, не снимая его? Существует 3 основных способа:

С помощью спирта.

Поскольку вода обладает большей плотностью, она практически не смешивается с бензином. Зато смешать воду со спиртом не составит труда. Для этой цели можно воспользоваться изопропиловым, этиловым или метиловым спиртом. Цель – выгнать воду через топливопровод таким образом, чтобы не пострадал двигатель. Это станет возможным, если добавить в бензин около 500 мл спирта: он смешается с водой, благодаря чему образует смесь с гораздо меньшей плотностью.

Удалить воду из бензобака через тонкий шланг.

Для этого потребуется снять бензонасос и использовать шланг от капельницы: один его конец достаточно опустить на дно бака, а другой – в ведро, расположенное на уровень ниже.

Еще один способ заключается в выгоне воды через топливную рампу.

С этой целью отвинчивается золотник и подсоединяется шланг. После на бензонасос подается напряжение, и вода постепенно сливается.

В случаях, где используется удаление воды с помощью шлангов, лучше отдать предпочтение прозрачной емкости: так можно вовремя заметить смену окраса жидкости и перекрыть шланг, если начнет вытекать бензин.

Приверженцы метода, при котором следует удалить воду из бензобака спиртом, также нередко используют очистители топливной системы и специальные вытеснители воды, которые заменяют спирт. Принцип тот же, однако результат намного лучше, так как вода гарантированно будет выведена без остатка.

Причин, по которым вода может попасть в топливный бак, довольно много.

Главная из них – содержание воды в самом топливе. Однако процент содержания разный, поэтому настоятельно рекомендуется заправлять автомобиль только на проверенных заправках. Наиболее известные из них работают с крупными поставщиками, а иногда даже входят в состав нефтяных компаний. Для таких автозаправок торговля некачественным топливом сулит потерю репутации и, как следствие, – многомиллионные убытки.

Любители ездить с полупустым баком должны учесть, что в этом случае образуется конденсат из-за попадающего внутрь воздуха. Чем больше незаполненного места в баке, тем больше образуемой воды.

Немалое значение имеет и климат: в условиях высокой влажности воздуха, будь то туман или дождь, не рекомендуется заправлять автомобиль. Когда крышка бака открывается, слышен характерный звук. Именно так внутрь бака попадает воздух, и если этот воздух с большим содержанием водяного пара (характерно для погоды в межсезонье), в баке обязательно появится вода, которая будет постепенно оседать на дно. Особенно важно удалить воду из бензобака зимой, поскольку в мороз она замерзает, образовав ледяные корочки и пробки, вследствие чего придется долго возиться с продувкой, промывкой и ремонтом.

Главным признаком наличия воды в топливном баке является слабая мощность и работа двигателя с перебоями. В этом случае машина часто не заводится с первого раза, особенно по утрам: за ночь вода оседает в нижней части бака, и при попытке запустить мотор она заполняет топливопровод.

Чтобы избежать таких последствий, как вынужденный ремонт автомобиля, необходимо придерживаться простых правил:

 

  • — дозаправляться как можно чаще, чтобы бензобак был максимально полным;
  • — отдавать предпочтение только известным и проверенным автозаправкам;
  • — перед наступлением морозов обязательно заливать в бензобак около 200 мл спирта;
  • — в туманные и дождливые дни стараться не заправлять автомобиль, либо заливать полный бак, чтобы вытеснить влажный воздух.

 

Если вода все же скопилась в топливном баке, просто воспользуйтесь одним из приведенных советов, и любые последующие проблемы будут исключены.

Другие похожие статьи:

Спасите тот старый бак: как очистить бензобак от ржавчины

Авто Мотоциклы Автофургоны Лодки Классические автомобили Промышленные дома хранить .

Удаление меркаптанов из углеводородных конденсатов и потоков ШФЛУ

D. ENGEL, EXION Systems, Вудлендс, Техас; и H. BURNS и
S. WILLIAMS, Nexo Solutions, The Woodlands, Texas

Здесь исследуется удаление компонентов меркаптана из потока углеводородного конденсата на канадском газовом заводе с использованием нового химического метода удаления и технологии разделения. Удаление меркаптанов требовалось для соответствия техническим условиям трубопроводов по общей концентрации серы и меркаптанов.Работа на объекте заключалась в проверке невосстанавливаемой химической добавки для удаления меркаптанов в сочетании с системой разделения процесса очистки жидкости.

Уменьшенная версия технологической системы удаления была собрана на месте, и через миниатюрную систему был обработан отвод конденсата со скоростью 1,65 галлона в минуту. Образцы конденсата собирали до и после обработки и анализировали с помощью газового хроматографа для количественного определения уровней удаления меркаптана.

Результаты испытаний показали, что удаление меркаптанов (до 95% для C 1 –C 3 , до 90% для C 1 –C 4 и до 60% для C 1 –C 7 ) достижимо с использованием комбинированных технологических систем.Эффективность удаления зависит от применяемой концентрации добавки и от стадии водной промывки.

История испытаний. При переработке газа часто возникают проблемы с сырьем, содержащим высокие уровни меркаптанов, которые концентрируются в углеводородных конденсатах и ​​ШФЛУ, когда меркаптаны не удаляются установкой удаления кислого газа (AGRU) или установками осушки молекулярных сит. 1, 2

В то время как сероводород (H 2 S) и диоксид углерода (CO 2 ) удаляются обработкой амином на большинстве газовых заводов, большинство аминов удаляет лишь небольшое количество меркаптанов или не удаляет их совсем.Когда конденсаты, извлекаемые на газовой установке, содержат высокие уровни меркаптанов, могут возникать технологические недостатки, такие как полимерное загрязнение или загрязнение аминным растворителем. Кроме того, конденсат или его фракционированные продукты часто не соответствуют требованиям к общему содержанию серы для продажи или транспортировки по трубопроводу.

