Валы для движения


Валы и оси Общие сведения и основы конструирования

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач, несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д)

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами. Промежуточные цапфы называют шейками, концевые – шипами.

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис. ). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис. ).

Цапфы валов для подшипников качения (рис. ) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Рис. 12.2 Основные типы

цапф валов под подшипники

скольжения

Рис. 12.3 Цапфы под

подшипники качения:

а – цилиндрическая без крепления;

б – с резьбой

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис. )

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

Валы и направляющие движения (валы и оси, направляющие для поступательного движения)

Механические преобразователи движения (зубчатые, фрикционные, гибкой связью, прерывистого движения, кулачковые, винтовые, плоские рычажные).

Соединения деталей и узлов (неразъемные, разъемные).

Упругие элементы (винтовые пружины, плоские пружины).

5. Базовые конструкции [стойки(тумбы, пульты), рамы, панели,

  ТЭЗы].

Требования, предъявляемые к конструкции механических систем.

Промышленные и робототехнические устройства представляют собой комплекс различных блоков, узлов, механизмов и деталей, которые электрически или механически связаны друг с другом и призваны выполнять заданные функции в определенных условиях и режимах эксплуатации. От правильного выбора материала, из которого изготовлены детали, их размещения, закрепления объединения, соответствия механическим требованиям зависят важнейшие характеристики робототехнических устройств, такие как масса, габариты потребляемая мощность, долговечность, себестоимость и др.

Рассмотрим требования, предъявляемые к деталям механических и электромеханических узлов. К ним относятся:

Жесткость – способность конструкции и ее элементов сопротивляться изменению своих первоначальных размеров и форм. Недостаточная жесткость приводит к возникновению вибраций и снижению точности.

Точность обуславливается допустимыми ошибками наложения и перемещения ведомых звеньев, соответствием механическим требованиям при работе элементов автоматики и привода.

Устойчивость – способность конструкции и ее элементов сохранять определенную начальную форму равновесия.

Надежность – это свойство устройства и его деталей выполнять в течение требуемого времени заданные функции при определенных условиях эксплуатации. Одним из показателей надежности работы деталей является отказ, т.е. частичная или полная утрата работоспособности и соответствия основным техническим параметрам. Причинами отказов могут быть: ошибки конструирования, технологические ошибки, неправильная эксплуатация и некачественный ремонт; естественные причины(износ, старение, изменение физико-механических, электрических и магнитных свойств во время эксплуатации), случайные ошибки. При оценке надежности устройств определяющими являются показатели надежности: наработка на отказ, среднее время восстановления.

Технологичность конструкции обуславливается возможностью изготовления детали, сборки узлов прогрессивными методами конкретного производства с наименьшими затратами времени, труда и материалов.

К элементам автоматики предъявляются требования высокой чувствительности, малой инерционности при работе в динамическом режиме, малой погрешности и т.д.; к приводам широкого диапазона простоты регулирования скорости вращения, малой инерционности, небольшого момента трения, возможность работать в следящем режиме, возможность развивать большие движущие моменты, простоты конструкции и обслуживания. В зависимости от назначения, к приводам могут предъявляться и специальные требования, такие, как например, возможность работать при повышенных температурах, во взрывоопасной среде, способность длительное время выдерживать нагрузки (работать в режиме источника момента) и т.д.

Основной задачей науки о сопротивлении материалов является разработка методов расчета надежных и наиболее экономичных в отношении веса и размеров различных элементов сооружений и машин.

Элементы и узлы механизмов. Валы, оси и опоры

Вращающиеся детали механизмов устанавливаются на валах или осях, которые осуществляют центрирование этих деталей относительно оси сращения.

Валы предназначены для передачи крутящего момента. Оси в отличие от валов не передают крутящий момент и могут быть как вращающиеся, так и неподвижные.

Опорами называются устройства, поддерживающие вращающиеся детали в заданном положении. Опоры являются кинематическими парами. Части валов и осей, охватываемые опорами, называются цапфами, а детали опор, охватывающие цапфы, называются подшипниками. При действии осевых нагрузок цапфы называются пятами, а подшипники – подпятниками.

По характеру трения между рабочими элементами цапф и подшипников и по конструктивным признакам опоры делятся на следующие основные типы:

1) опоры с трением скольжения – цилиндрические, конические, шаровые, на центрах, на кернах или на шпилях;

2) опоры с трением качения – шариковые и роликовые подшипники;

3) опоры с жидкостным или воздушным трением;

4) опоры с магнитным подвесом, и т.д.

По конструкции опоры чрезвычайно разнообразны.

К опорам механизмов робототехнических тем предъявляются следующие основные требования:

а) высокая точность направления;

б) малый момент трения;

в) малая чувствительность к изменениям температуры;

г) высокая износостойкость;

д) возможность компенсации износа;

е) стойкость при работе в условиях тряски и вибрации;

ж) достаточная, по условиям работы, допустимая нагрузка;

з) невысокая стоимость изготовления и сборки.

Наиболее полно этим требованиям удовлетворяют опоры с трением качения.

Валы и оси. Форма и материал валов и осей

Форма и размеры валов и осей определяются их назначением, расположением и способом крепления связанных с ним деталей, типом и размерами опор, условиями обработки и сборки, величиной и направлением действующих сил.

По конструкции и форме валы разделяются на:

- гладкие постоянного сечения;

- ступенчатые;

- шлицевые;

- валы-шестерни;

- валы-червяки;

- фланцевые;

- коленчатые;

- карданные;

- гибкие.

По форме сечения валы делятся на сплошные и полые. Оси могут иметь гладкую, ступенчатую и фланцевую форму.

Диаметры посадочных мест под зубчатые колеса, подшипники и другие детали на валах следует назначать из ряда нормальных размеров. Уступы на валах должны быть достаточных размеров для восприятия осевых сил. Если на валу устанавливаются несколько шпонок, то целесообразно делать их одинаковой ширины и располагать по одной прямой вдоль оси вала.

Для уменьшения концентрации напряжений следует избегать резких переходов от одного диаметра вала к другому (переходы делаются скругленными или коническими). Резьбы, выточки, уступы, шпоночные пазы и шлицы повышают усталостную прочность вала и должны учитываться при его расчете.

Цапфы валов, работающие в подшипниках скольжения, выполняются: цилиндрическими, коническими, шаровыми.