Газовый завод около Альберты, Канада, нуждался в решении для удаления небольших и летучих (C 1 –C 3 ) загрязнений меркаптанами в потоке углеводородного конденсата.ШФЛУ (после фракционирования конденсата) должен соответствовать определенным спецификациям для транспортировки по трубопроводу, а средний уровень летучих меркаптанов не отвечал требованиям <175 мг / кг, установленным заводом.

Завод при поддержке поставщика решений исследовал наилучшие возможные решения для удаления меркаптанов, включая химические технологии и технологические системы. Запатентованная технология и была определена как потенциально эффективный вариант удаления меркаптанов.

Для оптимизации и проверки системы была реализована оптимизация поля с использованием тестовой установки. Это исследование описывает процесс оптимизации месторождения и эффективность системы удаления меркаптанов. Поставщик решений провел на месте испытания отвода конденсата с использованием запатентованного раствора для обработки жидкости b для удаления меркаптанов. Для нанесения химиката использовалась небольшая система обработки жидкости c ( рис. 1 ).

Рис. 1. Испытательная система, используемая для удаления меркаптанов
Проверка / оптимизация производительности в конденсате природного газа
.

Концентрации меркаптанов в потоке конденсата показаны в Таблице 1. Кроме того, Таблица 2 показывает объемный состав потока очищенного конденсата. Расход, температура и давление потока составляют 2 Мб / сутки, приблизительно 270 ° F и приблизительно 100 фунтов на кв. Дюйм, соответственно.

Меркаптаны, или тиолы, представляют собой группу компонентов на основе серы, которые присутствуют во многих потоках углеводородов, в основном в виде примесей. Меркаптаны похожи на спирты, но в них атом O 2 заменен на атом серы (S). Это изменение придает молекулам меркаптана особые химические и физические свойства. Также страдают органолептические свойства; например, меркаптаны имеют особенно неприятный запах.Переход от более электроотрицательного атома (O 2 ) к S также придает меркаптанам более кислый характер по сравнению с их спиртовыми аналогами из-за стабилизирующего действия атома серы. Меркаптаны, однако, имеют лишь слабую кислотность, и эта кислотность уменьшается с увеличением молекулярной массы меркаптана. Рис. 2 показывает молекулярную формулу и структурную трехмерную модель для одного из наиболее распространенных меркаптановых загрязнителей, метилмеркаптана (также называемого метилтиолом или метантиолом).

Рис. 2. Молекулярная структура (слева) и молекулярная модель (справа)
метилмеркаптана.

Меркаптаны более кислые по сравнению со спиртами. Бутилмеркаптан имеет pKa 10,5 по сравнению с pKa 15 для бутанола. Фенолмеркаптан имеет pKa 6 против 10 для фенола. Следовательно, соли меркаптаната (или тиолата) могут быть получены путем обработки меркаптанов гидроксидами щелочных металлов, такими как гидроксид натрия или каустик.Фактически, щелочь - это распространенный метод удаления меркаптанов из жидких потоков (воды и углеводородов). Химические уравнения реакции меркаптанов (R-SH) и спиртов (R-OH) с гидроксидом натрия показаны в уравнениях. 1 и 2:

R – SH + NaOH ∀ NaS – R + H 2 O (прямая реакция) (1)

R – OH + NaOH 1 NaO – R + H 2 O (равновесная реакция) (2)

Кроме того, меркаптаны обладают более слабыми межмолекулярными силами. Они мало связаны водородными связями с молекулами воды или между собой.Меркаптаны имеют более низкие температуры кипения и менее растворимы в воде и других полярных растворителях, чем спирты с аналогичной молекулярной массой. Следовательно, меркаптаны будут иметь более высокое равновесное давление пара и будут более растворимы в углеводородных фазах. Некоторые меркаптаны также являются газообразными в условиях окружающей среды по сравнению с их аналогами O 2 из-за их более низкой точки кипения.

Один из примеров - метилмеркаптан (газ) по сравнению с метанолом (жидким). Электронная конфигурация меркаптанов (а именно наличие d-орбиталей в атомах серы) обеспечивает им высокие интерактивные свойства со многими поверхностями, особенно с металлами.Это взаимодействие лежит в основе некоторых распространенных редукторов трения металлических поверхностей. Во многих случаях молекулы S могут также служить хелаторами ионов металлов и стабилизаторами металлов.

Удаление меркаптанов часто необходимо с точки зрения здоровья, безопасности и технологического процесса. Некоторые меркаптаны обладают сильным запахом и могут серьезно нарушить повседневную жизнь. Люди очень чувствительны к очень низким уровням меркаптанов. По этой причине меркаптаны используются в качестве одорантов в потребительском и коммерческом природном газе для сигнализации утечки газа.Некоторые меркаптаны могут вызывать коррозию и часто при определенных условиях приводят к сбою при тестировании медной ленты. Меркаптаны также могут отрицательно влиять на катализ и твердые адсорбционные слои, такие как силикагель или оксид алюминия, конкурируя за доступ к одним и тем же активным центрам. Удаление меркаптанов необходимо для снижения выбросов серы, поскольку сжигание и выброс меркаптановых соединений приведет к образованию SO x .

Удаление

меркаптанов может быть выполнено несколькими способами.Наиболее распространенный метод, используемый сегодня, - это реакция с щелочью (гидроксид натрия, NaOH), показанная ранее. Также применялось окисление сильным окислителем, таким как гипохлорит натрия (NaClO), O 2 и пероксид водорода (H 2 O 2 ), среди прочих. Химические уравнения для окисления меркаптана показаны в уравнениях. 3 и 4:

2 R – SH + 1⁄2O 2 ∀ R – S – S – R + H 2 O (окисление O 2 ) (3)

R – SH + 3 H 2 O 2 ∀ R – SO 3 H + 3 H 2 O (окисление H 2 O 2 ) (4)

Доступны и другие методы удаления меркаптанов из углеводородных потоков, которые включают окисление с использованием озона, процессы биологического удаления, каталитическое разложение, адсорбцию твердыми слоями (т.е.е. функционализированный активированный уголь) и специализированные (например, физические и гибридные) растворители. Однако в промышленности обычно используются только два последних метода.

Использование NaOH для удаления меркаптанов, пожалуй, наиболее распространено во всем мире. Реакция с каустиком эффективна, но также является обратимым равновесием. NaOH легко доступен по низкой цене. Однако безрегенеративная обработка каустической соды приводит к образованию отработанного потока каустической соды, которую необходимо обрабатывать или управлять должным образом. Рекуперативная обработка каустической соды дает дисульфидное масло и отходы щелочи. На рис. 3 показан типичный регенеративный процесс удаления каустических меркаптанов.

Рис. 3. Общий регенеративный процесс удаления каустических меркаптанов
.

Использование каустика для удаления меркаптанов создает высокое содержание соли и, во многих случаях, выделяет запах. В некоторых случаях отработанный или богатый каустик можно регенерировать с использованием каталитического процесса и O 2 .O 2 регенерирует богатый каустик, чтобы его можно было повторно использовать в процессе; однако он также производит побочный продукт вторичного дисульфидного масла (DSO). Дисульфиды (также называемые красным маслом) - это не смешивающиеся с водой материалы, которые могут быть проблематичными при утилизации на газовом заводе. Химические реакции регенеративного удаления меркаптанов щелочью показаны в уравнениях. 5 и 6 (Примечание: R представляет собой углеводородную группу):

2 R – SH + 2 NaOH ∀ 2 NaS – R + 2 H 2 O
(реакция экстрактора с избытком NaOH) (5)

4 NaS – R + O 2 + 2 H 2 O ∀ 2 R – S – S – R
(несмешивающийся с водой DSO) + 4 Na + + 4 OH - (регенерация) (6 )

В данном исследовании альтернативные продукты были разработаны специально для удаления меркаптанов.Идея заключалась в использовании нерегенеративного метода удаления меркаптанов, который не производил бы значительных отходов. Это не только минимизирует капитальные затраты, но также снизит любые затраты на последующую обработку. Путь реакции не включает использование каустика и исключает необходимость вторичных обработок, таких как регенерация использованного каустика или утилизация использованного каустика. Запатентованный продукт для химической очистки жидкости представляет собой специализированную молекулу многоатомного спирта, стабилизированную гидроксильными веществами, которая позволяет удалять H 2 S, меркаптаны и COS.Общие химические реакции с меркаптанами показаны в уравнениях. 7 и 8 (Примечание: CA обозначает химическую добавку):

R – SH + CA ∀ R – S – S – R + R – S – SO – R + R – R + SO 4 –2 + H 2 O (окислительное сочетание) (7)

R – S – SO – R = частицы сульфоксида (водорастворимые и не влияют на процесс) (8)

Реакции в уравнениях. 7 и 8 показывают, что продуктами реакции являются вода, сульфат (SO 4 –2 ) и другие окисленные компоненты.Водорастворимый сульфат-ион удаляют отделенной водой от конденсата. CA разработан для использования с технологическим оборудованием, таким как фазовый сепаратор после точки впрыска. Поставщик решений разработал специализированные системы, позволяющие химическому составу для очистки жидкости работать с высокой эффективностью и придавать гибкость его использованию. Изображение полномасштабной системы очистки жидкости показано на рис. 4 .

Фиг.4. Одноступенчатая система очистки жидкости с контактором
.

В системе имеется точка впрыска для СА, за которой следует стадия смешивания и контактирования для массопереноса и обеспечения эффективного протекания реакции. За контактором устанавливается высокоэффективная ступень промывки водой. Также считается, что промывка водой повышает эффективность из-за дальнейшего контакта с любыми избыточными химическими веществами. Затем смесь направляют на стадию экстракции для разделения фаз и удаления побочных продуктов.

Методика тестирования. Выбранная точка тестирования потока конденсата находилась на выходе из стабилизатора. Была собрана миниатюрная система очистки жидкости с использованием той же конфигурации очистки, что и полноразмерная система. На рис. 5 показана схема маломасштабной системы, включая точки нагнетания СА и воды, клапанное устройство, контактор и экстракторное оборудование, а также сточные потоки. Время контакта было установлено на 0.45 сек от точки ввода СА до контакторного блока.

Рис. 5. Схема миниатюрной системы очистки жидкости для развертывания и испытаний
.

Материалы, используемые для тестирования на месте, включают миниатюрную систему; трубопровод для технологического потока; СА с водой; и оборудование для отбора проб, обнаружения и количественного определения меркаптанов (анализ методом газовой хроматографии).Отбор проб проводился до и после контактора и экстрактора, как показано на рис. 5 .