Материал валов и осей назначается с учетом условий их работы. Основным материалом для валов и осей являются сталь Ст5 (без термообработки) и стали 45, 50, 40Х, У8А, У10А (термически обработанные – улучшенные, закаленные с высоким отпуском или закаленные ТВЧ с низким отпуском). Валы, работающие при нагрузке с толчками, изготовляются из сталей 20 и 20Х, при этом цапфы валов цементируются и закаливаются.

Расчет валов и осей

Расчет валов на прочность заключается в определении напряжения σ в опасном сечении вала (проверочный расчет) или в определении диаметра вала d по выбранному допускаемому напряжению [σ] (проектный расчет).

Предварительный расчет валов, когда размеры вала по длине не определены и изгибающие моменты Mu не известны, ведется из условий прочности на кручение по заданному крутящему моменту:

где [τ]k=20…30; Mk – передаваемый момент кручения.

Т.к. при этом расчете не учитывается изгиб вала, то обычно принимают пониженное допускаемое напряжение на кручение [τ]=20…30 МПа. Полярный момент сопротивления площади сечения Wp=0,2d3.

Расчет валов ни кручение и изгиб

Исходными данными для расчет валов являются: 1) расчетная схема; 2) расположение,  размеры сопряженных с валом деталей (колес, опор, муфт и др.); 3) места приложения, величина, направление и характер действующих сил; 4) материал валика.

Расчетная схема вала составляется на основе анализа работы механизма по его кинематической компоновочной схеме.

Порядок расчета вала.

1. Определяют реакции опор. При определении реакции опор следует помнить, что окружная сила P действует на ведущее звено против вращения (как сила сопротивления), а на ведомое – в направлении вращения (как сила движущая). Радиальная сила направлена к центру колеса, а осевая – параллельно оси вала.

2. Строят эпюры изгибающих и крутящих моментов.

3. Учитывая, что вал испытывает деформацию кручения и изгиба, определяют наибольший приведенный момент по формуле:

.

4. Определяют напряжения σu в предполагаемом опасном сечении вала или диаметр вала по формулам:   или , где  - допускаемое напряжение на изгиб; W=0,1d3 – момент сопротивления изгибу площади сечения вала.

Оси отличаются от валов тем, что не испытывают деформации кручения и рассчитываются на изгиб по формулам  или .

Допускаемые напряжения

Для валов и осей из углеродистых и легированных сталей при симметричном цикле изменения напряжения принимают [τ]u≈0,1τb, для осей при пульсирующем цикле [τ]u≈0,16τb, а при постоянных напряжениях - [τ]u ≈ 0,3τb. Допускаемые касательные напряжения принимают соответственно: [τ]≈ 0,2τb; [τ]0 ≈ 0,1τb и [τ]-1 ≈ 0,06τb.

Расчет валов на жесткость

Выполняются для ограничения деформаций изгиба и кручения. Существуют эмпирические зависимости допускаемых прогибов f и углов наклона θ упругих линий валов. Для валов f≤(0,0002…0,0003)L, где L – расстояние между опорами вала.

В месте установки зубчатого колеса f≤(0,01…0,03)m, где m – модуль зацепления.

Угол взаимного наклона валов под зубчатыми колесами θ≤0,001 рад, в радиальном шарикоподшипнике θ≤0,01 рад. Углы закручивания φ длинных валиков ограничиваются величинами порядка φ≤5’…10’ на длине 1м. В отдельных случаях допускаются φ≤20’ на 1м.

Прогибы и наклоны упругой линии, и углы закручивания валов определяются по формулам: , где Jk – момент инерции при кручении;

, где J – момент инерции сечения;

                           

Опоры скольжения. Цилиндрические опоры

Опоры с цилиндрической рабочей поверхностью имеют большую площадь соприкосновения и надежно работают при значительных нагрузках и частотах их вращения в условиях тряски и вибрации. Они не обеспечивают высокую точность центрирования вала вследствие зазора между валом и подшипником и имеют момент трения больше, чем у шарикоподшипников. Подшипники с трением скольжения могут воспринимать только радиальную нагрузку (рис.1) или одновременно и радиальную и осевую (рис.2, 3, 4). Подшипник (рис.4) интересен тем, что можно при сборке регулировать положение валика в осевом направлении.

Для уменьшения трения, износа и нагрева рабочие поверхности цапфы и подшипника должны иметь шероховатость поверхности Ra=0,63…0,16 мкм и должны быть надежно смазаны.

Подшипники с трением скольжения рекомендуется смазывать жидким маслом. В механизмах, работающих при малых удельных давлениях и скоростях скольжения υ=3…4,5 м/с применяется вазелиновое масло T ГОСТ 1840-51, при υR2 и A1>(S1-S2) для более нагруженного подшипника 1 по формуле

C1=[R1Kk+m(A1-S1+S2)]Kб·Km(n·h)0,3 (1)

где R1 и R2 – радиальные нагрузки на подшипники 1 и 2 валика, да Н; A1 – осевая нагрузка на подшипник 1, да Н; S1=1,3R1·tgβ и S2=1,3R2·tgβ – осевые составляющие от радиальных нагрузок, да Н. При A12, принимают: при β=120 (тип 36000) m=1,5; при β=260 (тип 46000) m=0,7; при β=360 (тип 66000) m=0,5. Эти значения коэффициента m при R/A=2 увеличивают на 15%, при R/A=1 – на 25%. Для радиальных и радиально-упорных шарикоподшипников принимают m=1, когда R/A>5. Если вращается внутреннее кольцо подшипника, то коэффициент кольца kk=1. Если вращается наружное кольцо, то kk=1,35. Коэффициент динамичности нагрузки kб=1 при нагрузке без толчков; kб=1,1…1,2 при нагрузке с легкими толчками и кратковременными перегрузками до 125% от расчетной нагрузки; kб=1,3…1,5 при умеренных толчках, вибрации и кратковременных перегрузках до 150%; kб=1,6…2,5 при значительных толчках, вибрации и перегрузках до 200%. Температурный коэффициент kт=1 при температуре ниже 1000С kт=1,1 при 1500С; n – частота вращения; h=3000…10000 – число часов работы подшипника. Значения (n·h)0,3 обычно находят из таблиц.

При отсутствии осевых нагрузок на опоры применяются шарикоподшипники радиальные. В этих случаях β=0 и в формуле (1) S1=0 и S2=0, А=0. Иногда радиальные шарикоподшипники применяются в опорах, на которые действуют небольшие осевые нагрузки (A

Pereosnastka.ru

Механизмы передачи вращательного движения

Категория:

Ремонт промышленного оборудования

Механизмы передачи вращательного движения

Общее понятие о передачах между валами

Между валами двигателя и рабочей машины, а также между органами самой машины устанавливают механизмы для включения и выключения, изменения скорости и направления движения, носящие общее название — передачи. Передачи вращательного движения широко применяются в механизмах и машинах. Они служат для изменения частоты и направления вращения, обеспечивают непрерывное и равномерное движение.

Вращательное движение в машинах и механизмах передается посредством гибких передач — ременных, цепных и через жесткие передачи — фрикционные, зубчатые. В ременных и фрикционных передачах используются силы трения, а в зубчатых и цепных — непосредственное механическое зацепление элементов передачи. Каждая из передач имеет ведущее звено, сообщающее движение, и ведомые звенья, через которые движение передается от данного механизма к другому, связанному с ним.

Важнейшей характеристикой передач вращательного движения является передаточное отношение, или передаточное число.

Отношение угловой скорости, частоты вращения (числа оборотов в минуту) и диаметров одного из валов к соответствующим величинам другого вала, участвующего в совместном вращении с первым валом, называется передаточным отношением, которое принято обозначать буквой и. Отношение частоты вращения ведущего вала к частоте вращения ведомого называют передаточным числом, которое показывает, во сколько раз ускоряется или замедляется движение.

Ременные передачи

Этот вид гибкой передачи наиболее распространен. По сравнению с другими видами механических передач, они позволяют наиболее просто и бесшумно передать крутящий момент от двигателя или промежуточного вала к рабочему органу станка в достаточно широком диапазоне скоростей и мощностей. Ремень охватывает два шкива, насаженных на валы. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего. Эти передачи бывают с плоским ремнем, с клиновым ремнем и круглым ремнем.

Различают ременные передачи: открытую, перекрестную и полуперекрестную.

В открытой передаче валы параллельны друг другу и шкивы вращаются в одном направлении. В перекрестной передаче валы расположены параллельно, но при этом ведущий шкив вращается, например, по часовой стрелке, а ведомый — против часовой стрелки, т. е. в обратном направлении полуперекрестную передачу применяют между валами, оси которых расположены в разных плоскостях под углом друг к другу.

В приводах машин применяются плоские ремни — кожаные, хлопчатобумажные цельнотканые, хлопчатобумажные шитые, тканые прорезиненные и клиновидные. Используются также шерстяные тканые ремни. В станках применяются главным образом ремни кожаные, прорезиненные и клиновидные. Для уменьшения скольжения ремня вследствие недостаточного трения из-за небольшого угла обхвата применяют натяжные ролики. Натяжной ролик представляет собой промежуточный шкив на шарнирно укрепленном рычаге. Под действием груза на длинном плече рычага ролик нажимает на ремень, натягивая его и увеличивая угол обхвата ремнем большого шкива.

Рис. 1. Передачи с плоским ремнем: а — открытая: б — перекрестная, в — полуперекрестная, с — с натяжным роликом

Диаметр натяжного ролика не должен быть меньше диаметра малого шкива. Натяжной ролик следует устанавливать у ведомой ветви не слишком близко к шкивам.

Передача клиновыми (текстропными) ремнями широко распространены в промышленности, они просты и надежны в эксплуатации. Основное преимущество клиновых ремней — лучшее сцепление их по шкивом и относительно малое скольжение. Причем габариты передачи получаются значительно меньше по сравнению с плоскими ремнями.

Для передачи больших крутящих усилий применяют многоручьевые клиноременные приводы со шкивами обода, которые оснащены рядом канавок.

Клиновидные ремни нельзя удлинять или укорачивать, их применяют определенной длины.

ГОСТ предусматривает для клиноременных приводов общего назначения семь сечений клиновых ремней, имеющих обозначения О, А, Б, В, Г, Д и Е (О — самое малое сечение).

Номинальная длина клиновых ремней (длина по их внутреннему периметру) от 500 до 1400 мм. Угол натяжения ремня равен 40°.

Клиновидные ремни подбирают по сечению в зависимости от передаваемой мощности и предусматриваемой скорости вращения.

Передачи с широким клиновидным ремнем получают все большее распространение. Эти передачи дают возможность бесступенчато регулировать скорость вращения рабочего органа на ходу под нагрузкой, что позволяет установить оптимальный режим работы Наличие такой передачи в станке позволяет механизировать и автоматизировать процесс обработки.

На рис. 2, б показана передача с широким клиновидным ремнем, которая состоит из двух обособленных раздвижных ведущего и ведомого шкивов. Ведущий шкив при помощи ступицы закреплен консольно на валу электродвигателя. На ступице закреплен неподвижно конус. Подвижной конус закреплен на стакане, соединенном при помощи шлицев со ступицей, и прижат пружиной. Ведомый шкив также состоит из подвижного стакана и неподвижного, конусов со ступицей, соединенной с валом привода. Управление передачей осуществляется специальным устройством (на рисунке не показано) путем перемещения стакана подвижного ведомого конуса. При приближении конусов ремень удаляется от оси вращения шкива, одновременно приближаясь к оси вала. Ведущий шкив, преодолевая сопротивление пружины, изменяет передаточное отношение и частоту вращения ведомого шкива,

Рис. 2. Передачи с клиновидным ремнем: а — нормального сечения, б — шариком

Цепные передачи

Для передачи вращательного движения между удаленными друг от друга валами применяется помимо ременной цепная передача Как показано на рис. 3, а, она представляет собой замкнутую металлическую шарнирую цепь, охватывающую два зубчатых колеса (звездочки). Цепь в отличие от ремня не проскальзывает, кроме того, ее можно применять в передачах также при малом расстоянии между валами и в передачах со значительным передаточным числом.

Рис. 3. Цепные передачи: а — общий вид, б — однорядная роликовая цепь, в — замок, г — пластинчатая цепь; а-межосевое расстояние, Р — шаг цепи

Цепные передачи передают мощность от долей лошадиных сил (велосипедные цепи) до тысячи лошадиных сил (многорядные цепи повышенной прочности).

Цепи работают с большими скоростями, доходящими до 30 м/с, и передаточным числом и — 15. Коэффициент полезного действия цепных передач составляет в отдельных случаях 0,98.

Цепная передача состоит из двух звездочек — ведущей и ведомой, сидящих на валах, и бесконечной цепи, надетой на эти звездочки.

Из различных видов цепей наибольшее распространение имеют Цепи однорядные и многорядные роликовые и пластинчатые.

Роликовые цепи допускают наибольшую скорость до м/с, пластинчатые — до 30 м/с.