Условия и порядок испытаний. Температура конденсата составляла приблизительно 270 ° F, как измерено на выходе из стабилизатора, и скорость потока конденсата на выходе из стабилизатора в систему обработки жидкости поддерживалась в размере 1–1,65 галлона в минуту. Используемые контрольные точки были изменены во время испытаний для оптимизации эффективности удаления меркаптанов. Скорость впрыска 65 мл / мин (химикат / вода), или приблизительно 1% –1.Как правило, было использовано 7% от общего количества очищенного потока конденсата.

Уровень использования воды 1–2% от расхода конденсата поддерживался на протяжении всего испытания, чтобы гарантировать адекватное смешивание и контакт между химическим веществом и загрязняющими веществами. Закачка химиката / воды производилась при комнатной температуре (21 ° C). Образцы отбирались для анализа после контактора и после экстрактора с использованием специальных «поршневых цилиндров» для сохранения целостности образца.

Анализ всех меркаптанов проводился на месте.После начала закачки химикатов перед отбором проб для каждой точки данных давали 10-минутный пробег. Для инъекции и химического состава использовалась вода местного обратного осмоса. Метод анализа меркаптанов был выполнен с использованием газового хроматографа и путем введения калибровочных образцов для надлежащего сравнения. Затем была построена калибровочная кривая для каждого анализируемого меркаптана. Первоначально результаты были получены в миллионных долях по объему, а затем преобразованы в миллионные доли веса.
В таблице 3 представлены различные хроматографические данные, используемые при количественном определении меркаптанов.

Эффективность удаления меркаптанов. Данные по накопленной концентрации меркаптанов были нанесены на график как функция от концентрации вводимой добавки, как показано в Рис. 6. Графики отражают концентрацию на выходе из экстрактора (после закачки воды). Скорости удаления меркаптанов C 1 –C 3 и C 1 –C 4 были нанесены на график отдельно, чтобы более эффективно определить эффективность удаления меркаптанов с низким молекулярным весом.

Рис. 6. Удаление меркаптанов на выходе из экстрактора,
в зависимости от концентрации химической добавки (моль / моль)
и скорости впрыска воды (установленной на 1 галлон в минуту).

Ось ординат в Рис. 6 показывает удаление меркаптанов как функцию концентрации химической добавки в ppmw. Молярное соотношение 0,5, 1 и 1,5 моля активного химического вещества на моль общего количества меркаптанов было введено во время отбора проб, что эквивалентно 3000 ppmw, 4500 ppmw и 6000 ppmw потока конденсата.

CA снизил уровень меркаптана в потоке конденсата. Удаление увеличивается с увеличением концентрации добавки. При соотношении, превышающем 1 моль, преимущество дополнительного СА незначительно с точки зрения удаления меркаптанов. Протокол испытаний с использованием миниатюрной системы очистки жидкости показывает, что отношение 1 моль является достаточным для понижения уровней меркаптана C 1 –C 3 до менее 200 частей на миллион по массе и уровня меркаптана C 1 –C 4 ниже 250 частей на миллион.

Уровни меркаптанов снижены более эффективно для меркаптанов C 1 –C 4 , поскольку меркаптаны меньшего размера быстрее реагируют с химической добавкой (кинетика реакции или лучшая молекулярная диффузия и смешивание). Таким образом, можно оптимизировать концентрацию и скорость закачки химикатов с целью удаления определенных меркаптанов на заданных уровнях.

Анализ остаточной воды. Закачанная вода была из установки обратного осмоса, установленной на объекте.Стоки, закачанные из миниатюрной системы очистки жидкости, собирали и далее анализировали на наличие общих анионов и катионов. Анализ проводился с использованием стандартной ионной хроматографии (IC). Таблица 4 показывает результаты анализа воды (для введения добавки с мольным отношением 1).

Анализ показывает, что сточные воды имеют повышенное содержание солей с точки зрения хлоридов и натрия, которые обычно присутствуют в водах естественных пластов (родственная вода).Кроме того, присутствие кальция, магния, фосфата и нитрата указывает на компоненты, присутствующие в попутной воде. Единственные два компонента, происходящие из химической добавки, - это сульфат и калий. Эти компоненты обычно легко утилизировать, поскольку они также присутствуют в природных водах. Присутствие железа было интерпретировано как естественное образование воды или как побочный продукт коррозии трубопровода.

Takeaway. Ряд аспектов стоит указать в качестве обучающего опыта.С практической точки зрения важно отметить, что химический процесс эффективен для удаления меркаптанов до требуемых уровней. Результаты были дополнительно подтверждены независимым тестированием меркаптанов на месте с использованием специальных цилиндров для отбора проб и хроматографических методов. Кроме того, следует учитывать и другие важные области:

  • Промывка водой между ступенями важна для дополнительных характеристик удаления меркаптанов, поскольку она увеличивает площадь поверхности контакта с жидкостью и обеспечивает второй цикл реакции.
  • Лучшая дозировка СА составляет от 0,5 до 1 моля. Стехиометрическое мольное соотношение составляет 1 моль меркаптанов на 0,5 моля СА. Более высокое мольное отношение удаляет дальнейшие меркаптаны лишь незначительно.
  • Температура выше комнатной способствует быстрой скорости химической реакции.
  • Фильтрация конденсата перед впрыском химиката необходима для защиты системы (точки впрыска, контактор и экстрактор) от взвешенных частиц.
  • Более эффективно удаляются меркаптаны с более низким молекулярным весом.
  • Поршневые цилиндры имеют решающее значение при отборе проб конденсата / газоконденсата для поддержания целостности пробы при испытании загрязнителей с низкой точкой кипения.

Рекомендации по масштабированию. Поток конденсата имел высокое содержание твердых частиц и загрязнял миниатюрный контактор / экстрактор системы очистки жидкости быстрее, чем ожидалось. Периодически наблюдалось высокое содержание твердых частиц в промывочной воде, возможно, из-за очистки линии.Этот аспект следует проверять при любых будущих применениях по очистке конденсата.

Полноразмерная технологическая система очистки жидкости будет представлять собой двухступенчатую систему, оснащенную системой закачки химикатов (Этап 1) и системой промывки водой (Этап 2). В зависимости от конструкции вся система будет иметь приблизительную площадь основания 25 футов × 25 футов и высоту 7 футов.

При ежемесячной замене фильтров не ожидается больших затрат на техническое обслуживание. Также ожидается ежегодная замена внутренних компонентов микроволоконного полимерного контактора / экстрактора. GP

БЛАГОДАРНОСТИ

Авторы хотели бы поблагодарить Хуана Карлоса Руиса и Криса Вайзмана из Encana Corp. за их поддержку. Они также выражают признательность персоналу Sulphur Experts за их идеи и Майклу Куинлану из KBR за его поддержку и руководство во время окончательной подготовки этой статьи.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Стюарт М. и К. Арнольд, Полевое руководство по очистке и очистке газа, 1-е изд., Elsevier, 2011.

2 Коль, А. Л. и Р. Нильсен, Очистка газа, 5-е изд., Gulf Publishing, 1997.

ПРИМЕЧАНИЯ

a Технологический процесс Exion от Nexo Solutions, на который подана заявка на патент

b Химическая добавка Exion LT-200 компании Nexo Solutions

c Система очистки жидкости Exion LT от Nexo Solutions

Дэвид Энгель имеет более чем 20-летний опыт работы в различных технических областях.Он является автором 17 патентов на изобретения в США и автором ряда технических и научных работ. Он провел ряд семинаров и технических курсов по различным предметам технологического процесса и химии. Д-р Энгель является соучредителем Sulfur Experts - Filtration Division, управляющим директором Nexo Solutions и вице-президентом по технологиям в EXION Systems. Он имеет степень бакалавра промышленной химии и докторскую степень по органической химии. Он является членом Американского химического общества и Ассоциации переработчиков газа, президентом Американского общества фильтрации и разделения (Юго-западный регион), членом GLC Consulting и членом совета (редактором) Elsevier и Genesis BioHealth.

Хит Бернс - системный специалист и инженер компании Nexo Solutions в Вудлендсе, штат Техас. Он специализируется на проектировании разделения и имеет всесторонний опыт в производстве, исследованиях и разработках, пилотных испытаниях, инженерном проектировании и развитии бизнеса. Г-н Бернс имеет обширный практический опыт разделения твердого и жидкого, жидкого / жидкого и газа / жидкости. Он активно работал в этой области, разрабатывая методы оценки фильтров, коалесцеров и сепараторов.Г-н Бернс также консультирует экспертов по фильтрации, работая вместе с Amine Experts, оба подразделения Sulphur Experts International. Он имеет 15-летний опыт работы в нефтегазовой отрасли.

Скотт Уильямс - инженер-технолог в Nexo Solutions. Он имеет отраслевой опыт во многих проектах и ​​сыграл важную роль в предоставлении решений в нефтегазовой, нефтехимической, химической и водоочистной областях.В составе инженерной группы г-н Уильямс отвечает за технический дизайн и разработку решений в области инженерных и технологических приложений, а также обеспечивает поддержку аналитических и специализированных сервисных проектов Nexo. Он получил степень бакалавра в области химической и биологической инженерии в Университете Колорадо в Боулдере.

.

воды в бензобаке? Объяснение симптомов

Щелкните здесь, чтобы получить важную информацию об основных объектах инфраструктуры во время пандемии COVID-19. Бесплатный звонок 877.231.6673 или +1.407.831.5021

Добро пожаловать

Купить сейчас ИЛИ Найти дилера
.

Стабилизация конденсата - нефть и газ

Процессы стабилизации и фракционирования конденсата природного газа снижают давление пара жидкого углеводородного конденсата до значения, обеспечивающего безопасность при транспортировке и хранении, и выполняют важное отделение легких фракций от тяжелых. Конденсат природного газа либо стабилизируется для удаления углеводородов C1-C4 в одной колонне, либо фракционируется поэтапно, последовательно удаляя один или несколько из этана (C2), пропана (C3) и бутана (C4) в нескольких колоннах.

У стабилизированного конденсата были удалены более летучие «легкие фракции», что сделало его менее восприимчивым к искровому воспламенению. Разделенные продукты также более ценны как сырье для нефтехимии или для других целей. Защита колонны (колонн) от загрязнения и коррозии из-за попадания соленой воды и твердых частиц имеет решающее значение для поддержания эффективности и надежности процесса.

Газовый завод нуждается в

  • Достижение или превышение квот на производство конденсата и более легких продуктов за счет надежной стабилизации / фракционирования и отделения конденсата природного газа
  • Обеспечение надежности процесса для обеспечения консистенции природного газа
  • и производство конденсата, минимизация простоев и сокращение затрат на техническое обслуживание
  • Повышение безопасности процесса за счет сокращения необходимости очистки колонны и ребойлера и замены внутренних устройств
  • Обеспечивает стабильную работу, стабильный товарный конденсат в соответствии со спецификациями
.