Роликовая цепь состоит из шарнирно соединенных пластинок, между которыми помещаются ролики, свободно вращающиеся на втулке. Втулка, запрессованная в отверстия внутренних пластинок, может поворачиваться на валике. Расстояние между осями двух соседних валиков или, иначе, шаг цепи должен равняться шагу звездочки. Под шагом звездочки понимают длину дуги, описанной по верху ее зубьев и ограниченной вертикальными осями симметрии двух смежных зубьев.

Валики плотно запрессовываются в отверстиях наружных пластинок. На одном из звеньев цепи делают замок из двух валиков, соединительной пластинки, изогнутой пластинки и шплинтов для крепления пластинок. Чтобы снять или установить цепь, ее размыкают, для чего сначала разбирают замок.

Пластинчатая цепь состоит из нескольких рядов пластин с зубцами, соединенных между собой втулками и шарнирно укрепленных на общих валиках.

В цепных передачах сохраняется постоянным передаточное число: кроме того, они очень прочны, что позволяет передавать большие усилия. В связи с этим цепные передачи применяют, например, в таких грузоподъемных механизмах, как тали и лебедки. Цепи большой длины используются в эскалаторах метро, конвейерах.

Фрикционные передачи

Во фрикционных передачах вращательное движение передается от ведущего к ведомому валу посредством плотно прижатых друг к другу гладких колес (дисков) цилиндрической или конической формы. Фрикционная передача применяется в лебедках, винтовых прессах, станках и ряде других машин.

Рис. 4. Фрикционные передачи: а — с цилиндрическими колесами, б — с коническими колесами

Рис. 5. Одинарный торцовый вариатор

Чтобы фрикционная передача работала без скольжения и таким образом обеспечивала необходимую величину силы трения (сцепления) Т, поверхность ведомого колеса покрывают кожей, резиной, прессованной бумагой, древесиной или другим материалом, который может создать надлежащее сцепление со стальным или чугунным ведущим колесом.

Во фрикционных передачах применяют цилиндрические колеса для передачи движения между валами, расположенными параллельно, а конические — между пересекающимися валами.

В оборудовании находят применение фрикционные передачи с регулируемым передаточным числом. Одна из простейших таких передач показана на рис. 5.

Для изменения передаточного числа они оснащены устройствами, перемещающими одно из колес (дисков) вдоль вала и в соответствующем месте его закрепляющими. Уменьшение таким устройством диаметра D ведомого колеса до рабочего диаметра D, обеспечивающее увеличение частоты вращения ведомого колеса. В результате уменьшается передаточное число По мере удаления ведущего колеса от оси ведомого передаточное число, наоборот, увеличивается. Такое плавное регулирование скорости называется беоступенчатым, а устройство, осуществляющее регулирование — ваумаюром скоростей.

Зубчатые передачи

Зубчатые передачи имеются почти во всех сборочных единицах промышленного оборудования. С их помощью изменяют по величине и направлению скорости движущихся частей станков, передают от одного вала к другому усилия и крутящие моменты, а также преобразуют их.

В зубчатой передаче движение передается с помощью пары зубчатых колес. В практике меньшее зубчатое колесо принято называть шестерней, а большее — колесом. Термин «зубчатое колесо» относится как к шестерне, так и к колесу.

В зависимости от взаимного расположения геометрических осей валов зубчатые передачи бывают: цилиндрические, конические и винтовые. Зубчатые колеса для промышленного оборудования изготовляют с прямыми, косыми и угловыми (шевронными) зубьями.

По профилю зубьев зубчатые передачи различают: эвольвентные, с зацеплением Новикова и циклоидальные. В машиностроении широко применяют эвольвентное зацепление. Принципиально новое зацепление М. А. Новикова возможно лишь в косых зубьях и благодаря высокой несущей способности является перспективным. Циклоидальное зацепление используется в приборах и часах.

Цилиндрические зубчатые колеса с прямым зубом служат в передачах с параллельно расположенными осями валов и монтируются на последних неподвижно или подвижно.

Косозубые колеса монтируют на валах только неподвижно. Работа косозубых колес сопровождается осевым давлением, а потому они пригодны для передачи лишь сравнительно небольших мощностей. Осевое давление можно устранить, соединив два косозубых колеса с одинаковыми, но направленными в разные стороны зубьями. Так получают шевронное колесо, которое монтируют, обращая вершину угла зубьев в сторону вращения колеса. На специальных станках шевронные колеса изготовляют целыми из одной заготовки.

Шевронные колеса отличаются большой прочностью, их применяют для передачи больших мощностей в условиях, когда зубчатое зацепление испытывает во время работы толчки и удары. Эти колеса также устанавливают на валах неподвижно.

Рис. 6. Зубчатые зацепления: а — цилиндрическое с прямым зубом, б — то же, с косым зубом, е — с шевронными зубьями, г — коническое, д—колесо—рейка, е — червячное, ж —с круговым зубом

Конические зубчатые передачи различают по форме зубьев: прямозубые, косозубые и круговые.

На рис. 6, г показаны конические прямозубые, а на рис. 6, ж круговые зубчатые колеса. Их назначение — передача вращения между валами, оси которых пересекаются.

Конические зубчатые колеса с круговым зубом применяются в передачах, где требуется особая плавность и бесшумность движения.

На рис. 6, д изображены зубчатое колесо и рейка. В этой передаче вращательное движение колеса преобразуется в прямолинейное движение рейки.

Зубчатая передача с зацеплением Новикова. Эвольвентное зацепление является линейчатым, так как контакт зубьев практически происходит по узкой площадке, расположенной вдоль зуба, почему контактная прочность этого зацепления сравнительно невысока.

В зацеплении Новикова линия контакта зубьев обращается в точку и зубья касаются только в момент прохождения профилей через эту точку, а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому данное зацепление может быть только косозубым е углом наклона f = 10—30°. При взаимном перекатывании зубьев контактная площадка перемещается вдоль зуба о большой скоростью, что создает благоприятные условия для образования устойчивого масляного слоя между зубьями, благодаря чему трение в передаче уменьшается почти в два раза, соответственно повышается несущая способность зубьев.

Существенным недостатком рассмотренного зацепления является повышенная чувствительность к изменению межосевого расстояния и значительным колебаниям нагрузок.

Основные характеристики зубчатых колес. В каждом зубчатом колесе различают три окружности (делительную окружность, окружность выступов, окружность впадин) и, следовательно, три соответствующих им диаметра.

Делительная, или начальная, окружность делит зуб по высоте на две неравные части: верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба. Высоту головки зуба принято обозначать ha, высоту ножки— hf, а диаметр окружности — d.