Спиртовое брожение | Факты, процессы и типы реакций

Введение

Спиртовая ферментация - это сложный биотехнологический процесс, в котором сахара, такие как глюкоза, сахароза и фруктоза, превращаются в молекулы энергии и производят этанол, диоксид углерода и побочные продукты метаболизма. Эти продукты влияют на сенсорные свойства и химический состав ферментированных пищевых продуктов.

Спиртовое брожение, также называемое брожением этанола, обрабатывается дрожжами или некоторыми другими микроорганизмами, например бактериями.Они используют этот процесс для производства АТФ. Дрожжи обычно функционируют в присутствии кислорода или в аэробных условиях, но также могут выполнять свои функции в отсутствие кислорода или в анаэробных условиях.

Во время спиртовой ферментации дрожжи принимают анаэробный путь в отсутствие кислорода. Этот процесс имеет огромное значение для производства алкогольных напитков, таких как пиво и вино. Процесс протекает в цитозоле дрожжей в отсутствие кислорода.

Ферментация

Ферментация - это метаболический процесс, происходящий в отсутствие кислорода.Многие полезные микроорганизмы создают желаемые изменения в напитках и пище в процессе ферментации. Полученные в результате продукты имеют лучший вкус и больше жизни, поскольку они хранятся. Они также приносят много пользы для здоровья.

Давайте сначала разберемся с различными типами ферментации, прежде чем переходить к обсуждению спиртовой ферментации.

Классификация ферментации

Существует три типа ферментации на основе конечных продуктов, полученных из пирувата.

# 1. Молочная ферментация

В этой ферментации различные сахара без нагревания превращаются в молочную кислоту штаммами дрожжей и бактериями. Происходят анаэробные химические реакции, в которых пировиноградная кислота использует НАДН для образования молочной кислоты и НАД + .

Во время напряженной деятельности ферментация молочной кислоты также происходит в мышечных клетках человеческого тела. Мышцы расходуют энергию в форме АТФ быстрее, чем кислород, доставляемый мышечным клеткам.Во время физических упражнений кислородное снабжение мышц истощается. Они переходят на молочнокислое брожение. Молочная кислота накапливается в мышцах и вызывает мышечные судороги.

Молочнокислые бактерии играют жизненно важную роль в производстве и сохранении полезных продуктов, таких как йогурт, соленья и т. Д. Эти пищевые продукты важны для процесса пищеварения.

# 2. Алкогольная ферментация

В ходе этого брожения дрожжи расщепляют молекулы пирувата (выход гликолиза при метаболизме глюкозы) на спирт и диоксид углерода.Алкогольное брожение дает пиво и вино.

# 3. Ферментация уксусной кислоты:

При этой ферментации зерна и фруктовые крахмал и сахар сбраживают уксусную кислоту и уксус. Ферментация уксусной кислоты дает яблочный уксус, винный уксус и т. Д.

Влияние кислорода на ферментацию

Ферментация не требует кислорода, так как это анаэробный процесс. Если присутствует кислород, пируват будет полностью окислен до молекул воды и углекислого газа при дыхании некоторых видов дрожжей.

С другой стороны, виды дрожжей будут производить этанол только в анаэробной среде с помощью процесса, называемого эффектом Пастера.

Скорость брожения

Во время ферментации скорость производства этанола вначале максимальна. Однако скорость ферментации постепенно падает из-за накопления этанола в окружающей среде. Было обнаружено, что удаление этого накопленного этанола не восстанавливает ферментационную активность, и начинается непрерывное снижение метаболизма.

Было исследовано множество причин, объясняющих это снижение активности ферментации. Считается, что это происходит из-за повреждения дрожжевых клеток в процессе ферментации.

Побочные продукты брожения

Неубранные побочные продукты образуются при ферментации этанола, такие как тепло, продукты питания для скота, диоксид углерода, метанол, топливо, вода, спирт и удобрения. Неферментированные остатки зерновых можно использовать в производстве биогаза или в качестве корма для скота.

Процесс спиртового брожения

Основная формула спиртового брожения указывает, что процесс начинается с глюкозы (сахара) и заканчивается углекислым газом и этиловым спиртом. Для лучшего понимания процесса он разделен на серию шагов.

Основные этапы:

Процесс спиртового брожения можно разделить на две основные части:

  1. Первая часть включает расщепление глюкозы на 2 молекулы пирувата в процессе, называемом гликолизом.
  2. Вторая часть называется ферментацией, в которой 2 молекулы пирувата превращаются в 2 молекулы диоксида углерода и 2 молекулы этанола, также известные как спирт.

Химическая формула:

Спиртовое брожение можно представить химической формулой:

C 6 H 12 O 6 → 2 C 2 H 5 OH + 2 CO 2

В цитоплазме эукариотической клетки происходят реакции ферментации и гликолиза. Назначение:

Основная цель спиртовой ферментации - производство энергии в форме АТФ, которая используется во время клеточной активности в анаэробных условиях. Однако с точки зрения дрожжей, этанол и углекислый газ являются отходами.

Вовлеченные молекулы

Ниже приведены важные молекулы, участвующие в процессе спиртового брожения.

Пируват:

Пируват или пировиноградная кислота - это карбоновая кислота, которая используется для производства этанола.2 молекулы пирувата образуются путем расщепления одной молекулы глюкозы на первом этапе. Электронные носители, такие как НАДН, также участвуют в этом процессе.

Электронные носители:

Это молекулы, отвечающие за захват электронов, которые выделяются во время химической реакции.

НАД является основным электронным переносчиком, участвующим в этих реакциях. Он захватывает электроны на первом этапе ферментации (гликолиза) и восстанавливается до НАДН.Эта восстановленная форма обеспечивает электроны во время превращения пирувата в этанол.

Реакция

При спиртовом брожении происходят следующие различные реакции.

Гликолиз

Гликолитический процесс можно описать следующим уравнением:

C 6 H 12 O 6 + 2 ADP + 2 P i + 2 NAD + 2 CH 3 COCOO - + 2 ATP + 2 NADH + 2 H 2 O + 2 H +

  • 2 CH 3 COCOO - (молекулы пирувата)
  • 2 NADH (акцепторная молекула)
  • 2 P i (неорганический фосфат)

Общие продукты этих реакций - две молекулы пирувата, два NADH и две молекулы АТФ.Молекулы пирувата далее преобразуются в отсутствие кислорода с образованием этанола (спирта).

Конверсия пирувата в этанол

Это преобразование происходит в два этапа:

  • На первом этапе карбоксильная группа пирувата удаляется и высвобождается в форме CO 2 . Продуктом этой реакции является ацетальдегид (молекула из 2 атомов углерода)
  • На второй стадии молекула ацетальдегида восстанавливается. Одна молекула НАДН передает свои электроны ацетальдегиду, образуя этанол.Во время этого процесса регенерируется молекула НАД.

Реакция 1:

CH 3 COCOO - + H + CH 3 CHO + CO 2

Эта реакция катализируется (пируватдекарбоксилазой)

Реакция 2:

CH 3 CHO + NADH + H + C 2 H 5 OH + NAD +

Эта реакция катализируется (алкогольдегидрогеназой)

Ключ:

  • CH 3 CHO (ацетальдегид)
  • CO 2 (диоксид углерода)
  • C 2 H 5 OH = этанол (спирт)

Ферменты

В спиртовом брожении участвуют два фермента.

пируватдекарбоксилаза:

Это фермент, катализирующий декарбоксилирование пировиноградной кислоты до диоксида углерода и ацетальдегида. Этот фермент играет важную роль в процессе ферментации в анаэробных условиях, которые возникают в дрожжах (особенно в роде Saccharomyces), для производства этанола путем ферментации.

Алкогольдегидрогеназа:

Этот фермент отвечает за превращение ацетальдегида в этанол во время спиртовой ферментации.В процессе ферментации этот фермент работает в обратном направлении.

Тот же фермент отвечает за преобразование алкоголя в ацетальдегид в нашей печени, восстанавливая НАД до НАДН в процессе метаболизма алкоголя.

Роль микроорганизмов

В ферментации этанола участвуют следующие микробы:

  1. Дрожжи
  2. Schizosaccharomyces
  3. Saccharomyces cerevisiae
  4. Zymomonas mobilis (бактерия)

Дрожжи

Клетки дрожжей классифицируются как одноклеточные грибы, имеющие диаметр в диапазоне микрометров.Размер этих организмов очень мал по сравнению с большинством грибов. Также они могут различаться по размеру и форме.

Дрожжи используются в нескольких процессах, таких как приготовление хлеба, вина и спиртовое брожение.

В процессе выпечки хлеба дрожжи производят спиртовое брожение муки и делают хлеб воздушным. Углекислый газ, образующийся во время этого процесса, создает пузырьки газа в хлебе и расширяет его, как пена. После завершения процесса выпечки в хлебе остается только 2% этанола.Таким образом, в хлебе будет небольшое количество алкоголя.

Алкогольные напитки содержат большое количество этанола, полученного путем спиртового брожения на дрожжах. Этанол также токсичен для дрожжей, как и для человека. Толерантность дрожжей к этанолу зависит от условий окружающей среды, а также от различных штаммов дрожжей.

Бактерии

Используя процесс спиртовой ферментации, бактерии могут расщеплять органические соединения в анаэробной среде для получения энергии.В процессе ферментации в виде бактерий образуются различные продукты. Конечный продукт зависит от используемого штамма бактерий.

Например:

  • Salmonella и Escherichia производят этанол, молочную кислоту, уксусную кислоту.
  • Lactobacillus, Bacillus, и Streptococcus производят молочную кислоту.

Луи Пастер изучал ферментирующие бактерии в 1860 году. Он продемонстрировал, что ферментирующие бактерии могут загрязнять пиво и вино в процессе производства.Он также показал, что аромат вина и пива можно сохранить, нагревая их, убивая бактерии. Этот процесс нагрева называется пастеризацией.

Теперь процесс пастеризации используется для уничтожения бактерий, присутствующих в молоке и других продуктах.

Торможение

Процесс ферментации может быть замедлен из-за повышенной концентрации алкоголя в среде. Уже упоминалось, что алкоголь токсичен для дрожжей и бактерий. Когда концентрация алкоголя повышается до определенного предела, рост дрожжей сразу прекращается.Однако ферментационная активность полностью не подавляется.

Чувствительность дрожжей к этанолу зависит от следующих факторов:

  • Температура
  • pH
  • Состав среды
  • Модификации плазматической мембраны
  • Действие некоторых ферментов

Все эти факторы увеличивают внутриклеточную концентрацию этанола.

Чувствительность к этанолу также зависит от баланса между выделением и производством этанола.Повышенный уровень удержания этанола внутри клетки оказывает ингибирующее действие на скорость роста и производство алкоголя.

Преимущества ферментации

Ниже приведены некоторые из основных преимуществ ферментации для человека.