Окружность выступов — это окружность, ограничивающая сверху профили зубьев колеса. Обозначают ее da.

Окружность впадин проходит по основанию впадин зубьев: диаметр этой окружности обозначают df.

Рис. 7. Схема движения контактной площадки и основные элементы зубчатого колеса: а — эвольвентное зацепление, б — зацепление Новикова, в — основные злементы зубчатого колеса

Необходимо отметить, что в таблице не приведены характеристики широко применяемых корригированных зубчатых колес, у которых относительные размеры зуба и другие показатели иные, чем вытекающие из приведенных формул, а также колеса, в основе размеров элементов которых лежит двойной модуль.

Тихоходные зубчатые колеся изготовляют из чугуна или углеродистой стали, быстроходные — из легированной стали. После нарезания зубьев на зуборезных стенках зубчатые колеса подвергают термической обработке, чтобы увеличить их прочность и повысить стойкость против износа У колес из углеродистой стали поверхность зубьев улучшают химико-термическим способом — цементацией и потом закаливанием. Зубья быстроходных колес после термической обработки шлифуют или притирают. Применяется также поверхностная закалка токами высокой частоты.

Чтобы зацепление было плавным и бесшумным, одно из двух колес в зубчатых парах в отдельных случаях, когда это позволяет нагрузка, выполняют из текстолита, древеснослоистого пластика ДСП-Г или капрона.

Для облегчения зацепления зубчатых колес при включении посредством перемещения по валу, торцы зубьев со стороны включения закругляют.

Червячные передачи. Червячные передачи позволяют получить малые передаточные числа, что делает их применение целесообразным в случаях, когда требуются небольшие частоты вращения ведомого вала. Имеет существенное значение и то, что червячные пере-

Дачи занимают меньше места, чем зубчатые. Червячная передача состоит из червяка, насаживаемого на ведущий вал или изготовляемого заодно с ним, и червячного колеса, закрепляемого на ведомом валу. Червяк представляет собой винт с трапецеидальной резьбой Червячное колесо имеет вогнутые по длине винтовые зубья.

По числу зубьев различают червяки однозаходные, двухзаходные и т. д. Однозаходный червяк за один оборот поворачивает колесо на один зуб, двухзаходный червяк — на два и г. д.

Недостатком червячных передач являются большие потери передаваемой мощности на трение. Для уменьшения потерь червяк изготовляют из стали и его поверхность после закалки шлифуют, а червячное колесо изготовляют из бронзы. При таком сочетании материалов трение уменьшается, следовательно, меньше становятся потери мощности; кроме того, уменьшается износ детали.

Из бронзы в целях экономии обычно делают не все червячное колесо, а только обод, надеваемый затем на стальную ступицу.

Реклама:

Механизмы преобразования вращательного движения

Статьи по теме:

Детали машин



Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливаются на валах и осях. Между этими двумя элементами механизмов имеется существенное различие, заключающееся в функциональном назначении и некоторым другим признакам.

Вал предназначен для передачи вращающего момента вдоль своей оси, а также для поддержания расположенных на нем деталей и восприятия всех действующих на эти детали внешних нагрузок. В отличие от вала, ось только поддерживает установленные на ней детали и воспринимает действующие на них нагрузки, кроме вращающего момента, т. е. не испытывает деформацию кручения. Оси могут быть неподвижными (например, неподвижная ось в виде цапфы автомобильного колеса на управляемом мосту) или подвижными, т. е. вращаться вместе с размещенными на них деталями (ось колесной пары железнодорожного вагона).

Классификация валов более обширная – они могут различаться по нескольким признакам.

***

Классификация валов

По назначению валы делят на коренные, передаточные, трансмиссионные, гибкие и торсионные.

Коренные валы несут основные рабочие узлы машины (коленчатый вал двигателя, ротор турбины и т. п.).

Передаточные валы несут детали передач (зубчатые колеса, шкивы, звездочки и т. п.). В отличие от коренного вала передаточные служат для выполнения промежуточной функции в агрегатах машины при передаче крутящего момента. Так, передаточными валами являются первичный и вторичный валы КПП, валы главной передачи, раздаточной коробки и т. п.

Трансмиссионные валы служат для передачи вращающего момента между отдельными агрегатами и рабочими узлами машины. Примеры трансмиссионных валов: карданная передача, полуоси, ведущие валы с шарнирами равных угловых скоростей в легковых автомобилях с передними ведущими колесами и т. п.

Гибкие (гибкие проволочные) валы допускают передачу вращающего момента при значительных перегибах оси. Такие валы встречаются, например, в контрольно-измерительных приборах (трос спидометра), механизированном инструменте (вал бормашины стоматолога).

Торсионные валы (торсионы) – валы малых диаметров, служащие для передачи вращающих моментов. Такие валы допускают закручивание относительно оси на значительные углы.

По форме геометрической оси валы подразделяют на прямые и непрямые – коленчатые и эксцентриковые. Примером эксцентрикового вала может служить вал газораспределительного механизма двигателя внутреннего сгорания. Оси, как правило, изготавливают прямыми. По конструкции прямые валы и оси мало отличаются друг от друга.

Прямые валы и оси могут быть гладкими или ступенчатыми. Ступенчатая форма способствует равномерной напряженности вала по длине, а также упрощает монтаж деталей, расположенных на нем.

По форме поперечного сечения валы и оси бывают сплошные и полые (с осевыми отверстиями). Полые валы применяют для уменьшения массы или для размещения внутри них других деталей или элементов конструкции, а также для подвода масла смазочной системы.

По внешнему очертанию поперечного сечения валы разделяют на шлицевые и шпоночные, имеющие на некоторой длине шлицевой профиль или профиль со шпоночным пазом.

***

Конструктивные элементы осей и валов

Отдельные элементы валов и осей имеют специфические названия. В частности, опорные части валов и осей, т. е. участки, которыми вал или ось опирается на подшипник, принято называть цапфами. При этом различают следующие виды цапф – шипы, шейки и пяты.

Шипом называют цапфу, расположенную на конце вала или оси и передающую преимущественно радиальную силу.

Шейкой называют промежуточную цапфу вала или оси. Как и шип, шейка передает, преимущественно, радиальную силу. Опорами для шипов и шеек служат подшипники скольжения или качения. Шипы и шейки по форме могут быть цилиндрическими, коническими или сферическими. В большинстве случаев применяют цилиндрические цапфы.

Пятой называют цапфу, передающую осевую силу. Опорами для пят служат подпятники. Пяты по форме бывают кольцевыми, сплошными и гребенчатыми. Гребенчатые пяты применяются редко.

Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими или коническими. Конические концы валов чаще всего изготавливают с конусностью 1:10. Конусные поверхности валов применяют для облегчения монтажа устанавливаемых на вал тяжелых деталей, быстрой их смены, для повышения точности центрирования деталей и обеспечения требуемого натяга при сборке.

Переходные участки ступенчатых валов и осей между двумя ступенями разных диаметров выполняют с канавкой со скруглением шириной 3…5 мм и глубиной 0,25…0,5 мм, с галтелью постоянного максимально возможного радиуса или с галтелью переменного радиуса (галтель – поверхность плавного перехода от ступени меньшего сечения к большему). Назначение переходных участков валов и осей – уменьшение концентрации напряжений в местах изменения формы сечения этих деталей. Для повышения несущей способности валов и осей часто выполняют деформационное упрочнение галтелей наклепом.

***



Основными критериями работоспособности валов и осей являются прочность и жесткость. Валы и вращающиеся оси при работе испытывают циклически изменяющиеся напряжения. Прочность оценивают коэффициентом запаса прочности при расчете валов и осей на сопротивление усталости, а жесткость – прогибом, углами поворота или закручивания сечений в местах установки деталей. Практикой установлено, что разрушение валов и осей быстроходных машин в большинстве случаев носит усталостный характер, поэтому основным является расчет на сопротивление усталости.

Основными расчетными силовыми факторами являются вращающие Т и изгибающие М моменты. Влияние растягивающих и сжимающих сил на прочность незначительно, и их в большинстве случаев не учитывают.

***

Проектировочный и проверочный расчеты валов и осей

При проектировании валов и осей выполняют проектировочный расчет на статическую прочность с целью ориентировочного определения диаметров ступеней. При проектировочном расчете валов редуктора обычно определяют диаметры концевых сечений входного и выходного валов, а для промежуточных валов – диаметр в месте посадки колес. Диаметр расчетного сечения вала определяют по формуле, известной из курса сопротивления материалов:

d3 ≥ 103(Мк/0,2[τ]к),

где Мк = Т – крутящий момент, действующий в расчетном сечении, Нм; [τ]к – допускаемое напряжение при кручении для материала вала, МПа. Полученный расчетный диаметр вала округляют до ближайшего диаметра стандартного ряда по ГОСТ.

Проектировочный расчет осей чаще всего выполняют аналогично расчету балок с шарнирными опорами обычными методами сопротивления материалов.

Проверочный расчет валов и осей проводят на сопротивление усталости и на жесткость. Проверочный расчет выполняют после окончательной разработки конструкции вала или оси на основе проектировочного расчета. Проверку на сопротивление усталости производят по коэффициенту запаса прочности по максимальной длительно действующей нагрузке без учета кратковременных пиковых нагрузок (например, в период пуска).

Расчет валов на жесткость выполняют в случае, когда деформации (линейные или угловые) неблагоприятно влияют на работу сопряженных с валом деталей (зубчатых колес, подшипников и т. п.). Различают изгибную и крутильную жесткость вала. Изгибная жесткость оценивается прогибом вала, крутильная – углом закручивания. Проверочный расчет осей на сопротивление усталости и изгибную жесткость выполняют аналогично расчету валов, с учетом того, что для осей Мк = 0.

При разработке конструкции валов или осей рекомендуется детали, располагаемые на них, размещать по возможности ближе к опорам для уменьшения изгибающих моментов. С целью уменьшения мест концентрации напряжений следует избегать излишних ступеней, отверстий и шпоночных пазов, а также других отклонений формы поперечного сечения вала или оси. Переходные участки следует выполнять в виде галтелей или канавок со скруглениями.

***

Подшипники


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Pereosnastka.ru

Типовые детали, передающие вращательные движения

Категория:

Ремонт промышленного оборудования

Типовые детали, передающие вращательные движения

Наиболее характерными типовыми деталями, передающими вращательные движения в промышленном оборудовании, являются валы, оси, подшипники, муфты и др.

Валы и оси

Вал представляет собой деталь машины, вращающуюся в подшипниках и служащую для передачи крутящего момента. По конструкции валы делятся на прямые, коленчатые, шлицевые, вал-шестерни и др. Особую группу составляют гибкие валы. Валы могут быть гладкими или ступенчатыми. Образование ступеней связано с различной напряженностью посадок отдельных сечений, а также условиями изготовления и удобства сборки Длинные валы могут состоять из отдельных частей, соединенных муфтами.

Валы служат опорой для вращающихся деталей. При работе валы испытывают изгиб и кручение, а в отдельных случаях дополнительно растяжение и сжатие.

По типу сечения валы и оси выполняют сплошными и полыми. Полое сечение применяется для уменьшения массы или для размещения внутри других деталей.

Валы широко применяются в механизмах и сборочных единицах машин. Вращающиеся части приводов машин — зубчатые колеса, диски, муфты, шкивы и т. п. в большинстве случаев устанавливаются на валах и осях, которые могут иметь различное расположение — горизонтальное, вертикальное, наклонное. Разница между валом и осью состоит в том, что вал вращается и передает усилие через закрепленные на нем детали другим деталям, которые с ними сопрягаются, тогда как ось, вращаясь или оставаясь неподвижной, только поддерживает сидящие на ней детали.

Для передачи усилий валы соединяют с зубчатыми колесами, а также со шкивами посредством специальных деталей — шпонок, устанавливаемых частью на валу, частью в сопрягаемой детали, или при помощи шлицевых соединений. Сечение шпонок и шпоночных пазов в соединяемых деталях подбирается в зависимости от диаметра вала и характера сопряжения.

Цапфами называют участки вала или оси, лежащие в опорах качения или скольжения. Цапфы в зависимости от их положения на валу делятся на шипы, шейки и пяты. Шип расположен на конце вала и воспринимает радиальную нагрузку. Шейка расположена в средней части вала, также воспринимает радиальную нагрузку и одновременно подвержена действию крутящего момента. Пята — торцовая часть вала или оси и воспринимает только осевые нагрузки.

Валы и оси — ответственные датели машин. Опорные части валов очень тщательно обрабатываются для лучшего их сопряжения с соединяемыми деталями.

Конструкция валов определяется способом крепления на них деталей, типом и размерами подшипников, которые для них будут служить опорой, технологическими условиями обработки и сборки.

Во многих станках применяются шлицевые валы — с неглубокими продольными канавками на поверхности. Канавки чередуются с выступами — шлицами, которые могут быть прямоугольного, треугольного или фасонного профиля. Точно такие же шлицы делают в ступице, сопрягающейся с валом детали, которую можно перемещать по валу.