  • Ферментированная пища состоит из полезных микроорганизмов и пробиотиков, которые помогают поддерживать здоровье кишечника за счет извлечения питательных веществ из пищи.
  • Ферментация также помогает нейтрализовать антипитательные вещества, такие как фитиновая кислота, которые присутствуют в орехах, семенах, бобовых и зерновых.Если его не остановить, это может вызвать дефицит минералов в организме.
  • Молочная ферментация кишечными бактериями помогает преобразовывать аммиак в ионы аммония. Он спасает организм от пагубного воздействия аммиака на мозг. Этот процесс ферментации играет ключевую роль в предотвращении печеночной энцефалопатии.

Напитки алкогольные

Следующие алкогольные напитки производятся методом спиртового брожения в промышленности.

  • Вино получают путем ферментации натуральных сахаров, содержащихся в винограде.
  • Перри и сидр производятся из натурального сахара в грушах и яблоках с помощью аналогичного процесса ферментации.
  • Виные спирты и бренди производятся методом дистилляции фруктовых напитков.
  • Медовуха производится путем ферментации натурального сахара, присутствующего в меде.
  • Виски, водка и пиво производятся путем ферментации зернового крахмала, который был преобразован в сахар под действием фермента амилазы.
  • Ром получают путем дистилляции и ферментации мелассы из сахарного тростника.

Во всех этих процессах ферментация должна происходить в емкости, которая позволяет выходить углекислому газу, но не допускает попадания воздуха внутрь. Это поможет снизить риск заражения нежелательными бактериями или плесенью, поскольку углекислый газ создает риск разрыва сосуда.

Сводка

Ферментация - это анаэробный процесс, при котором пировиноградная кислота превращается в различные продукты под действием некоторых микроорганизмов.

Есть три типа ферментации;

  • Спиртовое брожение
  • Молочно-кислотное брожение
  • Уксусно-кислотное брожение

Спиртовое брожение включает превращение пирувата в этанол и диоксид углерода.Это двухэтапный процесс;

  • На первом этапе глюкоза превращается в пируват путем гликолиза
  • На втором этапе пируват превращается в этанол и диоксид углерода с помощью молекулы НАДН

Процесс ферментации усиливается некоторыми типами дрожжей и бактерии.

Процесс ферментации используется в промышленности для производства хлеба, алкоголя, уксуса и других продуктов.

Ферментированные продукты богаты пребиотиками и имеют ряд преимуществ для здоровья.

Ферментация кишечными бактериями защищает организм от вредного воздействия аммиака.

Процесс ферментации используется в производстве напитков для производства различных алкогольных напитков.

Список литературы

  1. Дашко, София; Чжоу, нерв; Компаньо, Кончетта; Пишкур, Юре (01.09.2014). «Почему, когда и как дрожжи развили спиртовое брожение?» . FEMS Yeast Research. 14 (6): 826–832. дой : 10.1111 / 1567-1364.12161 . ISSN 1567-1364 . PMC 4262006 . PMID 24824836 .
  2. Арен ван Ваард ; Г. Ван ден Тилларт; Мария Верхаген (1993). «Образование этанола и регулирование pH у рыб». Пережить гипоксию. С. 157-170. HDL : 11370 / 3196a88e-a978-4293-8f6f-cd6876d8c428 . ISBN 978-0-8493-4226-4 .
  3. Страйер, Люберт (1975). Биохимия . В. Х. Фриман и компания. ISBN 978-0-7167-0174-3 .
  4. Raj SB, Ramaswamy S, Plapp BV. «Структура и катализ алкогольдегидрогеназы дрожжей» . Биохимия. 53 : 5791-803. дой : 10.1021 / bi5006442 . PMC 4165444 . PMID 25157460

Источники изображений

  1. https://commons.wikimedia.org/wiki/File:Lactic_acid_fermentation.png
  2. https://commons.wikimedia.org/wiki/File:Alcohol_fermentation_process.png
.

Обезвоживание конденсатопровода - нефть и газ

При добыче природного газа часто также образуются большие объемы жидких углеводородных конденсатов, которые могут транспортироваться на десятки или даже сотни километров для доставки или обработки: например, с удаленных морских платформ или FPSO на переработку на суше. Когда используются трубопроводы из углеродистой стали и конденсат содержит значительные объемы свободной воды или рассола, а также может быть кислым из-за H₂S / CO₂, часто возникает коррозия, приводящая к сокращению срока службы трубопровода и значительному загрязнению береговых сооружений.Моноэтиленгликоль (МЭГ) также может захватываться, если используется для подавления гидратов в скважине.

Удаление воды и МЭГ из конденсата - многоступенчатый процесс. Сначала для удаления свободной воды и МЭГ используются первичный водоотделитель, а затем коалесцеры жидкость / жидкость. Дополнительное удаление растворенной воды можно осуществить с помощью отпарной колонны для растворенной воды. Если природный газ также транспортируется по тому же трубопроводу, газ может быть дегидратирован гликолем, а затем смешан с конденсатом для обеспечения сухого потока, который минимизирует коррозию трубопровода.

Потребности в добыче и газовом плане

  • Обеспечение последовательного удаления воды / МЭГ из углеводородного конденсата
  • Используйте трубы из углеродистой стали, минимизируя риск коррозии
  • Минимизация затрат на электроэнергию и эксплуатационные расходы на отпарной колонне растворенной воды за счет снижения нагрузки на свободную воду и загрязнения
  • Обеспечение контроля эксплуатационных расходов на выходе и отсутствие сбоев за счет сведения к минимуму загрязнения процессов очистки газа и / или конденсата ржавчиной и дымным порохом
  • Свести к минимуму потери МЭГ за счет эффективного восстановления, дистилляции и повторного использования
.

Смотрите также