Шлицевые соединения сложнее по устройству и изготовлению, чем шпоночные, зато они обеспечивают точное расположение детали на валу и позволяют передавать очень большие вращающие усилия при меньшем поперечном сечении вала, чем при соединении на шпонке, кроме того, они долговечны и износостойки.

Подшипники

Подшипниками называют опоры валов и осей, предназначенные для восприятия радиальных и осевых нагрузок. Радиальной нагрузкой называется усилие, действующее перпендикулярно оси вала. Осевой нагрузкой называется усилие, действующее вдоль оси вала.

В зависимости от характера относительного перемещения деталей различают трение двух видов: трение скольжения и трение качения.

При трении скольжения поверхность, линия или точка касания одной детали, перемещающейся по другой, остается все время неизменной. Это наблюдается, например, при перемещении поршня в цилиндре, движение каретки суппорта токарного станка по направляющим станины, при вычерчивании круга на плоскости острием циркуля и т. д.

При трении качения детали перекатываются одна по другой без скольжения и поверхности их касаются друг друга только по линии или в одной точке, причем по мере перекатывания деталей линия или точка касания все время сменяется новой, что наблюдается, например, при качении катков по рельсам, перекатывании (без скольжения) зубьев колес в зубчатой передаче и т. д.

При одинаковой конструкции парно сочлененных деталей и равной нагрузке на них сопротивление трения качения значительно меньше сопротивления трения скольжения и износ деталей, вызываемый работой силы трения качения, также меньше.

Наиболее характерно проявление работы сил трения в подшипниках, неподвижных опорах, в которых вращаются шипы (цапфы) валов. По виду возникающего в них трения подшипники разделяются на подшипники скольжения и подшипники качения

Подшипники скольжения. Эти детали называются так потому, что между вращающейся шейкой вала и неподвижной опорной внутренней поверхностью подшипников возникает трение скольжения. Первоначальный зазор между шейкой вала и посадочной поверхностью подшипника увеличивается по мере их износа. Скорость увеличения зазора зависит от конструкции подшипника.

В промышленном оборудовании применяются подшипники скольжения разных конструкций.

Они изготовляются главным образом из антифрикционных материалов, которые обеспечивают; — достаточную прочность и твердость как при нормальных температурах, так и при температурах наибольшего нагрева в процессе работы; — наименьшее трение, нагревание и износ; легкую пришабриваемость и быструю прирабатываемость: некоторую микропористость для сохранения смазки в период остановки вала (шпинделя);

— легкость удаления маслом продуктов износа. В станкостроении подшипники в основном изготовляются из антифрикционных цветных сплавов двух типов: бронз оловянных и алюминиевых, а также баббитов.

Подшипники скольжения можно разделить на две основные группы: неразъемные и разъемные.

Неразъемные подшипники могут быть нерегулируемыми и регулируемыми. К первым обычно относятся втулки и посадочные места под валы в различных корпусах, а также в станинах. Здесь нельзя регулировать величину зазора между шейкой вала и поверхностью, на которую она опирается. В регулируемых подшипниках зазор можно поддерживать постоянным, несмотря на износ подшипника и шейки вала.

Разъемные подшипники обычно состоят из двух половинок (полувтулок) или нескольких сегментов.

Для подшипников скольжения характерны следующие недостатки: большие потери передаваемой мощности вследствие трения; неизбежность развития начального зазора между вкладышем и посадочным местом, специально образуемого для создания масляного слоя в пределах этого зазора;

значительная трудоемкость изготовления подшипников, расход цветных металлов и др.

Подшипники качения широко применяют во всех отраслях машиностроения. Они представляют собой готовые сборочные единицы, основным элементом которых являются тела качения — шарики или ролики, установленные между кольцами и удерживаемые друг от друга на определенном расстоянии посредством сепаратора. В процессе работы шарики (или ролики) катятся по беговым дорожкам колец, одно из которых, как правило, размещают в механизме неподвижно. При трении качения потери передаваемой мощности значительно меньше, чем при трении скольжения.

Рис. 1. Подшипники качения: а — радиальный шариковый однорядный, б — радиальный роликовый, в — роликовый конический, г — радиально-упорный шариковый

Постоянные соединения валов получают при помощи жестких и упругих муфт. Жесткими втулочными муфтами соединяют соосно расположенные валы при помощи втулки и штифтов или шпонок. Эти муфты компактны, дешевы, мало изнашиваются. Их, как правило, не ремонтируют, а после износа заменяют новыми.

Рис. 2. Муфты: а — жесткая втулочная, б — упругая пальцевая, в — крестовая, г — раздвижная кулачковая, д — обгонная

Упругие муфты допускают некоторое отклонение соединяемых валов от соосности, смягчают толчки и удары.

Одна из простейших упругих муфт показана на рис. 2, б. Она состоит из полумуфт, причем в одной полумуфте закреплено четыре или шесть пальцев с насаженными на них кольцами — резиновыми, кожаными или из прорезиненной ткани. Кольца входят в отверстия второй полумуфты, и так как они обладают упругостью, то позволяют осям полумуфт несколько сместиться или перекоситься при работе. Пальцы крепят гайками.

Для постоянного соединения валов в современных машинах широко применяются кулачково-дисковые (крестовые) самоцентрирующие муфты, являющиеся разновидностью упругих муфт. Такая муфта состоит из двух полумуфт, имеющих по одному прямоугольному пазу на торце, и промежуточной детали. Эта деталь может быть в виде диска или кольца, на торцах которого взаимно перпендикулярно расположены два выступа. Своими выступами промежуточная деталь входит в пазы фланцев.

Крестовыми муфтами можно соединить два вала при отклонении от соосности до 0,04 диаметра вала и угловым отклонением не более 0°30’. Детали этих муфт изготовляют из цементируемых сталей с последующей закалкой. Промежуточную деталь для малонагруженных муФт изготовляют из текстолита или древеснослоистых пластиков.

Сцепная кулачковая муфта представлена на рис. 2, г. Ее полумуфта закрепляется на валу неподвижно, полумуфту соединяют с другим валом посредством шпонки Для передачи движения от одного вала к другому нужно передвинуть полумуфту в осевом направлении (при этом шпоночный паз будет скользить по ее шпонке) и ввести в зацепление кулачки. Муфты этого типа обеспечивают надежное соединение валов.

Кулачковые муфты имеют малые габариты, просты по конструкции, изготовление их обходится недорого. Недостаток этих муфг в том, что их включение на быстром ходу без определенных мер предосторожности сопровождается ударом, который может быть причиной аварии.

Обгонные муфты широко используются в механизмах для передачи движения в одном направлении,они автоматически замыкаются при одном направлении вращения и размыкаются — при противоположном.

На рис. 2, д показана фрикционная обгонная муфта с роликами. Она состоит из обоймы с гладкой цилиндрической внутренней поверхностью, роликов и звездочки Между обоймой и звездочкой образованы суживающиеся в одном направлении полости. Ролики выталкиваются толкателями с пружинками в суживающиеся части полостей. При вращении звездочки по часовой стрелке под действием сил трения ролики заклиниваются и увлекают за собой обойму, закрепленную в механизме, например посредством шпонки. При вращении в обратном направлении, обойма обгоняет звездочку, выкатывает ролики в широкие части полостей и муфта размыкается.

Детали обгонных муфт имеют высокую поверхностную твердость До HRC 50—60. Ролики изготовляют из стали ШХ15; звездочки, вклады шн 24 и обоймы — из стали 20Х или 40Х.

Такие муфгы изготовляют для диаметров валов -н 90 мм и для передачи моментов от 2,5 до 770 Н-м.

Многодисковые фрикционные муфгы образуют из двух или нескольких дисков, плотно прижатых друг к другу торцовыми поверхностями. При этом диаметры и количество дисков подбирают в зависимости от передаваемой мощности. Чем больше площадь контакта между дисками, тем больше передаваемая мощность. Представление 0 такой муфте дает, например, многодисковая фрикционная электромагнитная муфта, работающая за счет сил трения, возникающих под действием магнитного притяжения между деталями, связанными соответственно с ведущей и ведомыми частями. Привод этой муфты осуществляется через зубчатое колесо, насаженное на корпус. В последнем помещена электромагнитная катушка, один конец провода которой выведен на корпус, т. е. заземлен, а другой присоединен к контактному кольцу, изолированному от корпуса кольцом. Корпус вместе с запрессованной вгулкой свободно вращается на ведомом валике и удерживается от осевого перемещения кольцом, закрепленным стопорным винтом.

Рис. 3. Схема многодисковой электромагнитной муфты

Якорь и диск соединены с валиком при помощи шлицевого соединения и свободно перемещаются вдоль оси. Диски имеют наружные выступы, которые свободно перемещаются по пазам обоймы закрепленной на корпусе.

Включают муфту подачей постоянного тока в обмотку катушки через контактное кольцо. При этом под действием возникшего магнитного поля диски и зажимаются между якорем и корпусом и движение передается валику и всему механизму.

Реклама:

Предохранительные устройства

Статьи по теме:

Классификация валов и осей машины, их применение

Классификация валов и осей строительной машины. Какие виды валов применяются в машинах? Отличие обработки валов и осей, механизмы в виде спаренных валов.

Оси — поддерживают вращающиеся части машин. Они могут быть вращающимися и неподвижными.

Валы — не только поддерживают, но и передают вращение.Бывают: прямые, кривошипные и коленчатые.Валы рассчитывают на одновременное действие крутящего и изгибающего моментов.

Оси рассчитывают только на изгиб.

  1. вал с прямой осью;
  2. коленчатый вал;
  3. гибкий вал;
  4. карданный вал.

Оси и валы отличаются от прочих деталей машины тем, что на них насаживаются зубчатые колёса, шкивы и другие вращающиеся части. По условиям работы оси и валы отличаются друг от друга.

Осью называют деталь, которая лишь поддерживает насаженные на неё детали. Ось не испытывает кручения, поскольку нагрузку на неё идёт от расположенных на ней деталей. Она работает на изгиб и не передаёт вращающий момент.

Что же касается вала, то он не только поддерживает детали, но и передаёт момент вращения. Поэтому вал испытывает как изгиб, так и кручение, иногда также сжатие и растяжение. Среди валов выделяют торсионные валы (или просто торсионы), которые не поддерживают вращение деталей и работают исключительно на кручение. Примеры — это карданный вал автомобиля, соединительный валик прокатного стана и многое другое.

Участок в опоре вала или оси называется цапфой, если воспринимает радиальную нагрузку, или пятой, если на него осуществляется осевая нагрузка. Концевая цапфа, принимающая радиальную нагрузку, называется шипом, а цапфу, находящуюся на некотором расстоянии от конца вала, называют шейкой. Ну а та часть вала или оси, которая ограничивает осевое перемещение деталей, называется буртиком.

Посадочная поверхность оси или вала, на которую, собственно, и устанавливаются вращающиеся детали, часто делают цилиндрическими и реже — коническими, чтобы облегчить постановку и снятие тяжёлых деталей, когда требуется высокая точность центрирования. Поверхность, обеспечивающая плавный переход между ступенями, носит название галтели. Переход может выполняться с использованием канавки, которая делает возможным выход шлифовального круга. Концентрация напряжения может быть уменьшена за счёт уменьшения глубины канавок и увеличения закругления канавок и гантелей, насколько возможно.

Чтобы сделать установку вращающихся деталей на ось или вал проще, а также предотвратить травмы рук, торцы делают с фасками, то есть немного обтачивают на конус.Виды осей и валов

Ось может быть вращающейся (например, ось вагона) или не вращающейся (например, ось блока машины для подъёма грузов).

Ну а вал может быть прямым, коленчатым или гибким. Прямые валы распространены шире всего. Коленчатые находят применение в кривошипно-шатунных передачах насосов и двигателей. Они преобразовывают возвратно-поступательные движения во вращательные, либо наоборот. Что касается гибких валов, то они являются, по сути, мног заходными пружинами кручения, витыми из проволок. Их используют, чтобы передавать момент между узлами машины, если они при работе меняют положение относительно друг друга. И коленчатые, и гибкие валы классифицируются как специальные детали и изучаются на специальных учебных курсах.

Чаще всего ось или вал имеют круглое сплошное сечение, но могут они иметь и кольцевое поперечное сечение, которое позволяет уменьшить общую массу конструкции. Сечение некоторых участков вала может иметь шпоночную канавку или шлицы, а может быть и профильным.

При профильном соединении детали между собой скрепляются с помощью контакта по круглой не плавной поверхности и могут, помимо крутящего момента, передавать и осевую нагрузку. Несмотря на надёжность профильного соединения, его нельзя назвать технологичным, так что применение у них ограничено. Шлицевое же соединение классифицируют по форме профиля зубьев — оно может быть прямобочным, эвольвентным или треугольным.

19 661 0 UPD


Смотрите также